Università degli Studi Roma Tre Anno Accademico 2005/2006 AC1 - Analisi Complessa Tutorato 1

Giovedì 2 Marzo 2006

- 1. Esprimere i seguenti numeri complessi nella forma x + iy, dove $x \in y$ sono numeri reali:
 - (a) $(1+2i)^3$
 - (b) $\frac{5}{-3+4i}$
 - (c) $\left(\frac{2+i}{3-2i}\right)^2$
 - (d) $e^{-i\pi/2}$
 - (e) $(1+i)^{100}$
- 2. Trovare tutte le soluzioni dell'equazione $z^6 + 1 = 0$.
- 3. Dire se le seguenti funzioni sono olomorfe su D(0,1), il disco aperto di centro 0 e raggio 1:
 - (a) $f(z) = z^6 + \frac{1}{5-z^2}$
 - (b) $f(x+iy) = \frac{x-1-iy}{x^2+y^2-2x+1}$
 - (c) $f(z) = \overline{z}$
 - (d) f(z) t.c. Im(f(z)) = 0
 - (e) f(z) t.c. Re(f(z)) = 0
 - (f) f(z) t.c. $arg(f(z)) = \theta$, con θ costante, $\theta \in [0, 2\pi[$
- 4. Dimostrare che se f(z) è una funzione olomorfa su un aperto $\Omega \subset \mathbb{C}$ e f'(z) = 0 per ogni $z \in \Omega$, allora f è costante.
- 5. Siano z_n dei numeri complessi t.c. $Re(z_n) \geq 0$. Supponiamo che $\sum_{i=1}^{\infty} z_n$ e $\sum_{i=1}^{\infty} z_n^2$ convergono. Dimostrare che allora converge anche la serie $\sum_{i=1}^{\infty} |z_n|^2$.
- 6. Trovare il raggio di convergenza delle seguenti serie di potenze:
 - (a) $\sum_{n=1}^{+\infty} \frac{n!}{n^n} z^n$
 - (b) $\sum_{n=1}^{+\infty} \frac{z^n}{(n+1)^2}$

 - (c) $\sum_{n=1}^{+\infty} n! z^{n!}$ (d) $\sum_{n=1}^{+\infty} n^n z^{n^2}$ (e) $\sum_{n=1}^{+\infty} \frac{z^n}{2^n}$
- 7. Studiare la convergenza (puntuale, assoluta, uniforme) delle serie dell'esercizio precedente.
- 8. E' stato dimostrato a lezione che date $\sum_{i=1}^{+\infty} a_n z^n$ e $\sum_{i=1}^{+\infty} b_n z^n$ due serie di potenze con raggio di convergenza rispettivamente R_a e R_b , allora il raggio di convergenza R della serie $\sum_{i=1}^{+\infty} a_n z^n \cdot \sum_{i=1}^{+\infty} b_n z^n$ è maggiore o uguale a min $\{R_a, R_b\}$. Trovare un esempio in cui $R > \min\{R_a, R_b\}$.