UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

AL2 - Algebra 2 - Gruppi, Anelli e Campi - A.A. 2008/2009

I Esonero

	MATRICOLA:		
COGNOME:		NOME:	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'utilizzo di libri e appunti.

ESERCIZIO 1. (4 pt) Sia (G, \cdot) un gruppo finito. Se H è un sottogruppo di indice 2 dimostrare che tutti gli elementi di ordine dispari stanno in H.

ESERCIZIO 2. Siano date in S_{11} le seguenti permutazioni:

- (a) (3 pt) Verificare che σ e τ sono coniugate in S_{11} ed anche in A_{11} .
- (b) (2 pt) Trovare una permutazione pari ed una dispari che le coniughi una nell'altra.

ESERCIZIO 3. Sia dato il gruppo additivo $(\mathbb{Q}/\mathbb{Z}, +)$. Dimostrare che:

- (a) (2 pt) ogni elemento di \mathbb{Q}/\mathbb{Z} ha ordine finito;
- (b) (3 pt) per ogni n > 1 esiste un sottogruppo di \mathbb{Q}/\mathbb{Z} di ordine n, e descrivere un tale sottogruppo.
- (c) (2 pt) $\langle \frac{3}{5} + \mathbb{Z}, \frac{5}{8} + \mathbb{Z} \rangle = \langle \frac{1}{40} + \mathbb{Z} \rangle.$

ESERCIZIO 4. Siano dati il gruppo additivo $(G := \{x + iy : x, y \in \mathbb{Z}\}, +)$ e l'applicazione:

$$f: G \to G, \quad x + iy \mapsto x + y.$$

- (a) (2 pt)Dimostrare che f è un omomorfismo di gruppi.
- (b) (5 pt) Descrivere il nucleo di f e dimostrare che ker(f) è un gruppo ciclico infinito (trovando un suo generatore).
- (c) (2 pt) Descrivere l'immagine di f.

ESERCIZIO 5. (4 pt) Trovare tutti gli omomorfismi da \mathbb{Z}_{27} a \mathbb{Z}_{12} e dire quanti sono gli omomorfismi suriettivi.

ESERCIZIO 6. Sia dato un gruppo (G,\cdot) . Sia $\Omega := \{A \subseteq G \mid A \neq \emptyset\}$ l'insieme dei sottoinsiemi non vuoti di G.

Sia data anche l'applicazione:

$$\star:G\times\Omega\to\Omega,\quad (g,A)\mapsto g\star A:=g\cdot A=\{g\cdot x\mid x\in A\},$$

- (a) (2 pt) Dimostrare che \star è un'azione di G su Ω .
- (b) (2 pt) Descrivere le orbite O(A), con $A \in \Omega$, di tale azione.

(c) (3 pt) Se H è un sottogruppo di G, calcolare lo stabilizzatore di H rispetto a \star .

Soluzione Esercizio 1.

Poiché l'indice di H è 2, abbiamo solo due classi laterali modulo H: H e Hg (per un qualsiasi $g \notin H$). Quindi ogni elemento x di G deve stare in H o in Hg. Inoltre $H^2 = (Hg)^2 = H$, essendo G/H un gruppo di ordine 2. Quindi, per ogni $x \in G$ abbiamo che $x^2 \in H$. Adesso, se x è un elemento di ordine dispari, esiste $k \in \mathbb{Z}$ tale che $x^{2k+1} = 1_G$. Quindi

$$1_G = x^{2k+1} = x^{2k}x = (x^2)^k x.$$

Ma
$$x^2 \in H \Rightarrow (x^2)^k \in H \text{ e } x = (x^{2k})^{-1} \in H.$$