Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di AC310 (ex AC1)

A.A. 2011-2012 - Docente: Prof. E. Sernesi Tutori: Giacomo Milizia e Dario Spirito

Tutorato 5 26 ottobre 2011

Tutte le curve sono percorse in senso antiorario, eccetto dove espressamente indicato.

- 1. Senza fare calcoli, spiegare perché l'integrale reale $\int_0^{2\pi} e^{ix} dx$ vale 0.
- 2. Calcolare $\int_{\gamma} \operatorname{Im}(z^2) dz$, dove $\gamma := \{|z| = 1, -\pi \le \arg(z) \le 0\}$.
- 3. Calcolare $\int_{\gamma} |z| dz$, dove $\gamma = \{z|x^2 + y^2 = 1, -\pi \le \arg(z) \le 0\}$.
- 4. Per ogni $n \in \mathbb{Z}$, calcolare $\int_{\gamma} z^n dz$, dove γ è la circonferenza unitaria percorsa in senso orario.
- 5. Calcolare $\int_{\gamma} z^3 dz$, dove $\gamma := \{ y = x^2 + 1 | x \in (0, 1) \}$.
- 6. Trovare i valori di $a \in \mathbb{C}$ per cui $\int_{\gamma} (z a\overline{z}) dz = 0$, dove γ è la circonferenza unitaria.
- 7. Calcolare tutti i possibili valori di $\int_{\gamma} \sqrt{z} dz$, dove $\gamma := \{|z| = 1, -\pi \le \arg(z) \le 0\}$.
- 8. Calcolare i seguenti integrali spiegando perché non è necessario specificare l'arco d'integrazione:

a)
$$\int_{1}^{i} z e^{z} dz$$

c)
$$\int_0^{i+1} z^3 dz$$

b)
$$\int_{1}^{i} (3z^4 - 2z^3) dz$$

$$\mathrm{d}) \int_{1}^{i} z \sin z \mathrm{d}z$$

- 9. Sviluppare in serie di potenze in $z_0 = 3$ la funzione $f(z) = \frac{1}{3 2z}$.
- 10. Sviluppare in serie di potenze in $z_0=0$ le seguenti funzioni, determinandone il raggio di convergenza:

a)
$$f(z) = \frac{z}{z^2 + i}$$

b)
$$f(z) = \sinh^2\left(\frac{z}{2}\right)$$

Ovvero l'integrale di una funzione $f: \mathbb{R} \longrightarrow \mathbb{C}$