Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2011/2012 AL210 - Algebra 2 Esercitazione 6 (27 Ottobre 2011)

Esercizio 1. Sia G un gruppo. Dimostrare che $D := \{(x, x) : x \in G\}$ è un sottogruppo di $G \times G$. Dimostrare poi che D è normale in $G \times G$ se e solo se G è abeliano.

Esercizio 2. Sia G un gruppo e $x, y \in G$. Si definisce il commutatore di x, y: $[x, y] := x^{-1}y^{-1}xy$. Dimostrare che il sottogruppo $G' := \langle [x, y] : x, y \in G \rangle$ è caratteristico in G (G' è detto derivato di G).

Esercizio 3. Dimostrare che in un gruppo finito G la corrispondenza che manda ogni elemento nel suo quadrato è un automorfismo di G se e solo se G è abeliano e ha ordine dispari.

Esercizio 4. Dimostrare che se H è un sottogruppo normale di G ed N è un sottogruppo caratteristico di H, allora N è normale in G.

Esercizio 5. Sia G un gruppo dotato di due sole classi di coniugio. Dimostrare che G è semplice (ovvero G è privo di sottogruppi normali non banali).

Esercizio 6. Sia G un gruppo finito. Sia $n \in \mathbb{Z}^{>0}$ tale che per ogni $x, y \in G$ si abbia:

$$(\star) \qquad (xy)^n = x^n y^n.$$

Siano

$$G_n := \{x \in G : x^n = e_G\}; \quad G^n := \{x^n : x \in G\}.$$

- (a) Verificare che G_n e G^n sono sottogruppi di G.
- (b) Dimostrare che G_n e G^n sono normali.
- (c) Sia $\varphi:G\to G,\,x\mapsto x^n.$ Dimostrare che φ è un omomorfismo e determinarne nucleo e immagine.

Esercizio 7. Provare che i gruppi D_4 e Q_8 non sono isomorfi.

Esercizio 8. Provare che $\operatorname{Hom}(S_3,\mathbb{Z}_3)$ è costituito dal solo omomorfismo nullo.