Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

TUTORATO 5 (28 APRILE 2011) CONNESSIONE E CONNESSIONE PER ARCHI

- 1. Dimostrare che una funzione continua $f: X \to Y$, con $X \neq \emptyset$ connesso e Y discreto è costante.
- 2. Siano $Z_1 = \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x} (1,0)\| < 1\}, Z_{-1} = \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x} (-1,0)\| < 1\};$ dire quali dei seguenti sottoinsiemi di \mathbb{R}^2 sono connessi:
 - $A = Z_1 \cup Z_{-1}$;
 - $B = A \cup \{(0,0)\};$
 - $C = A \cup \{(-2,0), (2,0)\};$
 - $D = A \cup \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_2 = 1\};$
 - $E = A \cup \{ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_2 = 0 \}.$
- 3. (a) Siano Y uno spazio topologico connesso ed $f: X \to Y$ un'applicazione continua e suriettiva tale che $f^{-1}(y)$ è connesso per ogni $y \in Y$. Se f è aperta oppure chiusa, allora anche X è connesso.
 - (b) Utilizzare il risultato precedente per dimostrare che il prodotto di due spazi topologici connessi è connesso.
- 4. Dimostrare che il prodotto di due spazi topologici connessi per archi è connesso per archi.
- 5. (a) Siano X e Y spazi topologici e sia $f: X \to Y$ un omeomorfismo. Dimostrare che f manda componenti connesse in componenti connesse. Dedurne che due spazi topologici omeomorfi hanno lo stesso numero di componenti connesse.
 - (b) Sia X uno spazio topologico e sia E un sottoinsieme non vuoto di X. Verificare che, se E è connesso, aperto e chiuso, allora E è una componente connessa di X.
 - (c) Sia $Y := \{(x,y) \in \mathbb{R}^2 : xy = 0\}$; dopo aver verificato che Y è connesso, dimostrare che Y non è omeomorfo alla retta euclidea $(\mathbb{R}, \varepsilon)$.
 - (d) Dimostrare che il cilindro e il cono non sono omeomorfi.
 - (e) Dire quali delle seguenti lettere sono tra loro omeomorfe (come figure piane): O, T, D, U, X, V.
- 6. Dire se il sottoinsieme di \mathbb{R}^2 $B:=\{(x,y)\in\mathbb{R}^2:x\notin\mathbb{Q}\text{ oppure }y\notin\mathbb{Q}\}$ è connesso per archi.
- 7. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione continua e biunivoca tale che $f(S^{n-1}) = S^{n-1}$. Dimostrare che $f(D_1(0)) = D_1(0)$.
- 8. Verificare che gli insiemi $\mathbf{GL}_n(\mathbb{R})$ e $\mathbf{O}_n(\mathbb{R})$ sono sconnessi.
- 9. Si consideri il sottospazio X di \mathbb{R}^2 costituito dalle circonferenze C_n di centro (0,0) e raggio $\frac{1}{n}$ con $n \in \mathbb{N} \{0\}$.
 - (a) E' connesso?
 - (b) E' connesso per archi?
 - (c) E' compatto?
 - (d) Si risponda alle domande (a) e (b) e (c) per $X' = \{(x,0) \in \mathbb{R}^2 : 0 \le x < 1\} \cup X$.
 - (e) Sia $S := \{(x,0) \in \mathbb{R}^2 : 0 \le x \le 1\}$; si risponda alle domande (a) e (b) e (c) per $X'' = X' / \sim_S$. Si dica inoltre se X'' è di Hausdorff.
- 10. Dimostrare che uno spazio topologico X connesso e localmente connesso per archi è connesso per archi.