UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

${ m AL2}$ - Algebra 2 - Gruppi, Anelli e Campi - A.A. 2008/2009

Appello X

	MATRICOLA:		
COGNOME:		NOME:	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'utilizzo di libri e appunti.

ESERCIZIO 1. Siano H e K sottogruppi di un gruppo G tali che |H|=4 e |K|=5.

- (a) (2pt) Dimostrare che $H \cap K = \{e\}$;
- (b) (3pt) Determinare il minimo ordine n che deve avere G affinché esistano due tali sottogruppi H e K;
- (c) (3pt) Costruire un esempio esplicito di un gruppo G di ordine minimo e descrivere esplicitamente H e K.

ESERCIZIO 2. Sia D_7 il gruppo delle isometrie dell'ettagono regolare.

- (a) (3pt) Determinare tutti gli omomorfismi $\varphi: D_7 \to \mathbb{Z}_{14}$;
- (b) (2pt) Determinare il nucleo e l'immagine di ognuno di tali omomorfismi.

ESERCIZIO 3.

Sia $I := \{ f(X) \in \mathbb{R}[X] \mid f(\sqrt{2}) = 0, f(\sqrt{3}) = 0 \}.$

- (a) (3pt) Provare che I è un ideale di $\mathbb{R}[X]$ e stabilire se I è un ideale primo.
- (b) (3pt) Si descrivano gli ideali massimali e gli ideali primi di $\mathbb{R}[X]$ che contengono I.

ESERCIZIO 4.

Si consideri l'applicazione

$$f: \mathbb{Z}[i] \to \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}, \ a+ib \mapsto (a+3b+5\mathbb{Z}; a+2b+5\mathbb{Z}).$$

- (a) $(\mathbf{2pt})$ Verificare che f è un omomorfismo di anelli e stabilire se f è suriettiva e/o iniettiva.
- (b) (2pt) Applicare il Teorema di Omomorfismo per determinare il quoziente $\mathbb{Z}[i]/ker(f)$.
- (c) (2pt) Trovare la controimmagine dell'elemento (2, 1).

ESERCIZIO 5.

- (a) (3pt) Determinare il MCD di 11 + 3i e 8 i in $\mathbb{Z}[i]$.
- (b) (2pt) Provare che se $d \leq -3$ è un numero intero privo di fattori quadratici, allora 2 è irriducibile in $\mathbb{Z}[\sqrt{d}]$.