Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2011/2012 AL210 - Algebra 2 Esercitazione 10 (2 Dicembre 2011)

Esercizio 1. Nell'anello degli interi di Gauss $\mathbb{Z}[i]$:

- (a) Determinare il quoziente e il resto della divisione di 1 + 5i per 2 + 3i e per 4 i.
- (b) Fattorizzare 5 nel prodotto di elementi irriducibili.

Esercizio 2. Dimostrare che l'ideale $(2, 1 + \sqrt{-3}) \subset \mathbb{Z}[\sqrt{-3}]$ non è principale (e dunque $\mathbb{Z}[\sqrt{-3}]$ non è un PID).

Soluzione: Supponiamo per assurdo che $I:=(2,1+\sqrt{-3})$ sia principale. Allora deve esistere $z\in D$ tale che zD=I. In particolare si deve avere $2,1+\sqrt{-3}\in zD$.

Ne segue che 2=zx e $1+\sqrt{-3}=zy$, esistono $x,y\in D$. Poiché la norma è moltiplicativa si ha inoltre che $N(1+\sqrt{-3})=4=N(2)=N(z)N(x)=N(z)N(y)$. E dunque la norma di z=1,2,4. Se z ha norma 1, allora z è invertibile ed è uguale a ± 1 , da cui $zD=D\supsetneq I$ che è assurdo. Allora la norma di z è uguale a 2 oppure 4. Se z avesse norma 4, N(x)=N(y)=1, ovvero $x,y=\pm 1\in U(D)$ e $2\sim z\sim 1+\sqrt{-3}$ che non è possibile perché $2\neq \pm (1+\sqrt{-3})$.

Inoltre in D non esistono elementi di norma 2, perché si dovrebbe avere $a^2+3b^2=2$ con $a,b\in\mathbb{Z}$, che non è possibile. Avendo escluso tutte le possibilità per i valori di N(z) possiamo concludere che I non è principale in D.

Esercizio 3. Sia D un dominio a ideali principali e I un ideale non banale di D. Dimostrare che nel quoziente D/I ogni elemento non invertibile è un divisore dello zero.

Soluzione: In un dominio a ideali principali D ogni coppia di elementi x, y (non nulli) possiede un massimo comune divisore (PID \Rightarrow UFD \Rightarrow MCD), inoltre tale massimo comune divisore si può esprimere mediante un'identità di Bézout (PID \Rightarrow Bézout).

Sia I=xD un ideale non banale di D, facciamo vedere che se $\mathrm{MCD}(x,y)=1$ allora $y\in U(D/I)$. Sia $1=\alpha x+\beta y$ una identità di Bézout, ovvero $1+I=(\alpha x+\beta y)+I=(\alpha x+I)+(\beta y+I)=I+(\beta+I)(y+I)$, quindi y+I è invertibile in D/I (e il suo inverso è $\beta+I$).

Sia ora $z+I\in D/I$ un elemento non invertibile, allora $\mathrm{MCD}(z,x)=d\neq 1$, e d=ux+vz. Sia $w\in D$ tale che wd=x (un tale elemento $w\not\in xD$ esiste in quanto $d\mid x$ e $d\neq 1$). Allora $w+I\neq I$ e $vz+I\neq I$, ma (w+I)(vz+I)=I perché $wvz=wd-wux\in I$.

Esercizio 4. Sia p un primo e

$$\mathbb{Z}_{(p)}:=\left\{\frac{a}{b}:a,b\in\mathbb{Z},\ p\not|b\right\}.$$

- (a) Determinare tutti gli elementi irriducibili di $\mathbb{Z}_{(p)}.$
- (b) Dimostrare che $\mathbb{Z}_{(p)}$ è un dominio euclideo con la norma $\delta: \mathbb{Z}_{(p)}^* \to \mathbb{N},$ $a/b \mapsto v_p(a),$ dove

 $v_p(a) := \max\{k \in \mathbb{Z} : p^k \mid a\}.$