Università degli Studi di Roma Tre Corso di Laurea in Matematica – a.a. 2010/2011 GE220

Seconda prova di valutazione in itinere – 1 giugno 2011

Tutte le risposte vanno argomentate chiaramente e sinteticamente. I telefoni cellulari devono rimanere spenti. Non è consentito utilizzare libri o appunti.

Esercizio 1 (5 punti). Classificare la superficie compatta e connessa S definita dal seguente poligono etichettato, con $g \ge 1$:

$$a_1 a_2 a_3 a_1^{-1} a_2^{-1} a_3^{-1} \cdots a_{3g-2} a_{3g-1} a_{3g} a_{3g-2}^{-1} a_{3g-1}^{-1} a_{3g}^{-1}$$

Esercizio 2 (10 punti). Dimostrare che un aperto non vuoto di \mathbb{R}^n è connesso se e solo se è connesso per archi.

Esercizio 3 (10 punti). Verificare che il s.i. $S \subset \mathbb{R}^3$ definito dalle condizioni

$$\{(x, y, z) : x = \pm 1, -1 \le y \le 1\} \cup \{(x, y, z) : y = \pm 1, -1 \le x \le 1\}$$

è una superficie topologica e costruirne un atlante. (Suggerimento: Osservare che $S = C \times \mathbb{R}$ dove $C \subset \mathbb{R}^2$ è una curva, e utilizzare un atlante per C).

Esercizio 4 (9 punti). Sia $f: X \longrightarrow Y$ un'applicazione continua, aperta e suriettiva, con Y connesso. Si supponga inoltre che $f^{-1}(y)$ sia connesso per ogni $y \in Y$. Dimostrare che X è connesso.

Esercizio 5. 1 [8 punti] Sia $f: X \longrightarrow Y$ un'applicazione continua e chiusa di spazi topologici. Dimostrare che per ogni sottoinsieme $S \subset X$ si ha $f(\overline{S}) = \overline{f(S)}$. Dare un esempio di applicazione continua e suriettiva per la quale la proposizione è falsa.

¹Quest'esercizio sostituisce il n. 1 della prima prova in itinere

Soluzioni

Esercizio 1 L'etichettatura ha solo coppie del primo tipo, quindi S è un multitoro. I vertici sono ripartiti in g+1 classi di equivalenza perché, per ogni $i=1,\ldots,g$ i vertici di $a_{3i-2}a_{3i-1}a_{3i}^{-1}a_{3i-1}a_{3i}^{-1}$ sono ripartiti in due classi di equivalenza, una delle quali consiste dei due estremi della spezzata, e quindi è sottoinsieme di una classe di equivalenza nell'insieme di tutti i vertici del poligono. Pertanto, essendovi 6g lati, la caratteristica di EP della superficie è 1+(g+1)-3g=2-2g e pertanto S è un g-toro.

Esercizio 2 Se $\emptyset \neq X \subset \mathbb{R}^n$ è connesso per archi allora è connesso, perché, fissato $a \in X$, e fissato per ogni $x \in X$ un arco $\alpha_x : I \longrightarrow X$ di estremi $a \in x$, si ha $X = \bigcup_{x \in X} \alpha_x(I)$, e $\bigcap \alpha_x(I) \ni x$. Quindi X è unione delle famiglia di sottoinsiemi connessi $\alpha_x(I)$ che hanno intersezione non vuota.

Supponiamo viceversa che $X \neq \emptyset$ sia connesso e aperto in \mathbb{R}^n , e sia $p \in X$ un punto qualsiasi. Sarà sufficiente dimostrare che la componente connessa per archi $C_a(p)$ è aperta e chiusa, perchè da ciò e dalla connessione di X seguirà che $C_a(p) = X$. Sia $x \in C_a(p)$, e sia $U \subset X$ un disco aperto di centro x. Poiché U è connesso per archi si ha $U \subset C_a(x) = C_a(\underline{p})$ e quindi x è interno a $C_a(p)$, dunque $C_a(p)$ è aperto. Viceversa, sia $x \in \overline{C_a(p)}$ e sia $U \subset X$ un disco aperto di centro x. Allora $U \cap C_a(p) \neq \emptyset$, e quindi esiste $y \in U \cap C_a(p)$. Poiché U è connesso per archi esiste un arco $f: I \longrightarrow U$ di estremi x ed y. Pertanto x è connesso per archi con y e y lo è con p perchè appartiene a $C_a(p)$. Pertanto, dalla transitività della relazione di connessione per archi segue che x è connesso per archi con p. Quindi $\overline{C_a(p)} = C_a(p)$, cioè $C_a(p)$ è anche chiusa.

Esercizio 3 S è un cilindro di base un quadrato C del piano Z=0. Si può costruire un atlante per C costituito da due carte locali, proiettando dai punti N=(0,1) e S=(0,-1) rispettivamente sulle rette Y=-1 e Y=1 gli aperti $U,V\subset C$ costituiti rispettivamente dai punti che non stanno sul lato di N o di S. La prima proiezione φ_N associa ad un punto $(a,b)\in U$ il punto $\varphi_N(a,b)=(\frac{2a}{b-1},-1)$. La seconda proiezione φ_S associa a $(a,b)\in V$ il punto $\varphi_S(a,b)=(\frac{2a}{b+1},1)$. Allora $\{(U,\varphi_N),(V,\varphi_S)\}$ è un atlante per C e quindi $\{(U\times \mathbb{R},\varphi_N\times 1_{\mathbb{R}}),(V\times \mathbb{R},\varphi_S\times 1_{\mathbb{R}})\}$ è un atlante per S.

Esercizio 4 Siano $A, B \subset X$ aperti non vuoti tali che $X = A \cup B$. Sarà sufficiente far vedere che $A \cap B \neq \emptyset$. Si ha $f(A) \cup f(B) = f(A \cup B) = f(X) = Y$, per la suriettività. Poiché f(A) e f(B) sono aperti e non vuoti e Y è connesso, esiste $y \in f(A) \cap f(B)$. Allora, per la scelta di $y, A \cap f^{-1}(y)$

e $B \cap f^{-1}(y)$ sono aperti non vuoti di $f^{-1}(y)$ la cui unione è $f^{-1}(y)$. Per la connessione di $f^{-1}(y)$ esiste $z \in A \cap B \cap f^{-1}(y) = [A \cap f^{-1}(y)] \cap [B \cap f^{-1}(y)]$.

Esercizio 5 $f(\overline{S})$ è chiuso e contiene f(S) perchè f è chiusa e $S \subset \overline{S}$. Quindi $\overline{f(S)} \subset f(\overline{S})$. Viceversa, se $f(S) \subset K$ chiuso allora $S \subset f^{-1}(K)$ che è chiuso per la continuità di f, e quindi $\overline{S} \subset f^{-1}(K)$, e quindi $f(\overline{S}) \subset K$, e quindi si ha anche $f(\overline{S}) \subset \overline{f(S)}$.

La proiezione $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ è suriettiva e continua ma non chiusa. In particolare il s.i. $S = \{(x,y): xy=1\}$ di \mathbb{R}^2 è chiuso ma $F(S) = \mathbb{R} \setminus \{0\}$ non è chiuso.