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2.2

Elliptic curves over Fq

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular
Weierstraß equation
E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,ai ∈ K

If p = char K > 3,

∆E :=
1
24

(
−a5

1a3a4 − 8a3
1a2a3a4 − 16a1a2

2a3a4 + 36a2
1a2

3a4

− a4
1a2

4 − 8a2
1a2a2

4 − 16a2
2a2

4 + 96a1a3a2
4 + 64a3

4+

a6
1a6 + 12a4

1a2a6 + 48a2
1a2

2a6 + 64a3
2a6 − 36a3

1a3a6

−144a1a2a3a6 − 72a2
1a4a6 − 288a2a4a6 + 432a2

6
)
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2.3

Elliptic curves over K

After applying a suitable affine transformation we can always
assume that E/K has a Weierstraß equation of the following
form

Example (Classification (p = char K ))
E p ∆E

y2 = x3 + Ax + B ≥ 5 4A3 + 27B2

y2 + xy = x3 + a2x2 + a6 2 a2
6

y2 + a3y = x3 + a4x + a6 2 a4
3

y2 = x3 + Ax2 + Bx + C 3 4A3C − A2B2 − 18ABC
+4B3 + 27C2

Let E/Fq elliptic curve,∞ := [0,1,0]. Set
E(Fq) = {(x , y) ∈ F2

q : y2 = x3 + Ax + B} ∪ {∞}
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2.4

If P,Q ∈ E(Fq), rP,Q :

{
line through P and Q if P 6= Q
tangent line to E at P if P = Q,

rP,∞ : vertical line through P

P

¥¥

¥

-P

-2 -1 0 1 2 3 4

-3

-2

-1

0
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2

3

-x y + y2 + y � x3 - 3 x2 + x + 1

P

Q

R

P+ Q

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-x y + y2
+ y � x3

- 3 x2
+ x + 1

rP,∞ ∩ E(Fq) = {P,∞,P ′}  −P := P ′

rP,Q ∩ E(Fq) = {P,Q,R}  
P +E Q := −R
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2.5

Theorem

The addition law on E/K (K field) has the following properties:

(a) P +E Q ∈ E ∀P,Q ∈ E
(b) P +E ∞ =∞+E P = P ∀P ∈ E
(c) P +E (−P) =∞ ∀P ∈ E
(d) P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E
(e) P +E Q = Q +E P ∀P,Q ∈ E
So (E(K̄ ),+E ) is an abelian group.

Remark:

If E/K ⇒ ∀L,K ⊆ L ⊆ K̄ ,E(L) is an abelian group.

−P = −(x1, y1) = (x1,−a1x1−a3− y1)
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2.6

Formulas for Addition on E (Summary)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒ P1 +E P2 =∞

• x1 6= x2

λ = y2−y1
x2−x1

ν = y1x2−y2x1
x2−x1

• If P1 = P2

• 2y1 + a1x + a3 = 0 ⇒ P1 +E P2 = 2P1 =∞

• 2y1 + a1x + a3 6= 0

λ =
3x2

1+2a2x1+a4−a1y1
2y1+a1x+a3

, ν = − a3y1+x3
1 −a4x1−2a6

2y1+a1x1+a3

Then
P1 +E P2 = (λ2 − a1λ− a2 − x1 − x2,−λ3 − a2

1λ + (λ + a1)(a2 + x1 + x2)− a3 − ν)
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2.7

Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒ P1 +E P2 =∞

• x1 6= x2

λ = y2−y1
x2−x1

ν = y1x2−y2x1
x2−x1

• If P1 = P2

• y1 = 0 ⇒ P1 +E P2 = 2P1 =∞

• y1 6= 0

λ =
3x2

1+A
2y1

, ν = − x3
1 −Ax1−2B

2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)
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2.8

Notations

Finite fields

1 Fp = {0,1, . . . ,p − 1} is the prime field;

2 Fq is a finite field with q = pn elements;
3 Fq = Fp[ξ], f (ξ) = 0, f ∈ Fp[X ] irreducible, ∂f = n;
4 F4 = F2[ξ], ξ2 = 1 + ξ;
5 F8 = F2[α], α3 = α + 1 but also F8 = F2[β], β3 = β2 + 1,

(β = α2 + 1);
6 F101101 = F101[ω], ω101 = ω + 1

Algebraic Closure of Fq

1 ∀n ∈ N, we fix an Fqn

2 We also require that Fqn ⊆ Fqm if n | m
3 We let Fq =

⋃
n∈N Fqn

4 Fq is algebraically closed

If F (x, y) ∈ Fq [x, y ] a point of the curve F = 0, means (x0, y0) ∈ F2
q s.t. F (x0, y0) = 0.
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2.9

The j-invariant

Let E/K : y2 = x3 + Ax + B, p ≥ 5 and ∆E := 4A3 + 27B2.

{
x ←− u−2x
y ←− u−3y

u ∈ K ∗ ⇒ E −→ Eu : y2 = x3+u4Ax+u6B

Definition

The j–invariant of E is j = j(E) = 1728 4A3

4A3+27B2

Properties of j–invariants

1 j(E) = j(Eu),∀u ∈ K ∗

2 j(E ′/K ) = j(E ′′/K ) ⇒ ∃u ∈ K̄ ∗ s.t. E ′′ = E ′u
if K = Fq can take u ∈ Fq12

3 j 6= 0,1728⇒ E : y2 = x3 + 3j
1728−j x + 2j

1728−j , j(E) = j

4 j = 0 ⇒ E : y2 = x3 + B, j = 1728 ⇒ E : y2 = x3 + Ax
5 j : K ←→ {K̄ –affinely equivalent classes of E/K}.
6 p = 2,3 different definition
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2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.10

Examples of j invariants
From monday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent
over F5[

√
3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q)2.

Eµ : y2 = x3 + µ2Ax + µ3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq[
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

F. Pappalardi

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

2.11

Determining points of order 2

Let P = (x1, y1) ∈ E(Fq) \ {∞},

P has order 2 ⇐⇒ 2P =∞ ⇐⇒ P = −P

So
−P = (x1,−a1x1 − a3 − y1) = (x1, y1) = P =⇒ 2y1 = −a1x1 − a3

If p 6= 2, can assume E : y2 = x3 + Ax2 + Bx + C

−P = (x1,−y1) = (x1, y1) = P =⇒ y1 = 0, x3
1 + Ax2

1 + Bx1 + C = 0

Note

• the number of points of order 2 in E(Fq) equals the
number of roots of X 3 + Ax2 + Bx + C in Fq

• roots are distinct since discriminant ∆E 6= 0
• E(Fq6 ) has always 3 points of order 2 if E/Fq

• E [2] := {P ∈ E(F̄q) : 2P =∞} ∼= C2 ⊕ C2
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So
−P = (x1,−a1x1 − a3 − y1) = (x1, y1) = P =⇒ 2y1 = −a1x1 − a3

If p 6= 2, can assume E : y2 = x3 + Ax2 + Bx + C

−P = (x1,−y1) = (x1, y1) = P =⇒ y1 = 0, x3
1 + Ax2

1 + Bx1 + C = 0

Note

• the number of points of order 2 in E(Fq) equals the
number of roots of X 3 + Ax2 + Bx + C in Fq

• roots are distinct since discriminant ∆E 6= 0
• E(Fq6 ) has always 3 points of order 2 if E/Fq

• E [2] := {P ∈ E(F̄q) : 2P =∞} ∼= C2 ⊕ C2
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2.12

Determining points of order 2 (continues)
• If p = 2 and E : y2 + a3y = x3 + a2x2 + a6

−P = (x1,a3 + y1) = (x1, y1) = P =⇒ a3 = 0

Absurd (a3 = 0) and there are no points of order 2.

• If p = 2 and E : y2 + xy = x3 + a4x + a6

−P = (x1, x1 + y1) = (x1, y1) = P =⇒ x1 = 0, y2
1 = a6

So there is exactly one point of order 2 namely (0,
√

a6)

Definition

2–torsion points

E [2] = {P ∈ E : 2P =∞}.

In conclusion

E [2] ∼=


C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6
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2.13

Elliptic curves over F2,F3 and F5

Each curve /F2 has cyclic E(F2).

E E(F2) |E(F2)|
y2 + xy = x3 + x2 + 1 {∞, (0, 1)} 2
y2 + xy = x3 + 1 {∞, (0, 1), (1, 0), (1, 1)} 4
y2 + y = x3 + x {∞, (0, 0), (0, 1), (1, 0), (1, 1)} 5
y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0, 0), (0, 1)} 3

• E1 : y2 = x3 + x E2 : y2 = x3 − x

E1(F3) ∼= C4 and E2(F3) ∼= C2 ⊕ C2

• E3 : y2 = x3 + x E4 : y2 = x3 + x + 2

E3(F5) ∼= C2 ⊕ C2 and E4(F5) ∼= C4

• E5 : y2 = x3 + 4x E6 : y2 = x3 + 4x + 1

E5(F5) ∼= C2 ⊕ C4 and E6(F5) ∼= C8
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2.14

Determining points of order 3
Let P = (x1, y1) ∈ E(Fq)

P has order 3 ⇐⇒ 3P =∞ ⇐⇒ 2P = −P

So, if p > 3 and E : y2 = x2 + Ax + B

2P = (x2P , y2P) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν)

where λ =
3x2

1+A
2y1

, ν = − x3
1−Ax1−2B

2y1
.

P has order 3 ⇐⇒ x2P = x1

Substituting λ, x2P − x1 =
−3x4

1−6Ax2
1−12Bx1+A2

4(x3
1+Ax1+4B)

= 0

Note

• ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 the 3rd division
polynomial

• (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
• E(Fq) has at most 8 points of order 3
• If p 6= 3, E [3] := {P ∈ E : 3P =∞} ∼= C3 ⊕ C3
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2P = (x2P , y2P) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν)

where λ =
3x2

1+A
2y1

, ν = − x3
1−Ax1−2B

2y1
.

P has order 3 ⇐⇒ x2P = x1

Substituting λ, x2P − x1 =
−3x4

1−6Ax2
1−12Bx1+A2

4(x3
1+Ax1+4B)

= 0

Note

• ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 the 3rd division
polynomial

• (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
• E(Fq) has at most 8 points of order 3
• If p 6= 3, E [3] := {P ∈ E : 3P =∞} ∼= C3 ⊕ C3
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2.15

Determining points of order 3 (continues)

Exercise

Let E : y2 = x3 + Ax2 + Bx + C,A,B,C ∈ F3n . Prove that if
P = (x1, y1) ∈ E(F3n ) has order 3, then

1 Ax3
1 + AC − B2 = 0

2 E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise

Example (from Monday)

If E : y2 = x3 + x + 1, then #E(F5) = 9.

ψ3(x) = (x + 3)(x + 4)(x2 + 3x + 4)

Hence
E [3] =

{
∞, (2,±1), (1,±

√
3), (1± 2

√
3,±(1±

√
3))
}

1 E(F5) = {∞, (2,±1), (0,±1), (3,±1), (4,±2)} ∼= C9

2 Since F25 = F5[
√

3] ⇒ E [3] ⊂ E(F25)

3 #E(F25) = 27 ⇒ E(F25) ∼= C3 ⊕ C9
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2.16

Determining points of order 3 (continues)
Inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=

y2 = x3 + 2 x(x + 1)(x + 2)(x + 4)
{
∞, (0,±3), (−1,±1),
(5,±1), (3,±1)

}
C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9

Can one count the number of inequivalent E/Fq with #E(Fq) = r?

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0,0), (0,1)} ⊂ E(F4).
E(F4) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3

Exercise (Suppose (x0, y0) ∈ E/F2n has order 3. Show that)

1 E : y2 + a3y = x3 + a4x + a6 ⇒ x4
0 + a2

3x0 + (a4a3)2 = 0
2 E : y2 + xy = x3 + a2x2 + a6 ⇒ x4

0 + x3
0 + a6 = 0
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2.16

Determining points of order 3 (continues)
Inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=

y2 = x3 + 2 x(x + 1)(x + 2)(x + 4)
{
∞, (0,±3), (−1,±1),
(5,±1), (3,±1)

}
C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9

Can one count the number of inequivalent E/Fq with #E(Fq) = r?

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0,0), (0,1)} ⊂ E(F4).
E(F4) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3

Exercise (Suppose (x0, y0) ∈ E/F2n has order 3. Show that)

1 E : y2 + a3y = x3 + a4x + a6 ⇒ x4
0 + a2

3x0 + (a4a3)2 = 0
2 E : y2 + xy = x3 + a2x2 + a6 ⇒ x4

0 + x3
0 + a6 = 0
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2.17

Determining points of order (dividing) m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′,p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}
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2.18

Group Structure of E(Fq)

Corollary

Let E/Fq . ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fq) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fq) contains nr

1 points of order dividing n1. From
Structure of Torsion Theorem, #E [n1] ≤ n2

1. So r ≤ 2

Theorem (Corollary of Weil Pairing)

Let E/Fq and n, k ∈ N s.t. E(Fq) ∼= Cn ⊕ Cnk . Then n | q − 1.

We shall discuss the proof of the latter tomorrow
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2.19

Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials

The proof generalizes previous ideas and determine the points
P ∈ E(Fq) such that mP =∞ or equivalently (m − 1)P = −P.

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0
ψ1 =1
ψ2 =2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is called the mth division
polynomial
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2.20

The division polynomials

Lemma

Let E : y2 = x3 + Ax + B, (p > 3) and let ψm ∈ Z[x , y ] the mth

division polynomial. Then

ψ2m+1 ∈ Z[x ] and ψ2m ∈ 2yZ[x ]

Proof is an exercise.

True ψ0, ψ1, ψ2, ψ3, ψ4 and for the rest apply induction, the
identity y2 = x3 + Ax + B · · · and consider the cases m odd
and m even.

Lemma

ψm =

{
y(mx (m2−4)/2 + · · · ) if m is even
mx (m2−1)/2 + · · · if m is odd.

Hence ψ2
m = m2xm2−1 + · · ·

Proof is another exercise on induction:
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2.21

Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y) ∈ E)

m(x , y) =

(
x − ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x , y)

2ψ4
m(x)

)
=

(
φm(x)

ψ2
m(x)

,
ωm(x , y)

ψ3
m(x , y)

)

where

φm = xψ2
m − ψm+1ψm−1, ωm =

ψm+2ψ
2
m−1−ψm−2ψ

2
m+1

4y

We will omit the proof of the above (see [8, Section 9.5])

Exercise (Prove that after substituting y2 = x3 + Ax + B)

1 φm(x) ∈ Z[x ]

2 φm(x) = xm2
+ · · · ψm(x)2 = m2xm2−1 + · · ·

3 ω2m+1 ∈ yZ[x ], ω2m ∈ Z[x ]

4
ωm(x,y)
ψ3

m(x,y) ∈ yZ(x)

5 gcd(ψ2
m(x), φm(x)) = 1

this is not really an exercise!! - see [8, Corollary 3.7]
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2.22

Lemma

#E [m] = #{P ∈ E(K̄ ) : mP =∞}

{
= m2 if p - m
< m2 if p | m

Proof.

Consider the homomorphism:
[m] : E(K̄ )→ E(K̄ ),P 7→ mP

If p - m, need to show that
# Ker[m] = #E [m] = m2

We shall prove that ∃P0 = (a,b) ∈ [m](E(K̄ )) \ {∞} s.t.
#{P ∈ E(K̄ ) : mP = P0} = m2

Since E(K̄ ) infinite, we can choose (a,b) ∈ [m](E(K̄ )) s.t.

1 ab 6= 0

2 ∀x0 ∈ K̄ : (φ′mψm − 2φmψ
′
m)(x0)ψm(x0) = 0⇒ a 6= φm(x0)

ψ2
m(x0)

if p - m, conditions imply that φm(x)− aψ2
m(x)

has m2 = ∂(φm(x)− aψ2
m(x)) distinct roots

in fact ∂φm(x) = m2 and ∂ψ2
m(x) = m2 − 1
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2.23

Proof continues.

Write
mP = m(x , y) =

(
φm(x)
ψ2

m(x) ,
ωm(x,y)
ψm(x)3

)
=
(
φm(x)
ψ2

m(x) , yr(x)
)

The map
{α ∈ K̄ : φm(α)− aψm(α)2 = 0} ↔ {P ∈ E(K̄ ) : mP = (a,b)}

α0 7→ (α0,br(α0)−1)

is a well defined bijection.

Hence there are m2 points P ∈ E(K̄ ) with mP = (a,b)

So there are m2 elements in Ker[m].

If p | m, the proof is the same except that φm(x)− aψm(x)2 has
multiple roots!!
In fact φ′m(x)− aψ′m(x)2 = 0
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)
=
(
φm(x)
ψ2

m(x) , yr(x)
)

The map
{α ∈ K̄ : φm(α)− aψm(α)2 = 0} ↔ {P ∈ E(K̄ ) : mP = (a,b)}

α0 7→ (α0,br(α0)−1)

is a well defined bijection.

Hence there are m2 points P ∈ E(K̄ ) with mP = (a,b)

So there are m2 elements in Ker[m].

If p | m, the proof is the same except that φm(x)− aψm(x)2 has
multiple roots!!
In fact φ′m(x)− aψ′m(x)2 = 0
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2.24

From Lemma, Theorem follows:

If p - m, apply classification Theorem of finite Groups:

E [m] ∼= Cn1 ⊕ Cn2 ⊕ · · ·Cnk ,

ni | ni+1. Let ` | n1, then E [`] ⊂ E [m]. Hence
`k = `2 ⇒ k = 2. So

E [m] ∼= Cn1 ⊕ Cn2

Finally n2 | m and n1n2 = m2 so m = n1 = n2.

If p | m, write m = pjm′, p - m′ and

E [m] ∼= E [m′]⊕ E [pj ] ∼= Cm′ ⊕ Cm′ ⊕ E [pj ]

The statement follows from:

E [pj ] ∼=

{
{∞}
Cpj

and Cm′ ⊕ Cpj ∼= Cm′pj

which is done by induction.
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2.25

From Lemma, Theorem follows (continues)

Induction base:

E [p] ∼=

{
{∞}
Cp

if follows from #E [p] < p2

• If E [p] = {∞} ⇒ E [pj ] = {∞} ∀j ≥ 2:
In fact if E [pj ] 6= {∞} then it would contain some element
of order p(contradiction).

• If E [p] ∼= Cp, then E [pj ] ∼= Cpj ∀j ≥ 2:
In fact E [pj ] is cyclic (otherwise E [p] would not be cyclic!)

Fact: [p] : E(K̄ ) → E(K̄ ) is surjective (to be proven tomorrow)

If P ∈ E and ord P = pj−1 ⇒ ∃Q ∈ E s.t. pQ = P and
Q = pj .
Hence E [pj ] ∼= Cpj since it contains an element of order pj .

Remark:

• E [2m + 1] \ {∞} = {(x , y) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
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2.26

Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq . Then the order
of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq
2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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2.26

Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq . Then the order
of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq
2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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2.27

Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.

∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2
√

q and

one of the following is satisfied:

(i) gcd(a,p) = 1;
(ii) n even and one of the following is satisfied:

1 a = ±2
√

q;
2 p 6≡ 1 (mod 3), and a = ±√q;
3 p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:

1 p = 2 or 3, and a = ±p(n+1)/2;
2 a = 0.

Example (q prime ∀N ∈ Iq , ∃E/Fq ,#E(Fq) = N. q not prime:)
q a ∈
4 = 22 { − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4}

8 = 23 { − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5}
9 = 32 { − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6}
16 = 24 { − 8, − 7,−6, − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
25 = 52 { − 10, − 9, − 8, − 7, − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
27 = 33 { − 10, − 9, − 8, − 7,−6, − 5, − 4,−3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
32 = 25 { − 11,−10, − 9, − 8, − 7,−6, − 5,−4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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2.27

Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.

∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2
√

q and

one of the following is satisfied:

(i) gcd(a,p) = 1;
(ii) n even and one of the following is satisfied:

1 a = ±2
√

q;
2 p 6≡ 1 (mod 3), and a = ±√q;
3 p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:

1 p = 2 or 3, and a = ±p(n+1)/2;
2 a = 0.

Example (q prime ∀N ∈ Iq , ∃E/Fq ,#E(Fq) = N. q not prime:)
q a ∈
4 = 22 { − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4}

8 = 23 { − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5}
9 = 32 { − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6}
16 = 24 { − 8, − 7,−6, − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
25 = 52 { − 10, − 9, − 8, − 7, − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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32 = 25 { − 11,−10, − 9, − 8, − 7,−6, − 5,−4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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2.28

Theorem (Rück)

Suppose N is a possible order of an elliptic curve /Fq , q = pn.
Write

N = pen1n2, p - n1n2 and n1 | n2 (possibly n1 = 1).
There exists E/Fq s.t.

E(Fq) ∼= Cn1 ⊕ Cn2pe

if and only if
1 n1 = n2 in the case (ii).1 of Waterhouse’s Theorem;

2 n1|q − 1 in all other cases of Waterhouse’s Theorem.

Example

• If q = p2n and #E(Fq) = q + 1± 2
√

q = (pn ± 1)2, then
E(Fq) ∼= Cpn±1 ⊕ Cpn±1.

• Let N = 100 and q = 101 ⇒ ∃E1,E2,E3,E4/F101 s.t.
E1(F101) ∼= C10 ⊕ C10 E2(F101) ∼= C2 ⊕ C50

E3(F101) ∼= C5 ⊕ C20 E4(F101) ∼= C100
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Further Reading...
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