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Average Frobenius Distributions of Elliptic Curves

Chantal David and Francesco Pappalardi

1 Introduction

Let E be an elliptic curve defined over the rationals. For any prime p of good reduction,
let E, be the elliptic curve over F, obtained by reducing E mod p. Let a,(E) be the trace of
the Frobenius morphism of E/F,. Then, #E(F,) = p+1 — a,(E), and |a,(E)| < 2,/p. The case
where a,(E) = 0 corresponds to supersingular reduction mod p.

For a fixed r € Z, what can be said about the number of primes p such that
ay,(E) = r? If E has complex multiplication, Deuring showed that half of the primes are

primes of supersingular reduction (see [3]). More precisely, let
m(x) =#{p <x: a, (E) =7}.

Then, if E has complex multiplication, nt2(x) ~ 1/2 7(x) as x — oco. If E has complex
multiplication and r # 0, then the primes with a fixed trace of the Frobenius morphism are
primes in quadratic progressions. For example, consider the elliptic curve E: Y2 = X3 - X
with complex multiplication by Z[il. It is easy to see that a,(E) = £2 if and only if p = 1+n?

for some integer n. If q(n) is a quadratic progression, and
Qx) =#{p <x: p=(q(n) for some n},

it was conjectured by Hardy and Littlewood [9] that Q(x) ~ C (v/x/logx) as x — oo.

This conjecture is part of a more general conjecture of Lang and Trotter [11].

Conjecture 1.1 (Lang-Trotter conjecture). Let E be an elliptic curve defined over @, and

let r be an integer. Except for the case where r = 0 and E has complex multiplication,
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there is a constant Cg, such that

i (x) ~ Ce % as x — oo. (1)

Using their probabilistic model, Lang and Trotter gave an explicit description of
the conjectural constant C¢ ; (see Section 2). The constant Cg . canbe 0, and the asymptotic
relation is then interpreted to mean that there is only a finite number of primes such that
a,(E) = v. It was shown by Elkies that this cannot happen when r = 0; i.e., for any E/Q,
there are infinitely many primes of supersingular reduction [5]. However, if r # 0, there
could be only finitely many primes p such that a,(E) = r. For example, if E/Q has a
rational torsion point of order t, then t divides #E(F,) = p + 1 — a,(E) for all primes of
good reduction, which imposes conditions on the values of a,(E).

We prove in this paper average estimates related to the Lang-Trotter conjecture.
The average distribution fits the one predicted by the conjecture, and the conjectural
constant Cg, of Lang and Trotter is confirmed by our results, as seen in Section 2. Average
estimates for the case r = 0 were already obtained by Fouvry and Murty [6], and we obtain
a generalization of their results for any r € Z. The techniques of Fouvry and Murty do
not seem to extend to the general case r € Z. Our proof then differs significantly from
theirs.

In the following, we fix v € Z, and we denote by E(a,b) the elliptic curve Y? =
X% + aX + b with a,b € Z. Then

“E(a,b)(x) =# {P <x:q (E(a,b)) = r} )

Following [11], we define

. (X)_JX dt Jx
VAT ], 2klogt logx

Theorem 1.2. Let r be an integer, A, B > 1. For every ¢ > 0, we have

1 . 11N 5, X2 X
4A—B Z ﬂE(a,b)(X) =C, 7T1/2(X) +0 ((K + E) X7+ ﬁ + log—cx y (2)

la|<A, |b|<B

where
2 z—-1-1)
Cr‘%l;[( 1) H(l—l)(lz—l) )

The constants in the O-symbol depend only on c and r.
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As the infinite product of (3) converges to a positive number, the constant C, is
nonzero, even if some Cg, can be zero, as mentioned above.
From the last theorem, we immediately obtain that the Lang-Trotter conjecture

is true “on average.”

Corollary 1.3. Lete > 0.If A,B > x!*¢, we have as x — oo,

1 VX
e Y A~ G
4AB <A Tol<B logx

In analogy with the classical terminology, we can say that the average order of
Tl () (X) 18 C.(v/x/logx). Using the same techniques, we can also prove that the normal
order of T, (x) is C:i(vx/logx). Then, 7, ,(x) ~ Ci(y/x/logx) for “almost all” E(a,b)
rather than on average (see Corollary 1.5). We are grateful to A. Granville for suggesting

this application of our techniques.

Theorem 1.4. Let e > 0.If A, B > x!™¢ then for every ¢ > 0, we have

L r _ 2_of > (L1}, Ll.s
4AB Z ‘T[E(a,b)(x) CT7T1/2(X)| =0 <log°x + (A + B) X7 + ABX ) , (4)

la|<A, |b|<B
where the constant in the O-symbol depends only on c and r.

The following corollary is a standard application of the Turan normal order
method.

Corollary 1.5. Let € > 0 and fix c > 0. If A, B > x?*¢, then for all d > 2c and for all
elliptic curves E(a,b) with |a] < A and |b| < B with at most O(AB/ logd x) exceptions, we

have the inequality

|7TE(a,b)(X) -G 7(1/2(7()\ < logc X

In Section 2, we compare the constant C, with the constants Cg ; predicted by Lang
and Trotter. Sections 3 and 4 contain the proof of Theorem 1.2, and Section 5 contains

the proof of Theorem 1.4.

2 The Lang-Trotter constant Cg,

To formulate their conjecture, Lang and Trotter considered a probabilistic model com-
patible with the Cebotarev density theorem and with the Sato-Tate conjecture. From
the model, they obtained an explicit description of the constant Cg, in terms of Galois
representations, as described below. We compare in this section the conjectural constants
Cgr of Lang and Trotter with the constant C, of Theorem 1.2.
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Let pr m be the Galois representation
pEm: Gal (@/@) — Aut(E[m]),

where E[m] is the subgroup of m-torsion points of E(Q). Since E[m] ~ (Z/mZ)z, after
choosing a basis for E[m], we can identify Aut(E[m]) with GL,(Z/mZ). Let G(m) be the
image of pgn in GLz(Z/mZ), and, for any subgroup G of GL;(Z/mZ), let G, be the subset
of elements of G of trace r modulo m.

Let E be an elliptic curve without complex multiplication. Serre proved in [13]
that the image of the Galois representation on the full torsion subgroup of E(Q) is an
open subgroup of GL,(Z). Tt follows that there exists an integer mg such that pg; is
surjective for all primes 1 not dividing mg, and such that the image in GL;(Z) of the Galois
representation on the torsion subgroup of E(Q) is the full inverse image of G(mg). The

Lang-Trotter constant Cg, is then defined as [see 11, p. 36]

_ 2 me|Glme)| 7 LG
e = T Gme) 11 GV
2 me |Glme)| 1\ n2-1-1)
T |Glme) 11 (1 a 1_2) 11 -1z -1)° S
U s

The second equality follows from the easy estimates

1B(l—1)
———— whenr=0(l);
UGLy )| _ | W= DA
|GL2(F)l | (22
1“1 -1-1)
m Whenr;—é 0 (U

Comparing (3) and (5), we see that the local factors are exactly the same for the

primes | f mg. More precisely, is it true that

1
4AB Z CE(a,b),r ~Cy as A,B — o0?
la]=A, b|<B

There are partial results for the case r = 0 due to Fouvry and Ullmo [7]. The recent
estimates of Duke [4], who showed that for “most” elliptic curves E/Q, pg1(G) = GL2(F)
for all primes 1, are also relevant to this problem. But this does not imply that mg =1
(and then Cg, = C;) for those curves. In fact, we never have mg = 1 as shown in [13,

Proposition 22].
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3 An average of special values of L-series

We show in Section 4 how the average
1
158 Y T
la|<A|b|<B

can be rewritten as an average of special values of Dirichlet L-series by counting the
number of curves over the finite fields F, with a, = r. The proof of Theorem 1.2 is then
obtained by studying this average of L-series, which we evaluate in this section.

Let B(r) = max (3, r, r?/4). In particular, p > B(r) ensures |r| < 2,/p, a necessary
condition for a,(E) = .

Ford = 0,1(4), d not a perfect square, and n = 0, let xq(n) = (d/n) be the Kronecker
symbol (see, for example, [10, p. 304]). The Kronecker symbol is a real character modulo

|d|, and for n > 0,

d=d;(n) = (E> = <%) for n odd
n n

d=d, (4n) = (%) = (%) forn e N. (6)

n

We give the proof of Theorem 1.2 for r odd. The proof is similar when r is even;
therefore, we omit it.

The main result of this section is the following theorem.

Theorem 3.1. Let r be an odd integer, and let

f
with c/(n) = (—) , (7)
=2 2 mcz) i > (o
f=1 n=1 a(dn)*
(2rf)= (r2—af2 4n)=4

where Za(4n)* is the sum over a complete set of invertible residues mod 4n.
Furthermore, let
2 (g2 2 —4p
Sf(x):{B(r)<p§x 4p =1° (f°), and d = 2 50,1(4)}.

Then for any ¢ > 0,

Z - > L(1,xdlogp = rx+o(1 ;X> (8)

f<2Jx  PeSx)

Proof of Theorem 3.1. Astisodd,if f | r2—4p, thenfis odd,and d = (r* —4p)/f> =1 (4).

Furthermore, since (r, f) | p, and p > B(r), we have (r,f) = 1.
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For a fixed parameter U > O to be chosen later, we have

A

n>1 n<u
1 1
-2 (3o () o
s\n/n fu

using the Polya-Vinogradov inequality (see [2, p. 135]). Using (9), we can rewrite the left-
hand side of (8) as

Y iY s Z()long("gﬂ%). (10)

f<2Jx n<U peSfx)
(2r,f=1

For a fixed parameter V with 1 <V < 2,/x to be chosen later, the first part of (10) is

EEDIED MRS DI (I

f<v n<Ll pes(x) Vef<2JX Tl<U ped(x)
(@2r,f)=1 (2r,f)=1

The summation for large values of f is easily evaluated as

Z Z Z()logp < logx logl Z f Z 1

V<f2yx n<U peSf (x) V<f<2/x n<x
(2r,f)=1 n=4*r2(f2)

xlogxlog U

< xlogxlogU Z V2

V<f<2/x

where 4* is an integer such that 4* -4 = 1 (f?).

Therefore, we can rewrite the left-hand side of (8) as

x¥2logx xlogxlogU
> Z Z()logp+0< TR V2 . (11)

f<v n<u peSf x)
(2r,f)=1

The sum over “small values” of f and n leads to the main term. It is evaluated by splitting

d
the sum according to the residue of d mod 4n. Since d = (r* — 4p)/f? is odd, and <E) =0
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when (d,n) > 1, using (6), we get

Z Z > ( )10gp— Z Z( ) > logp. (12)

f<v n<u ped(x) n<u, f<\/ a(4n)* pes(x)
(2r,f)=1 (2r,f)=1 d=a(4n)

In the above sum, the two conditions p € &(x) and d = (r? —4p)/f? = a (4n) are equivalent
to B(r) < p < x and p = (r? — af?)/4 (nf?). Furthermore, as (2r,f) = 1, (r? — af?)/4,nf?) =
1 < (r?—af?4n)=

We use the standard notation

11)1(X;Tl,(1)= Z logpv

p<x
p=a )

Ei(gm, a) =90, a) — X for (a,n) =1.

@)

Lemma 3.2 (Theorem of Barban, Davenport, and Halberstam). With the notation above,

for any K > 0 and x/ logK x < Q < x, we have

Z Z EZ(x;n, a) < Qxlogx.

n=<Q am)*

This classical result can be found, for example, in Davenport [2, p. 169].

We rewrite (12) as

Yy % > (3)w (x;nf2,¥)+o(u1ogv),

n<u,f<v a(dn)*
(2r,f)=1

where the term O(UlogV) comes from the primes less than B(r), and the O-constant

depends on r only. Using the notation defined above, we rewrite the last equation as

)
+ O(UlogV
Z fnol( nfz) (Ulog V)
<u,f<v
(2r,f)=

ps fn S (&) (e B, 13)

n<u,f a(4n)*
@2r,H= 1 (r2—af? 4n)=4
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The second sum of (13) is dominated by the error term. Indeed, using the Cauchy-

Schwartz inequality, we bound it by

1/2
1/2
1 @(4n) 2 2 12 — af?
s rem) |y 5 a(en
f<Vv n<u n<u a(4n)*
(2r,f)=1 (r2—af? 4n)=4
1/2

< (logu)"? Z% > oy Ef(x;nfz,rz_z}aF)

f< n=<u a(dn)*
(2r,f)=1 (r2—af2 4n)=4
1/2
1/2 1 2(ye 1y £2
<og)* ¥ (X ¥ Sunio)
% n<U p(nf2)*

as a; # a, (4n) ensures that by = (1> — a;2)/4 # by = (r? — a,12)/4 (nf?).

Fix any ¢ > 0. Then the last sum is bounded by
1/2

< logV(logu)l/2 Z Z EZ(x;n, a) ,

n<uv2 am)*

which is
1/2 X
<logV (logU) / g7
when
5 X
uv = logB(C) X

from Lemma 3.2, with B(c) = 2¢ + 6.
Finally, using (11), (13), and (14), we obtain

> % Y Ll,xa) logp

f<2x  peSX)

_ cf(n)

=X Z fnenf2)
n=<u,f<v
(2r,f)=1

xlogVlog?U x*2logx xlogxlogU

O UlogV

" ( o8V log®*t% x u V2

for any U, V satisfying (15).

(14)

(15)

(16)
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In order to find the asymptotic behavior of the main term, we have to estimate
the growth of

qm= 3 (2).

a(n)*
(r2—af? 4n)=4

Let k(n) be the multiplicative arithmetic function generated by the identity

1 « odd,
k(L) =
1 o even,
for any prime 1 and any positive integer «. Then for a positive integer n, k(n) is the smallest

integer dividing n such that n/k(n) is a square.

Lemma 3.3. The following hold.
(1) If nis odd, then
") = a
crn) = % (n)
(r2—af2 n)=1

(2) ¢f(n) is a multiplicative function of n.
(3) For any prime 1, ¢{(1%) = c{f)U(l"‘).
(4) If o > 1, then c}(2%) = (—2)*/2.
(5) If lis an odd prime, then

el (1%) 1-1-— (%) if o is even,

= (%) if o is odd.

(6) If lis an odd prime (1l fr), then
(1) 0 if « is odd,

1—-1 if xiseven.

(7) For all n, |cfr(n)| <n/kmn).

Proof. (1) By definition,

a a
cin) = () ()
= Y oy
a@dn)*,a=1(4) a(dn)*,a=3(4)
(r2—af2 4n)=4 (r2—af2 4n)=4
The second sum is empty since 12 + 2 = 2 (4). If a = 1 (4), then (r? — af?,4n) = 4 if and
only if (r? — af?,n) = 1. This gives
a
cf(n) = (—) .
=3 (=
a(dn)* ,a=1(4)
(r2—uf2,nj=l
As n is odd, there is a bijection between the invertible residues modulo 4n which are
congruent to 1 modulo 4 and the residues modulo n. We then use property (6) of the

Kronecker symbols to deduce the claim.
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(2) Clearly, c{(1) = 1. Let n = n; np with (n;,ny) = 1. We can suppose, without

loss of generality, that 2 fn,. By (1), we have

G = Y > (%)(%) (17
1 2

ap(ng)* ag(4ng)*
(2—a1f2ny)=1 (Z-ayf2dng)=4
Now for any a; and a; in the above sums, let a be the unique integer such that 1 < a <
4n, (a,4n) =1, a = a; + kyny; = az + ke4n, for some integers k; and k.
It is easy to see that (r? — a;f?>,n;) = 1 and (r> — a,f?,4n,) = 4 if and only if
(r? — af?,4n) = 4. Therefore, we can write the right-hand side of (17) as
a a a
I |G RPN G
aj(my)*, agldng)* aj(mp)*, agldng)*
(rz—uf2,4n)=4 (rz—uf2,4n)=4
The statement now follows by the Chinese remainder theorem.
(3) If (f,1) = 1, then the two sets {a | a(mod4l®), (a,4l*) = 1} and {af? | a(mod
41%), (a,41l%) = 1} are equal. So, if 1 is odd,

o o O\ 200
qi= Y (3= X (%) (fT) = ¢} (19, (18)

a(lX)* bLX)*
(r2—af2 1)=1 (r2-b,)=1

where f*f = 1 (1). The proof is similar for1 = 2. If (f, 1) = |, then lis odd and, since (r,f) = 1,

we have that (r* — af?,1) = 1 for all a invertible residues modulo 1*. Therefore,

=Y (3) =ci. (19)

a(lx)*

(4) Since (3) = (%) when a; = a; (8), we have

. N
2y =21 (§> .
a(@)*
(r2—a,8)=4

Now 12 =1 (8), so (r? — a,8) = 4 if and only if a = 5 (8). Therefore,
5 [04
c}(2%) = 2! (§> = (—2)%/2.

(5) Using (18), we write

2
= Y (B =e (7)) v (%)

(r2—al)=1

and the claim is deduced from the orthogonality relations of the Legendre symbols.
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(6) This is a consequence of (19), by the orthogonality relations of the Legendre
symbols.
(7) is a consequence of (2), (4), (5), and (6). [ |

Lemma 3.4. Let
1
c= l};lne <1 + m) .
Then
)
— knem)  JU

In particular, > 7 (1/k(n)¢(n)) converges.

Proof. Let
3/2

n
Cly=)_ prpYs

n<t

Using the partial summation formula (see [12, Exercise 1.1]), we immediately deduce that

) P —— 3 J°° CO i N C) 20)
—kmem) 2y 192 T NS N¥2Z U2
We claim that the following asymptotic formula holds:
c
Ct) ~ = t. 21
W~3 (21)

The lemma then follows easily by substituting (21) in (20).

To prove (21), we consider the Dirichlet series

& TL3/2 .
K(S) = ; 7K(n)(p(‘n) n -,

which clearly converges for 9i(s) > 5/2. Since both k and ¢ are multiplicative functions,

a straightforward computation gives the Euler product expansion
1(1573/2 + 1)
K(s) = 1+ —e— .
ol II( e
1 prime

This shows that K(s) converges for fR(s) > 1.
By computing the product

1 141712
KO- 75— = H (1 Q=T 1)) ’

1 prim
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which converges for f(s) > 1/2, we deduce that K(s) admits a meromorphic continuation
in the half plane %(s) > 1/2, with only a simple pole at s = 1 and residue

3 11 (1)

1 prime
Since K(s) is regular on the vertical line R(s) = 1 (s # 1), we apply the Wiener-Ikehara
Tauberian theorem (see, for example, [12, Theorem 1.1]) to K(s) to deduce (21). This proves

the lemma. ]
Theorem 3.1 now follows easily from Lemmas 3.3 and 3.4, as

x Z f f2) Z Zf Cf(an) ( Z Z k(n)e mcz)

n<u, f<v f<v n= f<V
(2r,f)= (2r,f)=

from Lemma 3.3(7). But @(nf?) > (p(n)(p(fz), which gives

from Lemma 3.4. Flnally,

o0

X =X
Z fmp nfz) Z Z fn(p(an
n=<u,f<v n
(2T,f)— (21- f

[~ 1 X
0 (XZ fo(f2) T; K(n)(P(n)) +0 <W>

>V

_er+o( 5)+0 (1) (22)

ui/2
This completes the proof of the theorem. Indeed, from (16) and (22),

> YL, xalogp

f<2yx  PX

—er+0( + u)f/z)

xlog V(log U)'/2 N x%¥/2log x N xlogxlogU
logCJrZX u V2

+0 <UlogV+

for any U, V satisfying (15). Choosing

u= ﬁlOgC-‘rl
V= (logx)l/Z(c+2) ,

we deduce the result. [ |
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4 Proof of Theorem 1.2.

Forr < 2,/p, the number of F,-isomorphism classes of elliptic curves over F, withp+1—1
points is the total number of ideal classes of the ring Z [(D + «/5) /2], where D = 1% —4p
is a negative integer which is congruent to 0 or 1 modulo 4. This total number of ideal

classes is the Kronecker class number

2 h(d)

H(r? — 4p) = 2 Z o’ (23)
2112 —4p
d=0,1(4)

where the sum ranges over positive integers f such that f2 divides > — 4p, and d =
(r2 — 4p)/f? is congruent to 0 or 1 modulo 4. As usual, h(d) and w(d) denote the class
number and the number of units, respectively, of the order of discriminant d.

Suppose that p # 2,3. Then, any elliptic curve over [, has a model
E: Y2=X*+aX+b

with a,b € F,. The elliptic curves E'(a’, ) over F,,, which are F,-isomorphic to E, are given

by all the choices
a =p*a and b’ = pb
with p € F. The number of such E' is
(p—1)/6 when a=0andp = 1(3);
(p—1)/4 whenb=0andp=1(4);
(p—1)/2 otherwise.
Then, the number of curves E(a,b) with a,b € Z,0 < a,b < p and a,(E(a, b)) =11is

p—1
2

p H(r? — 4p)

5 + O(p). (24)

H(r? — 4p) < ) + Olp) =
This result can be found in Birch [1].
We then write
1 1
—— Y M > #{lal < A,[b| <B: a; (E(a,b)) =7}

4AB lal< A Tb|<B 4AB =

1 2A 2B p H(r? — 4p)
A5 > <? + 0(1)) (? + om) <f + O(p)> .

B(r)<p=<x

as
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This last equation can be rewritten as

1 H(r? — 4p) ) 1 1 p
= Z T—FO Z H(r _4p)<K+§+ﬁ> + O (loglogx). (25)

B(r)<p=<x B(r)<p<x

Using

1
HO?—4p) < 3 hd < plogp ) -

£2|r2 —ap f2|r2—4p
d=0,1(4)

and the Brun-Titchmarsh theorem (see, for example, [8]), we have the estimates

> HO? —4p) « Vxlogx ) Y %

p<x P=X 2|2 _4p
< xlogx ) L X (26)
fo(f) logx ’
f<2./x
> pHE? —4p) < X2 (27)

p<x

Finally, replacing these estimates in (25), we have

1 1 H(r? — 4p)
2AB Z nE(a,b)(X):E Z 71)

lal<A,|bl<B B(r)<p=<x

+0 1+1 3/2-|-X5/2+lo lo (28)
—+ = —_— x].
ATB)Y T A T8%8

We now use Theorem 3.1 to evaluate the main term of (28). Using (23), we write

1 H(r? — 4p) Z Z 1 h(d)
- Z - " _ - (29)
2 B(r)<p=<x P f<2yx vé&(x)p wid)
where
) ) 2 —4p
Six) =B <p<x|4p—-1"=0(f), and d = Tzo,l (4)}.

As d = (r? — 4p)/f? is a negative integer, the class number formula reads as

1/2
hid) = WA G (30)
27



Average Frobenius Distributions of Elliptic Curves 179

where x4 is the Kronecker symbol defined in Section 3. Therefore, replacing (30) in (29),

we have
1 H(r? — 4p) _ 1 ,/4p
B(r)<p=<x f<2f peSf(x)
L(1
Ly oyttt Xd+o(1gx).
f<2f pESf(x

With partial summation, we write

L
>y “fxd o X X Hixallogp

f<2./x DESf(x) f<2/x DGSf(x

N ) d/ 1
—J 2 | 2 Lxalogp E(ﬁlogt)dt’ oy

Ziavi \ pesit

since $;(t) = ¥ for f > 2+/t. Using Theorem 3.1, (31) can be rewritten as
x dt X x dt
KrJ4+Kr<\/—+J )
2 2+/tlogt logx  J; Vtlog®t

7) ], Zenogmo)
+O +O - 11 I
<10gc+1 2 \/ElogC-ﬁ-l t

which gives

Nlr—‘

Z H(? —4p) 2K, m/z(x)+o(if). (32)
= T log®x

Replacing (32) in (28), the only thing left to show is that C, = (2/71)K; has the correct Euler

product expansion.

Lemma 4.1. Suppose that r is an odd integer. Let

K= 3 Y = i gm— Y (9)
= ————— with ¢{(n) = -,
' nfe (nf?) f n
f=1 mn=l1 a(dn)*
(2r,f)=1 (r2—af2 4n)=4
where } .- is the sum over a complete set of invertible residues mod n. Then

- 2-1-1)
Kr_H( 1) H(l—l)(lz—l)

Ur
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Proof of Lemma 4.1. Since ¢{(n) is a multiplicative function of n (Lemma 3.3(2)), we have

that

B Y @l(f2,19)
= 3 (T i i) 5
(f,2r)=1 -

Using Lemma 3.3(3), we rewrite the above product as

c; (1%) _(p((fz,l"‘)) . cl(1%) el (1% @((f3,1%)
H(Z 1x(1%) (f2,1%) _H Zloc(p(ltx) H Zlocq)(lcx) (f2,1%)

1 «>0 L/t \a=0 Uf \oa=0
5 ¢ (219
_ x>0 Loc (loc) (fz 1%)
IKZWQH T
o0 uf 2020 et

Replacing inside (33), and using the multiplicativity of the functions in the outer sum of

(33), we obtain

G o2f 1)

(5 05 oy B
r= = B (12B) (1)
a0 o) i Do) 220 o

1 1y2r
cj(1%) )H( cr %) 1 ( 1 eI
_1_.[ Z 1+Z « 4 + 3 +Z « x :
12r <cx>0 1) 12r oczll o) P-111-1 oczll @ (%)
With Lemma 3.3, we compute
2
= ifl=2,
3
T 04 1
Yy alth _ if Ur,
= 1*@(l%) 12-1
-2
flj)2
t—oe—ny T
and for 1 f2r,
Z q® 1
lep(le)  12-1°

a>1

Replacing in the expression for K, above, this gives

2 1\ 2 _
Kr=§H<1_1_2) H<1_(1—1)(12—1)+(1—1)(12—1)>
Ur Lr2r
1\ W2 —1—1)
It (%) e

fr
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This completes the proof of Theorem 1.2 for r odd. ]

5 Proof of Theorem 1.4.

We prove Theorem 1.4 in this section. As in the proof of Theorem 1.2, the main ingredient
is Theorem 3.1.
Let

1 T
n= 4AB Z T (,b) (x).

la]=A, [b|<B

Fix any ¢ > 0. Then, for A, B > x!*¢, Theorem 1.2 gives

u= Cymyalx) + O ( \/f ) . (34)
log® x
Thus, by the triangle inequality, the left-hand side of (4) is
1 2 X
AAB | AThiss log™ x

Now in general, if p = (1/N) XN, Ay, then (1I/N) XN, (A —p)? = (1I/N) I, A2 — 12,
Therefore, the left-hand side of (4) is

. X

la|<A, [b|<B
We then write
(M0 09)” = o) + #{p,a < x | P # d, a,(Ela, b)) = aq(E(a, b)) =},

where the pairs p, q and q,p are both counted.
Proceeding as in the proof of Theorem 1.2 and using the Chinese remainder

theorem, we obtain from the last line that

1 1 H(r? — 4p) H(r?> — 4
—= > (Mewt) =u+t P > i +E(x, A, B),

4AB lal<A, b|<B B(r)<p,q=x, p#q P q
where
E,AB) < Y Ho™ — 4p)]:;H(r2 —%d
P,g=<x
+ ) H(? —4p) HO? — 4q) (1 +1+m>-
A B AB

P,q=x



182 David and Pappalardi

Therefore, using the estimates (26) and (27), we obtain

J/xloglogx 1 1\ 5, x°
E(x,A,B — = —+ = —. 37
(x,A,B) « Togx + A+B X+AB (37)
Then
2
1 . 9 1 H(r? — 4p)
s 2 (et =ut(g ) p
la]<A,|b|<B B(r)<p<x
1 H(r? — 4p)?
_ ZZ — + E(x, A, B),
p=x
and using (32) and (37), this gives
1 . 2 2 X 1 1Y\ 5, X°
— = (C O|—— —+ = — .
4AB |a|§;\b\§}3 (ﬂE(a,b)(X)) ( r7T1/2(X)) + (logcx + <A + B) x> + AB)
Replacing in (36), and using (34), this completes the proof of Theorem 1.4 ]
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