Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 AL2 - Algebra 2: Gruppi, Anelli e Campi Esercitazione 1 (3 ottobre 2008)

Esercizio 1. Sia $X:=\{x,y\}$, dimostrare che il sottogruppo generato da X coincide con l'insieme:

$$H := \{x^{n_1}y^{m_1}x^{n_2}y^{m_2}\cdots x^{n_k}y^{m_k} : k \in \mathbb{N}_+, n_i, m_i \in \mathbb{Z}, \text{ per } i = 1, \dots, k\}.$$

Se inoltre x e y sono permutabili (ovvero xy = yx), si dimostri che:

$$\langle X \rangle = \{ x^n y^m : n, m \in \mathbb{Z} \},\,$$

e $\langle X \rangle$ è abeliano.

Soluzione. Facciamo vedere che $H = \bigcap_{X \subseteq K \leq G} K$. $X \subseteq H$ e dunque il contenimento $\langle X \rangle \subseteq H$ è chiaro. Sia dunque $K \leq G$ tale che $X \subseteq K$, allora $x,y \in K$ e dunque $x^{n_i},y^{m_j} \in K$ per ogni $n_i,m_j \in \mathbb{Z}$. Ne segue che $H \subseteq K$ per ogni K tale che $X \subseteq K \leq G$.

Se x e y sono permutabili è sufficiente osservare che anche $x^ny^m=y^mx^n$ per ogni $n,m\in\mathbb{Z}$ e dunque raggruppando tutte le potenze di x e le potenze di y si ha la scrittura desiderata. Il fatto che $\langle X\rangle$ sia abeliano segue con la stessa argomentazione.

Esercizio 2. Siano H, K sottogruppi di un gruppo G. Sia $X := H \cup K$. Provare che:

(a) il sottogruppo generato da X coincide con l'insieme:

$$\{h_1k_1h_2k_2\cdots h_sk_s: s\in\mathbb{N}_+, h_i\in H, k_i\in K \text{ per } i=1,\ldots,s\};$$

(b) se G è abeliano, il sottogruppo generato da X coincide con l'insieme:

$$HK = \{hk : h \in H, k \in K\}.$$

Soluzione.

(a) Facciamo vedere che

$$G' := \{h_1 k_1 h_2 k_2 \cdots h_s k_s : s \in \mathbb{N}_+, h_i \in H, k_i \in K \text{ per } i = 1, \dots, s\}$$

è un gruppo (sottogruppo di G). È chiaro che se $x,y \in G'$ anche $xy \in G'$ essendo una espressione formale dello stesso tipo, inoltre $1 \in H$ e $1 \in K$ quindi $h_1k_1 = 1 \cdot 1 = 1 \in G'$. Per ogni $i = 1, \ldots, s$ $h_i^{-1} \in H$ e $k_i^{-1} \in K$, dunque se $x := h_1k_1 \cdots h_sk_s$ si ha che $x^{-1} = k_s^{-1}h_s^{-1} \cdots k_1^{-1}h_1^{-1} \in G'$. Questo dimostra che G' è un sottogruppo di G. Sia ora $L \leq G$ tale che $H \cup K \subseteq L$, allora è chiaro che $L \supseteq G'$ perché L è un gruppo. Dunque il sottogruppo $G' \supseteq H \cup K$ e se L è un altro sottogruppo di G che contiene $H \cup K$ si ha che $G' \subseteq L$. Ne segue che $G' = \langle X \rangle$.

(b) Stessa dimostrazione dell'Esercizio 1.

Esercizio 3. Siano H e K sottogruppi di un gruppo G. Dimostrare che:

- (a) HK è un sottogruppo di G se e soltanto se HK = KH.
- (b) Se H (oppure K) è normale allora HK è un sottogruppo di G.

Soluzione.

(a) Supponiamo $HK \leq G$, allora $H, K \subseteq HK$ da cui $kh \in HK$ per ogni $k \in K$ e $h \in H$, ovvero $KH \subseteq HK$. Sia ora $x \in HK$, poiché HK è un gruppo anche $x^{-1} \in HK$, dunque se x = hk per certi $h \in H$ e $k \in K$, si ha che $x^{-1} = k^{-1}h^{-1} \in KH$. Poiché ciò vale per ogni $x \in HK$ si ha che $HK \subseteq KH$.

Supponiamo viceversa che HK = KH. $1 \in HK$ e se $x \in HK$, x = hk per un qualche $h \in H$ e $k \in K$. Ne segue che $y := k^{-1}h^{-1} \in KH = HK$ e xy = 1. Facciamo vedere che se $x, y \in HK$ anche $xy \in HK$; sia x = hk e $y = h_1k_1$, allora $xy = hkh_1k_1 = h(h'k')k_1$ dato che HK = KH, dunque $xy = (hh')(k'k_1) \in HK$.

(b) Dal fatto che H è normale segue che HK = KH e dunque è un sottogruppo di G.

Esercizio 4. Mediante il procedimento utilizzato per dimostrare il teorema di Cayley, si identifichino i seguenti gruppi come sottogruppi di un gruppo simmetrico:

$$(\mathbb{Z}_4,+); (V_4,\cdot); (S_3,\circ).$$

Soluzione. Si verifica facilmente che le applicazioni proposte sono effettivamente isomorfismi.

(a) Denotiamo con 0, 1, 2, 3 gli elementi di \mathbb{Z}_4 e sia $\sigma := (1234) \in S_4$. Z_4 è isomorfo a $\langle \sigma \rangle$ tramite il seguente isomorfismo:

$$\varphi: \mathbb{Z}_4 \longrightarrow \langle \sigma \rangle$$

$$0 \longmapsto \text{id}$$

$$1 \longmapsto \sigma$$

$$2 \longmapsto \sigma^2 = (13)(24)$$

$$3 \longmapsto \sigma^3 = (1432).$$

(b) Denotiamo con 1, x, y, z i 4 elementi di V_4 ricordando che $x^2 = y^2 = z^2 = 1$ e xy = z = yx, zy = x = yz e xz = y = zy. Un sottogruppo di S_4 isomorfo a V_4 è dunque dato da: $H := \{ \mathrm{id}, (12), (34), (12)(34) \}$, dove:

$$\begin{array}{cccc} \varphi: V_4 & \longrightarrow & H \\ 1 & \longmapsto & \mathrm{id} \\ x & \longmapsto & (12) \\ y & \longmapsto & (34) \\ z & \longmapsto & (12)(34). \end{array}$$

(c) S_3 è di per sé un gruppo simmetrico e dunque non c'è niente da dimostrare. Il procedimento del Teorema di Cayley può essere comunque utilizzato

per immergere S_3 in S_6 : $S_3 = \{id, (12), (23), (13), (123), (132)\}$. Etichettiamo tali elementi nel seguente modo: e := id; x := (12); y := (23); z := (13); u := (123), v := (132). Possiamo dunque vedere S_6 come S(X) dove $X := \{e, x, y, z, u, v\}$. Allora l'isomorfismo cercato è dato da:

$$\varphi: S_3 \longrightarrow K \leq S_6$$

$$e \longmapsto \text{id}$$

$$x \longmapsto (ex)(yu)(zv)$$

$$y \longmapsto (ey)(xv)(zu)$$

$$z \longmapsto (ez)(xu)(yv)$$

$$u \longmapsto (euv)(xzy)$$

$$v \longmapsto (evu)(xyz).$$

Esercizio 5. Si provi che l'insieme:

$$S := \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \, : \, a,b \in \mathbb{R}; \, \, a,b \, \, \text{non contemporaneamente nulli} \right\}$$

è un sottogruppo di $GL_2(\mathbb{R})$ (con l'usuale prodotto righe per colonne). Mostrare inoltre che S è isomorfo a (\mathbb{C}^*,\cdot) .

Soluzione. Innanzitutto $I_2 \in S$. Osserviamo che la condizione a, b non contemporaneamente nulli è equivalente a $\det(A) = a^2 + b^2 \neq 0$. Dunque $S \subseteq GL_2(\mathbb{R})$.

$$A := \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \Longrightarrow A^{-1} = \frac{1}{\det(A)} \cdot \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right),$$

e dunque anche $A^{-1} \in S$. Siano ora:

$$A:=\left(\begin{array}{cc}a&b\\-b&a\end{array}\right),\;B:=\left(\begin{array}{cc}c&d\\-d&c\end{array}\right)\in S\Longrightarrow AB=\left(\begin{array}{cc}a'&b'\\-b'&a'\end{array}\right),$$

con a' := ac - bd e b' = ad + bc. Resta da far vedere che a' e b' non possono essere contemporaneamente nulli, o equivalentemente che $(a')^2 + (b')^2 \neq 0$. Si ha che:

$$(a')^{2} + (b')^{2} = a^{2}b^{2} - 2acbd + b^{2}d^{2} + b^{2}c^{2} + 2abcd = a^{2}b^{2} + b^{2}d^{2} + b^{2}c^{2} \neq 0.$$

L'isomorfismo con (\mathbb{C}^*,\cdot) è dato dall'applicazione:

$$\varphi: S \longrightarrow \mathbb{C}^*$$
 $A \longmapsto a + ib.$

dove $A:=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Il fatto che φ sia biiettiva è banale. Per la condizione $\varphi(AB)=\varphi(A)\varphi(B)$, sia $B:=\begin{pmatrix} c & d \\ -d & c \end{pmatrix}$; abbiamo già visto che $AB=\begin{pmatrix} ac-bd & ad+bc \\ -ad-bc & ac-bd \end{pmatrix}$. Ora se x:=a+ib e y:=c+id sono rispettivamente $\varphi(A)$ e $\varphi(B)$, si ha che:

$$xy = (a+ib)(c+id) = (ac-bd) + i(ad+bc) = \varphi(AB).$$

Esercizio 6. Dimostrare che:

$$G := \langle a, b : a^n = b^2 = 1; (ab)^2 = 1 \rangle$$

è un gruppo isomorfo a D_n .

Soluzione. Dal fatto che abab=1 si ricava $a^{-1}=bab$; inoltre essendo $b^2=1$ si ha che $b^{-1}=b$. Dunque per ogni $k\in\mathbb{Z},\,b^{-1}a^kb=a^{-k}$ (elevando alla k l'espressione precedente) e quindi, $ba^k\stackrel{(*)}{=}a^{-k}b$. Un generico elemento $x\in G$ è della forma: $x=a^{h_1}b^{\epsilon_1}a^{h_2}b^{\epsilon_2}\dots a^{h_s}b^{\epsilon_s}$, con $h_i\in\{0,\dots,n-1\}$ e $\epsilon\in\{0,1\}$. Usando (*) possiamo riscrivere x nel seguente modo $x=a^{h_1-h_2+\dots+(-1)^{s-1}h_s}b^{\epsilon_1+\dots+\epsilon_s}=a^hb^{\epsilon}$, per un qualche $h\in\{0,\dots,n-1\}$ ed $\epsilon\in\{0,1\}$. Dunque ogni elemento di G è di questa forma per $h=0,\dots,n-1$ ed $\epsilon=0,1$. Allora $|G|\leq 2n$. Il gruppo D_n è generato dalla rotazione di $2\pi/n$, denotata con ρ e da un qualunque ribaltamento σ . In D_n $\rho^n=1=\sigma^2$, inoltre $\sigma\rho\sigma=\rho^{-1}$ da cui $(\rho\sigma)^2=$ id. Dunque G contiene una copia isomorfa di D_n . Dalle considerazioni fatte sull'ordine di G segue che G è isomorfo a D_n .

Esercizio 7. Sia G un gruppo e sia $\{H_i\}_{i\in I}$ l'insieme dei suoi sottogruppi propri. Mostrare che $G=\bigcup_{i\in I}H_i$ se e soltanto se G non è ciclico.

Soluzione. Supponiamo che G non sia ciclico, allora $G = \bigcup_{x \in G} \langle x \rangle$ e $G \supsetneq \langle x \rangle$ per ogni $x \in G$. Se invece $G = \langle x \rangle$ per qualche $x \in G$, allora un sottogruppo proprio H di G è tale che $x \notin H$, altrimenti H = G, dunque $\bigcup H_i \subseteq G \setminus \{x\}$. \square

Esercizio 8. Sia G il gruppo di Heisenberg. Dimostrare che:

$$N := \left\{ \left(\begin{array}{ccc} 1 & 2b & 2c \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{array} \right) \, : \, a, b, c \in \mathbb{Z} \right\},$$

è un sottogruppo normale di G.

Soluzione. È chiaro che $I_3 \in N$. Siano $A, B \in N$:

$$A := \left(\begin{array}{ccc} 1 & 2b & 2c \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{array}\right); \ B := \left(\begin{array}{ccc} 1 & 2b' & 2c' \\ 0 & 1 & 2a' \\ 0 & 0 & 1 \end{array}\right).$$

Allora si ha che:

$$AB = \begin{pmatrix} 1 & 2(b+b') & 2(c'+2a'b) \\ 0 & 1 & 2(a+a') \\ 0 & 0 & 1 \end{pmatrix} \in N.$$

Inoltre:

$$A^{-1} = \begin{pmatrix} 1 & -2b & 2(2ab - c) \\ 0 & 1 & -2a \\ 0 & 0 & 1 \end{pmatrix} \in N.$$

Resta da far vedere che N è normale nel gruppo di Heisenberg H. Sia $C \in H$.

allora
$$C = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$
 e $C^{-1} = \begin{pmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix}$. Dunque $C^{-1}AC = C = \begin{pmatrix} 1 & 2b & 2bz + 2c - 2ax \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{pmatrix} \in N$.

Esercizio 9. Si dimostri che:

$$H := \left\{ \left(\begin{array}{ccc} 1 & n & \frac{n^2 - n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{array} \right) \, : \, n \in \mathbb{Z} \right\},$$

è un sottogruppo ciclico di $GL_3(\mathbb{R})$.

Soluzione. Facciamo vedere che H è generato dal seguente elemento:

$$A := \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Per induzione su $n \geq 1$. La base dell'induzione è facilmente verificata, supponiamo dunque che:

$$A^{n-1} := \left(\begin{array}{ccc} 1 & n-1 & \frac{(n-1)^2 - (n-1)}{2} \\ 0 & 1 & n-1 \\ 0 & 0 & 1 \end{array}\right),$$

allora

$$A^n = A^{n-1}A = \begin{pmatrix} 1 & n-1 & \frac{(n-1)^2 - (n-1)}{2} \\ 0 & 1 & n-1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n & \frac{n^2 - n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Se n < 0 si ha:

$$A^{-1} = \left(\begin{array}{ccc} 1 & -1 & 1\\ 0 & 1 & -1\\ 0 & 0 & 1 \end{array}\right),$$

e, anche in questo caso,
$$A^{-n}=(A^{-1})^n=\begin{pmatrix}1&-n&\frac{(-n)^2+n}{2}\\0&1&-n\\0&0&1\end{pmatrix}$$
 dunque H è generato da A .

Esercizio 10. Mostrare che il più piccolo sottogruppo di S_n contenente la trasposizione (12) e l'n-ciclo (12 · · · n) è S_n .

Suggerimento: utilizzare il fatto che ogni elemento di S_n si scrive come prodotto di trasposizioni.

Soluzione. Tenendo presente il suggerimento è sufficiente dimostrare che nel sottogruppo generato dai due elementi dati ci sono tutte le trasposizioni di S_n . Ma questo segue immediatamente della seguente proprietà:

$$(k k+1) = (12 \cdots n) \circ (k-1 k) \circ (12 \cdots n)^{-1} = (12 \cdots n) \circ (k-1 k) \circ (n n-1 \cdots 1).$$

Esercizio 11. Trovare tutti i sottogruppi di Klein contenuti in S_4 .

Soluzione. Tutti e soli i sottogruppi di Klein di S_4 sono:

$$\begin{split} V_4^{(1)} &:= \{ \mathrm{id}, (12), (34), (12)(34) \} \,; \\ V_4^{(2)} &:= \{ \mathrm{id}, (13), (24), (13)(24) \} \,; \\ V_4^{(3)} &:= \{ \mathrm{id}, (14), (23), (14)(23) \} \,. \quad \Box \end{split}$$