Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009

AL2 - Algebra 2

Tutorato 5 - 28 Ottobre 2008 Elisa Di Gloria, Matteo Acclavio

www.matematica3.com

Gli esercizi proposti qui di seguito fanno parte del primo esonero del 2005/06.

Esercizio 1.

Determinare la decomposizione in cicli disgiunti, l'ordine e la parità della permutazione:

Esercizio 2.

Siano σ_1 , σ_2 , σ_3 , σ_4 , σ_5 , $\sigma_6 \in S_7$, $\sigma_1 = (135)(24)$, $\sigma_2 = (23)(17)(45)$, $\sigma_3 = (273)(14)$, $\sigma_4 = (17)(234)$, $\sigma_5 = (12)$ e $\sigma_6 = (27)(13)(56)$.

Determinare quali fra queste permutazioni sono coniugate in S_7 e trovare due distinte permutazioni che le coniugano.

Esercizio 3.

Determinare i generatori, i sottogruppi ed i gruppi quozienti del gruppo \mathbb{Z}_{12} .

Esercizio 4.

Costruire tutti i possibili automorfismi del gruppo delle unità di \mathbb{Z}_9 .

Esercizio 5.

Determinare almeno un omomorfismo non nullo

$$\varphi: \mathbb{Z}_{18} \longrightarrow \mathbb{Z}_{30}$$

Determinare il nucleo N e l'immagine H di φ e definire l'isomorfismo canonico:

$$\frac{\mathbb{Z}_{18}}{N} \longrightarrow H.$$

Esercizio 6.

Mostrare che l'applicazione

 $Re: (\mathbb{C}, +) \longrightarrow (\mathbb{R}, +)$ definita come Re(a+ib) = a, per ogni $z = a+ib \in \mathbb{C}$ è un omomorfismo di gruppi. Determinare il nucleo N e l'immagine H di Re e definire l'isomorfismo canonico:

$$\frac{\mathbb{C}}{N} \longrightarrow H.$$

Esercizio 7.

Sia G un gruppo moltiplicativo. Dimostrare che l'applicazione $\varphi: G \longrightarrow G$ t.c. $\varphi(g) = g^{-1}$ è biiettiva. Dimostrare inoltre che è un isomorfismo se e soltanto se G è commutativo.

Esercizio 5.

Mostrare che l'applicazione di coniugio complesso

$$(\mathbb{C}^*,\cdot) \longrightarrow (\mathbb{C}^*,\cdot), z \mapsto \bar{z}$$

è un automorfismo di gruppi.

Verificare inoltre che, se ξ è una radice n-esima dell'unità, allora $\overline{\xi^k} = \xi^{n-k}$ per ogni $0 \le k \le n-1$.