UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

AL2 - Algebra 2 - Gruppi, Anelli e Campi - A.A. 2008/2009

Recupero I esonero

	MATRICOLA:		
COGNOME:		NOME:	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'utilizzo di libri e appunti.

ESERCIZIO 1. Sia
$$G:=\left\{\left(\begin{array}{cc} a & 0 \\ c & b \end{array}\right): a,b,c\in\mathbb{Z}_3,\ a\neq 0,\ b\neq 0\right\}.$$

- (a) (3 pt) Provare che G con l'usuale moltiplicazione fra matrici è un gruppo e dire se G è abeliano.
- (b) (3 pt) Dimostrare che $H:=\{M\in G: \det(M)=1\}$ è un sottogruppo di G. Dire se H è un sottogruppo normale.
- (c) (5 pt) Provare che H è ciclico e trovare un suo generatore.
- (d) (3 pt) Dimostrare che ogni elemento di G che non sta in H ha ordine 2.
- (e) (3 pt) Determinare il centro di G.

ESERCIZIO 2. Siano date in S_9 le seguenti permutazioni:

- (a) (3 pt) Verificare che σ e τ sono coniugate in S_9 .
- (b) (2 pt) Trovare, se esistono, una permutazione pari ed una dispari che coniughino σ in τ .
- (c) (2 pt) Stabilire se il sottogruppo ciclico generato da σ è normale in S_9 .

ESERCIZIO 3. Sia (G,\cdot) un gruppo e sia $a\in G$ un elemento fissato. Si consideri l'applicazione:

$$f_a:(G,\cdot)\to(G,\cdot),\quad g\mapsto aga^{-1}.$$

- (a) (3pt) Dimostrare che f_a è un omomorfismo di gruppi e trovare l'immagine ed il $ker(f_a)$.
- (b) (2pt) Sia $H := \{g \in G : f_a(g) = g\}$. Stabilire se H è un sottogruppo di G.
- (c) (4 pt) Dimostrare che $o(f_a) \mid o(a)$, dove $o(f_a)$ è il più piccolo intero positivo m tale che $f_a^m = id_G$ (se m non esiste si pone per definizione $m = \infty$)).