Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 7 - 15 Novembre 2010 Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia $A = R_1 \times R_2$ dove R_i è un anello commutativo unitario locale (con un unico ideale massimale M_i), dimostrare che:

- $I_1 = R_1 \times M_2, \, I_2 = M_1 \times R_2,$ sono gli unici ideali massimali di A
- $M = M_1 \times M_2$ è un ideale non massimale di A (non è primo)

Sia $\pi: A \to \frac{A}{M}$ la proiezione canonica $(\pi(a) = a + M)$

- Dimostrare che π è un ben definito omomorfismo suriettivo
- Dimostrare che $\pi(I_i)$ sono gli unici ideali massimali di $\pi(A)$ per i=1,2

(Se ci sono problemi svolgere prima l'esercizio 2)

Esercizio 2.

Sia A anello commutativo unitario e I ideale di A, $B := \frac{A}{I}$ e $\pi : A \to B$ la proiezione canonica, dimostrare che:

- $\forall J$ ideale di $A,\ I\subseteq J\Rightarrow \pi(J)$ è un ideale di B
- $\forall J'$ ideale di $B, \pi^{-1}(J') := \{a \in A \ t.c. \ \pi(a) \in J'\}$ è un ideale di A
- \bullet Esiste una corrispondenza biunivoca tra gli ideali di Be gli ideali di A contententi I
- Usare quanto visto per dimostrare che se I è massimale allora B è un campo
- Se I è l'unico ideale massimale di A allora $A \setminus I = \mathcal{U}(A)$
- $\bullet\,$ se Pideale primo di A (contente I)allora $\pi(P)$ è ideale primo di B

Sia $\pi: A \to \frac{A}{I}$ la proiezione canonica $(\pi(a) = a + I)$

- Dimostrare che π è un ben definito omomorfismo suriettivo
- Dimostrare che se M è l'unico ideale le massimale contente I allora B è locale.

Esercizio 2.bis

Sia $\sqrt{I} := \{a \in A \mid a^k \in I, \ \exists k \in \mathbb{N}\},$ dimostrare che:

- \sqrt{I} è un ideale di A
- $I \subseteq \sqrt{I}$
- $\pi(\sqrt{I}) = Nil(B) := \{ \text{ elementi nilpotenti di } B \}$

Esercizio 3.

Sia
$$A = Z_{(15)} := \{ \frac{m}{15^t} \in \mathbb{Q} \mid m, t \in \mathbb{Z}, \ t \ge 0 \}.$$

- $\bullet\,$ Verificare che A è un sottoanello di $\mathbb Q$
- $\bullet\,$ Determinare gli elementi invertibili di A
- Provare che per ogni $p \neq 3, 5$, con p primo, (p) = pA è un ideale massimale in $A \in (p) \cap \mathbb{Z}$ è un ideale primo di \mathbb{Z}
- Se I è un ideale di A provare che $I \cap \mathbb{Z}$ è un ideale di \mathbb{Z}
- Provare che se $I \neq J$ sono ideali di Aallora $I \cap \mathbb{Z} \neq J \cap \mathbb{Z}$
- Provare che se I è primo o massimale allora $I \cap \mathbb{Z}$ è primo o massimale