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1 Introduction

Let E be an elliptic curve defined over the rationals. For any prime p of good reduction,

let Ep be the elliptic curve over Fp obtained by reducing E mod p. Let ap(E) be the trace of

the Frobenius morphism of E/Fp. Then, #E(Fp) = p+1−ap(E), and |ap(E)| ≤ 2
√
p. The case

where ap(E) = 0 corresponds to supersingular reduction mod p.

For a fixed r ∈ Z, what can be said about the number of primes p such that

ap(E) = r? If E has complex multiplication, Deuring showed that half of the primes are

primes of supersingular reduction (see [3]). More precisely, let

πrE(x) = #
{
p ≤ x: ap

(
E
) = r} .

Then, if E has complex multiplication, π0
E(x) ∼ 1/2 π(x) as x → ∞. If E has complex

multiplication and r 6= 0, then the primes with a fixed trace of the Frobenius morphism are

primes in quadratic progressions. For example, consider the elliptic curve E: Y2 = X3−X
with complex multiplication byZ[i]. It is easy to see thatap(E) = ±2 if and only if p = 1+n2

for some integer n. If q(n) is a quadratic progression, and

Q(x) = # {p ≤ x: p = q(n) for some n} ,

it was conjectured by Hardy and Littlewood [9] that Q(x) ∼ C (
√
x/ log x) as x→∞.

This conjecture is part of a more general conjecture of Lang and Trotter [11].

Conjecture 1.1 (Lang-Trotter conjecture). Let E be an elliptic curve defined over Q, and

let r be an integer. Except for the case where r = 0 and E has complex multiplication,
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there is a constant CE,r such that

πrE(x) ∼ CE,r
√
x

log x
as x→∞. (1)

Using their probabilistic model, Lang and Trotter gave an explicit description of

the conjectural constantCE,r (see Section 2). The constantCE,r can be 0, and the asymptotic

relation is then interpreted to mean that there is only a finite number of primes such that

ap(E) = r. It was shown by Elkies that this cannot happen when r = 0; i.e., for any E/Q,
there are infinitely many primes of supersingular reduction [5]. However, if r 6= 0, there

could be only finitely many primes p such that ap(E) = r. For example, if E/Q has a

rational torsion point of order t, then t divides #E(Fp) = p + 1 − ap(E) for all primes of

good reduction, which imposes conditions on the values of ap(E).

We prove in this paper average estimates related to the Lang-Trotter conjecture.

The average distribution fits the one predicted by the conjecture, and the conjectural

constantCE,r of Lang and Trotter is confirmed by our results, as seen in Section 2. Average

estimates for the case r = 0 were already obtained by Fouvry and Murty [6], and we obtain

a generalization of their results for any r ∈ Z. The techniques of Fouvry and Murty do

not seem to extend to the general case r ∈ Z. Our proof then differs significantly from

theirs.

In the following, we fix r ∈ Z, and we denote by E(a, b) the elliptic curve Y2 =
X3 + aX+ b with a, b ∈ Z. Then

πrE(a,b)(x) = #
{
p ≤ x: ap

(
E(a, b)

) = r} .
Following [11], we define

π1/2(x) =
∫ x

2

dt

2
√
t log t

∼
√
x

log x
.

Theorem 1.2. Let r be an integer, A, B ≥ 1. For every c > 0, we have

1

4AB

∑
|a|≤A, |b|≤B

πrE(a,b)(x) = Cr π1/2(x)+O
((

1

A
+ 1

B

)
x3/2 + x

5/2

AB
+
√
x

logc x

)
, (2)

where

Cr = 2

π

∏
l|r

(
1− 1

l2

)−1∏
l 6 | r

l(l2 − l− 1)

(l− 1)(l2 − 1)
. (3)

The constants in the O-symbol depend only on c and r.



Average Frobenius Distributions of Elliptic Curves 167

As the infinite product of (3) converges to a positive number, the constant Cr is

nonzero, even if some CE,r can be zero, as mentioned above.

From the last theorem, we immediately obtain that the Lang-Trotter conjecture

is true “on average.”

Corollary 1.3. Let ε > 0. If A,B > x1+ε, we have as x→∞,
1

4AB

∑
|a|≤A, |b|≤B

πrE(a,b)(x) ∼ Cr
√
x

log x
.

In analogy with the classical terminology, we can say that the average order of

πrE(a,b)(x) is Cr(
√
x/ log x). Using the same techniques, we can also prove that the normal

order of πrE(a,b)(x) is Cr(
√
x/log x). Then, πrE(a,b)(x) ∼ Cr(

√
x/ log x) for “almost all” E(a, b)

rather than on average (see Corollary 1.5). We are grateful to A. Granville for suggesting

this application of our techniques.

Theorem 1.4. Let ε > 0. If A,B > x1+ε, then for every c > 0, we have

1

4AB

∑
|a|≤A, |b|≤B

∣∣πrE(a,b)(x)− Crπ1/2(x)
∣∣2 = O( x

logc x
+
(

1

A
+ 1

B

)
x3 + 1

AB
x5

)
, (4)

where the constant in the O-symbol depends only on c and r.

The following corollary is a standard application of the Turán normal order

method.

Corollary 1.5. Let ε > 0 and fix c > 0. If A, B > x2+ε, then for all d > 2c and for all

elliptic curves E(a, b) with |a| ≤ A and |b| ≤ B with at most O(AB/ logd x) exceptions, we

have the inequality∣∣πrE(a,b)(x)− Cr π1/2(x)
∣∣¿ √

x

logc x
.

In Section 2,we compare the constantCr with the constantsCE,r predicted by Lang

and Trotter. Sections 3 and 4 contain the proof of Theorem 1.2, and Section 5 contains

the proof of Theorem 1.4.

2 The Lang-Trotter constant CE,r

To formulate their conjecture, Lang and Trotter considered a probabilistic model com-

patible with the Cebotarev density theorem and with the Sato-Tate conjecture. From

the model, they obtained an explicit description of the constant CE,r in terms of Galois

representations, as described below. We compare in this section the conjectural constants

CE,r of Lang and Trotter with the constant Cr of Theorem 1.2.
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Let ρE,m be the Galois representation

ρE,m: Gal
(
Q/Q

)
→ Aut(E[m]),

where E[m] is the subgroup of m-torsion points of E(Q). Since E[m] ' (
Z/mZ

)2
, after

choosing a basis for E[m], we can identify Aut(E[m]) with GL2(Z/mZ). Let G(m) be the

image of ρE,m in GL2(Z/mZ), and, for any subgroup G of GL2(Z/mZ), let Gr be the subset

of elements of G of trace r modulo m.

Let E be an elliptic curve without complex multiplication. Serre proved in [13]

that the image of the Galois representation on the full torsion subgroup of E(Q) is an

open subgroup of GL2(Ẑ). It follows that there exists an integer mE such that ρE,l is

surjective for all primes l not dividingmE, and such that the image in GL2(Ẑ) of the Galois

representation on the torsion subgroup of E(Q) is the full inverse image of G(mE). The

Lang-Trotter constant CE,r is then defined as [see 11, p. 36]

CE,r = 2

π

mE |G(mE)r|
|G(mE)|

∏
l 6 |mE

l |G(l)r|
|G(l)|

= 2

π

mE |G(mE)r|
|G(mE)|

∏
l 6 |mE
l|r

(
1− 1

l2

)−1 ∏
l 6 |mE
l 6 | r

l(l2 − l− 1)

(l− 1)(l2 − 1)
. (5)

The second equality follows from the easy estimates

l |GL2(Fl)r|
|GL2(Fl)| =


l3(l− 1)

l(l− 1)2(l+ 1)
when r ≡ 0 (l);

l2(l2 − l− 1)

l(l− 1)2(l+ 1)
when r 6≡ 0 (l).

Comparing (3) and (5), we see that the local factors are exactly the same for the

primes l 6 | mE. More precisely, is it true that

1

4AB

∑
|a|≤A, |b|≤B

CE(a,b),r ∼ Cr as A,B→∞?

There are partial results for the case r = 0 due to Fouvry and Ullmo [7]. The recent

estimates of Duke [4], who showed that for “most” elliptic curves E/Q, ρE,l(G) = GL2(Fl)
for all primes l, are also relevant to this problem. But this does not imply that mE = 1

(and then CE,r = Cr) for those curves. In fact, we never have mE = 1 as shown in [13,

Proposition 22].
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3 An average of special values of L-series

We show in Section 4 how the average

1

4AB

∑
|a|≤A |b|≤B

πrE(a,b)(x)

can be rewritten as an average of special values of Dirichlet L-series by counting the

number of curves over the finite fields Fp with ap = r. The proof of Theorem 1.2 is then

obtained by studying this average of L-series, which we evaluate in this section.

Let B(r) = max
(
3, r, r2/4

)
. In particular, p > B(r) ensures |r| ≤ 2

√
p, a necessary

condition for ap(E) = r.
For d ≡ 0,1(4), d not a perfect square, and n 6= 0, let χd(n) = (d/n) be the Kronecker

symbol (see, for example, [10, p. 304]). The Kronecker symbol is a real character modulo

|d|, and for n > 0,

d1 ≡ d2 (n)⇒
(
d1

n

)
=
(
d2

n

)
for n odd

d1 ≡ d2 (4n)⇒
(
d1

n

)
=
(
d2

n

)
for n ∈ N. (6)

We give the proof of Theorem 1.2 for r odd. The proof is similar when r is even;

therefore, we omit it.

The main result of this section is the following theorem.

Theorem 3.1. Let r be an odd integer, and let

Kr =
∞∑
f=1

(2r,f)=1

∞∑
n=1

crf (n)

nfϕ
(
nf2

) with crf (n) =
∑
a(4n)∗

(r2−af2,4n)=4

(a
n

)
, (7)

where
∑

a(4n)∗ is the sum over a complete set of invertible residues mod 4n.

Furthermore, let

Sf(x) =
{
B(r) < p ≤ x

∣∣∣∣ 4p ≡ r2 (f2), and d = r
2 − 4p

f2
≡ 0,1 (4)

}
.

Then for any c > 0,

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

L(1, χd) logp = Krx+O
(

x

logc x

)
. (8)

Proof of Theorem 3.1. As r is odd, if f2 | r2−4p, then f is odd, and d = (r2−4p)/f2 ≡ 1 (4).

Furthermore, since (r, f) | p, and p > B(r), we have (r, f) = 1.
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For a fixed parameter U > 0 to be chosen later, we have

L(1, χd) =
∑
n≥1

(
d

n

)
1

n
=
∑
n≤U

(
d

n

)
1

n
+O

(√|d| log |d|
U

)

=
∑
n≤U

(
d

n

)
1

n
+O

(√
p logp

fU

)
(9)

using the Polya-Vinogradov inequality (see [2, p. 135]). Using (9), we can rewrite the left-

hand side of (8) as

∑
f≤2
√
x

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp+O

(
x3/2 log x

U

)
. (10)

For a fixed parameter V with 1 ≤ V ≤ 2
√
x to be chosen later, the first part of (10) is

∑
f≤V

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp+

∑
V<f≤2

√
x

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp.

The summation for large values of f is easily evaluated as

∣∣∣∣∣∣∣∣
∑

V<f¿2
√
x

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp

∣∣∣∣∣∣∣∣ ≤ log x logU
∑

V<f≤2
√
x

1

f

∑
n≤x

n≡4∗r2(f2)

1

¿ x log x logU
∑

V<f≤2
√
x

1

f3
¿ x log x logU

V2
,

where 4∗ is an integer such that 4∗ · 4 ≡ 1 (f2).

Therefore, we can rewrite the left-hand side of (8) as

∑
f≤V

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp+O

(
x3/2 log x

U
+ x log x logU

V2

)
. (11)

The sum over “small values” of f and n leads to the main term. It is evaluated by splitting

the sum according to the residue of dmod 4n. Since d = (r2− 4p)/f2 is odd, and
(
d

n

)
= 0
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when (d, n) > 1, using (6), we get

∑
f≤V

(2r,f)=1

1

f

∑
n≤U

1

n

∑
p∈Sf(x)

(
d

n

)
logp =

∑
n≤U,f≤V
(2r,f)=1

1

fn

∑
a(4n)∗

(a
n

) ∑
p∈Sf(x)
d≡a(4n)

logp. (12)

In the above sum, the two conditions p ∈ Sf(x) and d = (r2−4p)/f2 ≡ a (4n) are equivalent

to B(r) < p ≤ x and p ≡ (r2 − af2)/4 (nf2). Furthermore, as (2r, f) = 1,
(
(r2 − af2)/4, nf2

) =
1 ⇐⇒ (r2 − af2,4n) = 4.

We use the standard notation

ψ1(x;n, a) =
∑
p≤x

p≡a (n)

logp,

E1(x;n, a) = ψ1(x;n, a)− x

ϕ(n)
for (a, n) = 1.

Lemma 3.2 (Theorem of Barban, Davenport, and Halberstam). With the notation above,

for any K > 0 and x/ logK x ≤ Q ≤ x, we have

∑
n≤Q

∑
a(n)∗

E2
1(x;n, a)¿ Qx log x.

This classical result can be found, for example, in Davenport [2, p. 169].

We rewrite (12) as

∑
n≤U,f≤V
(2r,f)=1

1

fn

∑
a(4n)∗

(a
n

)
ψ1

(
x;nf2,

r2 − af2
4

)
+O (U logV

)
,

where the term O(U logV ) comes from the primes less than B(r), and the O-constant

depends on r only. Using the notation defined above, we rewrite the last equation as

x
∑

n≤U,f≤V
(2r,f)=1

crf (n)

fnϕ(nf2)
+ O(U logV )

+
∑

n≤U,f≤V
(2r,f)=1

1

fn

∑
a(4n)∗

(r2−af2,4n)=4

(a
n

)
E1

(
x;nf2,

r2 − af2
4

)
. (13)
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The second sum of (13) is dominated by the error term. Indeed, using the Cauchy-

Schwartz inequality, we bound it by

∑
f≤V

(2r,f)=1

1

f

∑
n≤U

ϕ(4n)

n2

1/2
∑
n≤U

∑
a(4n)∗

(r2−af2,4n)=4

E2
1

(
x;nf2,

r2 − af2
4

)
1/2

≤ (logU
)1/2 ∑

f≤V
(2r,f)=1

1

f

∑
n≤U

∑
a(4n)∗

(r2−af2,4n)=4

E2
1

(
x;nf2,

r2 − af2
4

)
1/2

≤ (logU
)1/2 ∑

f≤V
(2r,f)=1

1

f

∑
n≤U

∑
b(nf2)∗

E2
1(x;nf2, b)

1/2

,

as a1 6≡ a2 (4n) ensures that b1 = (r2 − a1f
2)/4 6≡ b2 = (r2 − a2f

2)/4 (nf2).

Fix any c > 0. Then the last sum is bounded by

≤ logV
(
logU

)1/2 ∑
n≤UV2

∑
a(n)∗

E2
1(x;n, a)

1/2

,

which is

≤ logV
(
logU

)1/2 x

logc+2 x
(14)

when

UV2 ≤ x

logB(c) x
(15)

from Lemma 3.2, with B(c) = 2c+ 6.

Finally, using (11), (13), and (14), we obtain

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

L(1, χd) logp

= x
∑

n≤U,f≤V
(2r,f)=1

crf (n)

fnϕ(nf2)

+O
(
U logV + x logV log1/2U

logc+2 x
+ x

3/2 log x

U
+ x log x logU

V2

)
(16)

for any U,V satisfying (15).
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In order to find the asymptotic behavior of the main term, we have to estimate

the growth of

crf (n) =
∑
a(4n)∗

(r2−af2,4n)=4

(a
n

)
.

Let κ(n) be the multiplicative arithmetic function generated by the identity

κ(lα) =
l α odd,

1 α even,

for any prime l and any positive integerα. Then for a positive integern, κ(n) is the smallest

integer dividing n such that n/κ(n) is a square.

Lemma 3.3. The following hold.

(1) If n is odd, then

crf (n) =
∑
a(n)∗

(r2−af2,n)=1

(a
n

)
.

(2) crf (n) is a multiplicative function of n.

(3) For any prime l, crf (l
α) = cr(f,l)(lα).

(4) If α ≥ 1, then cr1(2α) = (−2)α/2.

(5) If l is an odd prime, then

cr1(lα)

lα−1
=
l− 1−

(
r2

l

)
if α is even,

−
(
r2

l

)
if α is odd.

(6) If l is an odd prime (l 6 |r), then

crl (l
α)

lα−1
=
0 if α is odd,

l− 1 if α is even.

(7) For all n,
∣∣crf (n)

∣∣ ≤ n/κ(n).

Proof. (1) By definition,

crf (n) =
∑

a(4n)∗,a≡1(4)
(r2−af2,4n)=4

(a
n

)
+

∑
a(4n)∗,a≡3(4)

(r2−af2,4n)=4

(a
n

)
.

The second sum is empty since r2 + f2 ≡ 2 (4). If a ≡ 1 (4), then (r2 − af2,4n) = 4 if and

only if (r2 − af2, n) = 1. This gives

crf (n) =
∑

a(4n)∗,a≡1(4)
(r2−af2,n)=1

(a
n

)
.

As n is odd, there is a bijection between the invertible residues modulo 4n which are

congruent to 1 modulo 4 and the residues modulo n. We then use property (6) of the

Kronecker symbols to deduce the claim.
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(2) Clearly, crf (1) = 1. Let n = n1 n2 with (n1, n2) = 1. We can suppose, without

loss of generality, that 2 6 |n1. By (1), we have

crf (n1) crf (n2) =
∑
a1(n1)∗

(r2−a1f
2,n1)=1

∑
a2(4n2)∗

(r2−a2f
2,4n2)=4

(
a1

n1

)(
a2

n2

)
. (17)

Now for any a1 and a2 in the above sums, let a be the unique integer such that 1 ≤ a ≤
4n, (a,4n) = 1, a = a1 + k1n1 = a2 + k24n2 for some integers k1 and k2.

It is easy to see that (r2 − a1f
2, n1) = 1 and (r2 − a2f

2,4n2) = 4 if and only if

(r2 − af2,4n) = 4. Therefore, we can write the right-hand side of (17) as∑
a1(n1)∗, a2(4n2)∗

(r2−af2,4n)=4

(
a

n1

)(
a

n2

)
=

∑
a1(n1)∗, a2(4n2)∗

(r2−af2,4n)=4

(a
n

)
.

The statement now follows by the Chinese remainder theorem.

(3) If (f, l) = 1, then the two sets {a | a(mod4lα), (a,4lα) = 1} and {af2 | a(mod

4lα), (a,4lα) = 1} are equal. So, if l is odd,

crf (l
α) =

∑
a(lα )∗

(r2−af2,l)=1

(a
l

)α
=
∑
b(lα )∗

(r2−b,l)=1

(
b

l

)α (
f∗

l

)2α

= cr1(lα), (18)

where f∗f ≡ 1 (l). The proof is similar for l = 2. If (f, l) = l, then l is odd and, since (r, f) = 1,

we have that (r2 − af2, l) = 1 for all a invertible residues modulo lα. Therefore,

crf (l
α) =

∑
a(lα)∗

(a
l

)α
= crl (lα). (19)

(4) Since (a1
2 ) = (a2

2 ) when a1 ≡ a2 (8), we have

cr1(2α) = 2α−1
∑
a(8)∗

(r2−a,8)=4

(a
2

)α
.

Now r2 ≡ 1 (8), so (r2 − a,8) = 4 if and only if a ≡ 5 (8). Therefore,

cr1(2α) = 2α−1

(
5

2

)α
= (−2)α/2.

(5) Using (18), we write

cr1(lα) = lα−1
∑
a(l)∗

(r2−a,l)=1

(a
l

)α
= lα−1

∑
a(l)∗

(a
l

)α
− lα−1

(
r2

l

)
,

and the claim is deduced from the orthogonality relations of the Legendre symbols.
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(6) This is a consequence of (19), by the orthogonality relations of the Legendre

symbols.

(7) is a consequence of (2), (4), (5), and (6).

Lemma 3.4. Let

c =
∏
l prime

(
1+ 1

l(
√
l− 1)

)
.

Then ∑
n>U

1

κ(n)ϕ(n)
∼ c√

U
.

In particular,
∑∞

n=1(1/κ(n)ϕ(n)) converges.

Proof. Let

C(t) =
∑
n≤t

n3/2

κ(n)ϕ(n)
.

Using the partial summation formula (see [12, Exercise 1.1]),we immediately deduce that

∑
n>U

1

κ(n)ϕ(n)
= 3

2

∫∞
U

C(t)

t5/2
+ lim
N→∞

C(N)

N3/2
− C(U)

U3/2
. (20)

We claim that the following asymptotic formula holds:

C(t) ∼ c
2
t. (21)

The lemma then follows easily by substituting (21) in (20).

To prove (21), we consider the Dirichlet series

K(s) =
∞∑
n=1

n3/2

κ(n)ϕ(n)
n−s,

which clearly converges for <(s) > 5/2. Since both κ and ϕ are multiplicative functions,

a straightforward computation gives the Euler product expansion

K(s) =
∏
l prime

(
1+ l(ls−3/2 + 1)

(l− 1)(l2s−1 − 1)

)
.

This shows that K(s) converges for <(s) > 1.

By computing the product

K(s) · 1

ζ(2s− 1)
=
∏
l prime

(
1+ 1+ ls−1/2

l2s−1(l− 1)

)
,
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which converges for <(s) > 1/2, we deduce that K(s) admits a meromorphic continuation

in the half plane <(s) > 1/2, with only a simple pole at s = 1 and residue

1

2

∏
l prime

(
1+ 1

l(
√
l− 1)

)
.

Since K(s) is regular on the vertical line <(s) = 1 (s 6= 1), we apply the Wiener-Ikehara

Tauberian theorem (see, for example, [12, Theorem 1.1]) to K(s) to deduce (21). This proves

the lemma.

Theorem 3.1 now follows easily from Lemmas 3.3 and 3.4, as

x
∑

n≤U,f≤V
(2r,f)=1

crf (n)

fnϕ(nf2)
= x

∑
f≤V

(2r,f)=1

∞∑
n=1

crf (n)

fnϕ(nf2)
+O

x∑
f≤V

1

f

∑
n>U

1

κ(n)ϕ(nf2)


from Lemma 3.3(7). But ϕ(nf2) ≥ ϕ(n)ϕ(f2), which gives

O

x∑
f≤V

1

f

∑
n>U

1

κ(n)ϕ(nf2)

 = O ( x

U1/2

)
from Lemma 3.4. Finally,

x
∑

n≤U,f≤V
(2r,f)=1

crf (n)

fnϕ(nf2)
= x

∞∑
f=1

(2r,f)=1

∞∑
n=1

crf (n)

fnϕ(nf2)

+O
(
x
∑
f>V

1

fϕ(f2)

∞∑
n=1

1

κ(n)ϕ(n)

)
+O

( x

U1/2

)
= Krx+O

( x
V2

)
+O

( x

U1/2

)
. (22)

This completes the proof of the theorem. Indeed, from (16) and (22),∑
f≤2
√
x

1

f

∑
p≤x

∗
L(1, χd) logp

= Krx+O
( x
V2
+ x

U1/2

)
+O

(
U logV + x logV (logU)1/2

logc+2 x
+ x

3/2 log x

U
+ x log x logU

V2

)

for any U,V satisfying (15). Choosing

U = √x logc+1 x,

V = (log x
)1/2(c+2)

,

we deduce the result.
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4 Proof of Theorem 1.2.

For r ≤ 2
√
p, the number of Fp-isomorphism classes of elliptic curves over Fp with p+1−r

points is the total number of ideal classes of the ring Z
[(
D+√D

)
/2
]
,whereD = r2−4p

is a negative integer which is congruent to 0 or 1 modulo 4. This total number of ideal

classes is the Kronecker class number

H(r2 − 4p) = 2
∑

f2|r2−4p
d≡0,1(4)

h(d)

w(d)
, (23)

where the sum ranges over positive integers f such that f2 divides r2 − 4p, and d =
(r2 − 4p)/f2 is congruent to 0 or 1 modulo 4. As usual, h(d) and w(d) denote the class

number and the number of units, respectively, of the order of discriminant d.

Suppose that p 6= 2,3. Then, any elliptic curve over Fp has a model

E: Y2 = X3 + aX+ b

with a, b ∈ Fp. The elliptic curves E′(a′, b′) over Fp,which are Fp-isomorphic to E, are given

by all the choices

a′ = µ4a and b′ = µ6b

with µ ∈ F∗p. The number of such E′ is

(p− 1)/6 when a = 0 and p ≡ 1(3);

(p− 1)/4 when b = 0 and p ≡ 1(4);

(p− 1)/2 otherwise.

Then, the number of curves E(a, b) with a, b ∈ Z, 0 ≤ a, b < p and ap(E(a, b)) = r is

H(r2 − 4p)
(
p− 1

2

)
+O(p) = pH(r2 − 4p)

2
+O(p). (24)

This result can be found in Birch [1].

We then write

1

4AB

∑
|a|≤A, |b|≤B

πrE(a,b)(x) =
1

4AB

∑
p≤x

#
{|a| ≤ A, |b| ≤ B: ap

(
E(a, b)

) = r}
as

1

4AB

∑
B(r)<p≤x

(
2A

p
+O(1)

)(
2B

p
+O(1)

)(
pH(r2 − 4p)

2
+O(p)

)
.
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This last equation can be rewritten as

1

2

∑
B(r)<p≤x

H(r2 − 4p)

p
+O

 ∑
B(r)<p≤x

H(r2 − 4p)
(

1

A
+ 1

B
+ p

AB

)+O (log log x
)
. (25)

Using

H(r2 − 4p) ≤
∑

f2|r2−4p
d≡0,1(4)

h(d)¿ √p logp
∑

f2|r2−4p

1

f
,

and the Brun-Titchmarsh theorem (see, for example, [8]), we have the estimates

∑
p≤x

H(r2 − 4p) ¿ √x log x
∑
p≤x

∑
f2|r2−4p

1

f

¿ √x log x
∑
f≤2
√
x

1

fϕ(f)

x

log x
¿ x3/2, (26)

∑
p≤x

pH(r2 − 4p)¿ x5/2. (27)

Finally, replacing these estimates in (25), we have

1

4AB

∑
|a|≤A, |b|≤B

πrE(a,b)(x) =
1

2

∑
B(r)<p≤x

H(r2 − 4p)

p

+O
((

1

A
+ 1

B

)
x3/2 + x

5/2

AB
+ log log x

)
. (28)

We now use Theorem 3.1 to evaluate the main term of (28). Using (23), we write

1

2

∑
B(r)<p≤x

H(r2 − 4p)

p
=
∑
f≤2
√
x

∑
p∈Sf(x)

1

p

h(d)

w(d)
, (29)

where

Sf(x) = {B(r) < p ≤ x | 4p− r2 ≡ 0 (f2), and d = r
2 − 4p

f2
≡ 0,1 (4)}.

As d = (r2 − 4p)/f2 is a negative integer, the class number formula reads as

h(d) = w(d)|d|1/2
2π

L(1, χd), (30)
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where χd is the Kronecker symbol defined in Section 3. Therefore, replacing (30) in (29),

we have

1

2

∑
B(r)<p≤x

H(r2 − 4p)

p
= 1

2π

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

√
4p− r2

p
L(1, χd)

= 1

π

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

L(1, χd)√
p
+O (log2 x

)
.

With partial summation, we write

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

L(1, χd)√
p
= 1√

x log x

∑
f≤2
√
x

1

f

∑
p∈Sf(x)

L(1, χd) logp

−
∫ x

2

∑
f≤2
√
t

1

f

∑
p∈Sf(t)

L(1, χd) logp

 d

dt

(
1√
t log t

)
dt, (31)

since Sf(t) = ∅ for f > 2
√
t. Using Theorem 3.1, (31) can be rewritten as

Kr

∫ x
2

dt

2
√
t log t

+ Kr
( √

x

log x
+
∫ x

2

dt√
t log2 t

)

+ O
( √

x

logc+1 x

)
+O

(∫ x
2

dt√
t logc+1 t

)
,

which gives

1

2

∑
B(r)<p≤x

H(r2 − 4p)

p
= 2Kr

π
π1/2(x)+O

( √
x

logc x

)
. (32)

Replacing (32) in (28), the only thing left to show is that Cr = (2/π)Kr has the correct Euler

product expansion.

Lemma 4.1. Suppose that r is an odd integer. Let

Kr =
∞∑
f=1

(2r,f)=1

∞∑
n=1

crf (n)

nfϕ
(
nf2

) with crf (n) =
∑
a(4n)∗

(r2−af2,4n)=4

(a
n

)
,

where
∑

a(n)∗ is the sum over a complete set of invertible residues mod n. Then

Kr =
∏
l|r

(
1− 1

l2

)−1∏
l 6 | r

l(l2 − l− 1)

(l− 1)(l2 − 1)
.
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Proof of Lemma 4.1. Since crf (n) is a multiplicative function of n (Lemma 3.3(2)),we have

that

Kr =
∞∑
f=1

(f,2r)=1

1

fϕ(f2)

∏
l

(∑
α≥0

crf (l
α)

lαϕ(lα)
· ϕ((f2, lα))

(f2, lα)

)
. (33)

Using Lemma 3.3(3), we rewrite the above product as

∏
l

(∑
α≥0

crf (l
α)

lαϕ(lα)
· ϕ((f2, lα))

(f2, lα)

)
=
∏
l 6 | f

(∑
α≥0

cr1(lα)

lαϕ(lα)

)∏
l|f

(∑
α≥0

crf (l
α)

lαϕ(lα)

ϕ((f2, lα))

(f2, lα)

)

=
∏
l

(∑
α≥0

cr1(lα)

lαϕ(lα)

)∏
l|f

∑α≥0
cr
f
(lα)

lαϕ(lα)
ϕ((f2,lα))

(f2,lα)∑
α≥0

cr1(lα)

lαϕ(lα)

 .
Replacing inside (33), and using the multiplicativity of the functions in the outer sum of

(33), we obtain

Kr =
∏
l

(∑
α≥0

cr1(lα)

lαϕ(lα)

)∏
l 6 |2r

1+
∑
β≥1

1

lβϕ(l2β)
·
∑
α≥0

cr
l
(lα)

lαϕ(lα) · ϕ((l2β,lα))
(l2β,lα)∑

α≥0
cr1(lα)

lαϕ(lα)


=
∏
l|2r

(∑
α≥0

cr1(lα)

lαϕ(lα)

)∏
l 6 |2r

(
1+
∑
α≥1

cr1(lα)

lαϕ(lα)
+ 1

l3 − 1

(
l

l− 1
+
∑
α≥1

crl (l
α)

lαϕ(lα)

))
.

With Lemma 3.3, we compute

∑
α≥1

cr1(lα)

lαϕ(lα)
=



2

3
if l = 2,

1

l2 − 1
if l|r,

−2

(l− 1)(l2 − 1)
if l 6 |2r,

and for l 6 |2r,∑
α≥1

crl (l
α)

lαϕ(lα)
= 1

l2 − 1
.

Replacing in the expression for Kr above, this gives

Kr = 2

3

∏
l|r

(
1− 1

l2

)−1∏
l 6 |2r

(
1− 2

(l− 1)(l2 − 1)
+ 1

(l− 1)(l2 − 1)

)

=
∏
l|r

(
1− 1

l2

)−1∏
l 6 | r

l(l2 − l− 1)

(l− 1)(l2 − 1)
.
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This completes the proof of Theorem 1.2 for r odd.

5 Proof of Theorem 1.4.

We prove Theorem 1.4 in this section. As in the proof of Theorem 1.2, the main ingredient

is Theorem 3.1.

Let

µ = 1

4AB

∑
|a|≤A, |b|≤B

πrE(a,b)(x).

Fix any c > 0. Then, for A,B > x1+ε, Theorem 1.2 gives

µ = Crπ1/2(x)+O
( √

x

logc x

)
. (34)

Thus, by the triangle inequality, the left-hand side of (4) is

¿ 1

4AB

∑
|a|≤A, |b|≤B

∣∣πrE(a,b)(x)− µ
∣∣2 +O( x

log2c x

)
. (35)

Now in general, if µ = (1/N)
∑N

n=1 λn, then (1/N)
∑N
n=1

(
λn − µ

)2 = (1/N)
∑N
n=1 λ

2
n − µ2.

Therefore, the left-hand side of (4) is

¿ 1

4AB

∑
|a|≤A, |b|≤B

(
πrE(a,b)(x)

)2 − µ2 +O
(

x

log2c x

)
. (36)

We then write(
πrE(a,b)(x)

)2 = πrE(a,b)(x)+ #
{
p, q ≤ x | p 6= q, ap(E(a, b)) = aq(E(a, b)) = r} ,

where the pairs p, q and q, p are both counted.

Proceeding as in the proof of Theorem 1.2 and using the Chinese remainder

theorem, we obtain from the last line that

1

4AB

∑
|a|≤A, |b|≤B

(
πrE(a,b)(x)

)2 = µ+ 1

4

∑
B(r)<p,q≤x, p6=q

H(r2 − 4p)

p

H(r2 − 4q)

q
+ E(x,A, B),

where

E(x,A, B) ¿
∑
p,q≤x

H(r2 − 4p)+H(r2 − 4q)

pq

+
∑
p,q≤x

H(r2 − 4p) H(r2 − 4q)
(

1

A
+ 1

B
+ pq

AB

)
.
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Therefore, using the estimates (26) and (27), we obtain

E(x,A, B)¿
√
x log log x

log x
+
(

1

A
+ 1

B

)
x3 + x5

AB
. (37)

Then

1

4AB

∑
|a|≤A, |b|≤B

(
πrE(a,b)(x)

)2 = µ+
1

2

∑
B(r)<p≤x

H(r2 − 4p)

p

2

− 1

4

∑
p≤x

H(r2 − 4p)2

p2
+ E(x,A, B),

and using (32) and (37), this gives

1

4AB

∑
|a|≤A, |b|≤B

(
πrE(a,b)(x)

)2 = (Crπ1/2(x)
)2 +O( x

logc x
+
(

1

A
+ 1

B

)
x3 + x5

AB

)
.

Replacing in (36), and using (34), this completes the proof of Theorem 1.4
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