Università degli Studi Roma Tre – Corso di Laurea in Matematica AL210: Tutorato 9

A.A. 2011-2012 - Docente: Prof.ssa F. Tartarone

Mirko Moscatelli - Giorgio Scattareggia

5.12.2011

- 1. Sia $I := (2+i) \subseteq \mathbb{Z}[i]$:
 - stabilire se I è un ideale massimale;
 - determinare l'inverso di (1+i)+I in $\frac{\mathbb{Z}[i]}{I}$.
- 2. Si scelgano in $\mathbb{Z}[i]$ gli elementi

$$\alpha := 13 + 5i \text{ e } \beta := 8 + 9i.$$

Posto $I := (\alpha) \in J := (\beta)$,

- si determini una fattorizzazione di α ed una di β ;
- si stabilisca se gli anelli $\frac{\mathbb{Z}[i]}{I}$ e $\frac{\mathbb{Z}[i]}{J}$ sono domini;
- si calcoli il $MCD(\alpha, \beta)$;
- si scrivano esplicitamente gli ideali $I \cap J$ e I + J;
- si dica se α è invertibile in $\frac{\mathbb{Z}[i]}{J}$ ed, in caso affermativo, se ne calcoli l'inverso.
- 3. Sia D un dominio a ideali principali e sia $p \in D$ un elemento irriducibile. Mostrare che ogni elemento $a \in D \setminus \{0\}$ si può scrivere nella forma

$$a = px + b$$
,

con $x, b \in D$ che rispettino una delle seguenti condizioni:

- $x \neq 0$ e b = 0, oppure
- p non divide b.
- 4. Dimostrare che $\mathbb{Z}[\sqrt{-5}]$ non è un U.F.D. né un M.C.D. dominio. Suggerimento: si mostri che gli elementi 6 e $2(1+\sqrt{-5})$ non hanno M.C.D. .
- 5. Sia $\mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}, i^2 = -1\}$; per definizione

$$|\cdot|: \mathbb{Z}[i]^* \to \mathbb{N} , |a+ib| := a^2 + b^2,$$

è la norma complessa su $\mathbb{Z}[i]$. Dimostrare che:

- $\mathbb{Z}[i]$ è isomorfo a $\frac{\mathbb{Z}[X]}{(X^2+1)}$;
- $\mathbb{Z}[i]$ è un dominio euclideo (basta verificare che $|\cdot|$ è una norma euclidea).