
UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Università degli Studi Roma Tre

Dipartimento di Matematica e Fisica

Corso di Laurea Magistrale in Scienze Computazionali

Sintesi della Tesi di Laurea Magistrale in Scienze Computazionali

Community-based Influence
Maximization

Relatori: Candidato:

Prof. Marco Liverani Daniele Salierno
Dott. Stefano Guarino

Anno Accademico 2018/2019

Introduction

The quick technological advancement of the last decade brought us devices
that are faster, cheaper and pervasive in everyday life, transforming social
relations and interactions between individuals.

In particular, the growth of social networks has been unmatched: almost
everyone has an account on some platform like Facebook, Instagram or
Twitter, and often on all of them. Their great success is probably due to the
possibility to share events and to remain connected easily with friends.

The expansion of socials leads the society, in particular, the younger
generations, to consider them the privileged communication channels. Now
people follow one another and see what others share, often in real-time.

Following this social development, social studies emerged interested in
keeping pace with innovations: the analysis of such networks has become
increasingly important and challenging, with the immense growth in the size
of data sets. At first, it seemed crucial to study macroscopic properties of a
network, as connectedness, flow and paths, but then the primary goal of the
research has been shifting towards more mesoscopic properties, as motifs and
communities, and, more recently, on microscopic aspects, as the importance
of single nodes.

In social networks, single nodes are people and links are connections
between them. Analysing a social network at this scale means detecting
those nodes that are more important within the graph. However, what
does important mean, exactly? Clarifying what we consider important in a
specific application setting is the first step towards quantifying importance,
and, ultimately, understanding how to compute and compare importance in
practice.

We can roughly divide the ways of quantifying importance in two cate-
gories, criticality and vitality:

• A node is critical, if it is essential for the cohesiveness of the graph, i.e.,
if its deletion can endanger the connectedness of the graph, or cause a
significant worsening in the communication properties of the network
(e.g. extending the average length of minimum paths).

• A node is vital if it can actively and efficiently inject information within
the network, taking advantage of its position or its neighbourhood. We
often call this type of vertices "influencers", "spreaders" or "seeds".

Based on this primary distinction, two different problems arise: the
Critical Node Detection Problem (CNDP) and the Influence Maximisation
Problem (IMP). Within each of these categories, different metrics may be
used to target a specific connotation of, respectively, criticality and vitality;
for instance, a node can be critical either for safeguarding connectedness or
for shortening connections (or for both).

1

An especially thorny aspect when dealing with importance is to distinguish
between individual and joint importance. In many optimisation problems,
selecting a single optimal instance is a relatively easy task, whereas choosing
several objects that perform optimally together is much more troublesome.
Albeit defining a suitable metrics may be itself a non-trivial task, if we aim
at finding the best element in a dataset with respect to any chosen metrics,
it suffices to compute that metrics for all elements and to select the one
with the highest score. Unfortunately, for joint optimality, a similar greedy
algorithm is typically either unfeasible or underperforming.

In the case of network criticality/vitality, identifying an exact solution
to the problem of joint importance may require more-than-polynomial time,
at least, on graphs worth considering. At a high level, this is because the
importance of a node is rarely independent of that of others, so that choosing
a set of nodes that work well together to achieve an objective is a different
problem than selecting as many nodes that work well when considered alone.
For instance, the "areas of importance" of a set of individually relevant nodes
may overlap, thus decreasing their collective value, or predicting the combined
actions of a given set of nodes may be impossible.

Theoretically, an optimal set of nodes could be found using a greedy
algorithm that recomputes the ranking each time a new node is selected, in
such a way to identify, at each step, the node that provides the best marginal
gain. In some cases, this can also be done in practice to tackle and solve the
problem, even with performance guarantees ([KKT03]).

However, in most cases, frequent recalculations of the metrics are com-
putationally heavy and scale poorly with the input size. Some fix can make
them acceptable solutions even on mid-range graphs, but they will ultimately
fail when considering large networks.

In this thesis, we focus on the Influence Maximization Problem. While
critical nodes usually come in sets (a real network can be hardly disconnected
by removing a single vertex), vital nodes can be considered alone, since in
many situations a single node can provide coverage for a significant fraction of
the network. As a consequence, the literature seems to lack a detailed analysis
of the difference between detecting a single influencer and concurrently
selecting multiple ones.

Our aim is making a step towards understanding whether considering
multiple influencers at once may be convenient with respect to sticking with
a single-target approach.

In practice, we will elaborate on the following rationale. When we "select
a node" in a real-life IMP instance, we ultimately aim at controlling it to use
it as a source (of news, ads, etc.), and this comes at a cost, either in terms of
money or resources. If we focus on a set of less influential nodes, which are
most likely easier to control, can we achieve a result that is, proportionally,
better than investing all of our resources on a single influencer? Moreover, is
there a relatively simple strategy for choosing these "mini-influencers" that

2

may be expected to maximise our profit, i.e., the ratio of gained influence
over cost? For instance, using popular influencers on social networks for
advertising campaigns is extremely expensive. If we rely on a team of less
popular users, can we obtain similar/better results at a lower/comparable
cost?

Formally, let us denote with fu, fS the value of the single best spreader
u and the value of a chosen subset S, and cu, cS the cost of the single node
and the subset, respectively. We can consider the proportions f% = fS

fu
and

c% = cS
cu
. We are then interested in g = f%

c%
: if this quantity is at least 1, we

consider convenient to select multiple influencers. When we need to compare
two subsets, we consider better the one with the higher gain.

This process hides the actual value fS , which in real situations can be
(and will probably be) lesser than fu, even a lot lesser. However, calculating
fu is an easy task, so it is always convenient and fast to consider it. Besides
this, in our comparison process, it is necessary to know which is the single
best spreader. Having both values is important to understand how far the
chosen set is from the best spreader in terms of coverage and how much we
gained.

Real networks, especially social networks, are sparse but mostly organized
in sub-units, called communities or modules, which have stronger connections
and denser edges. Detecting communities is of great importance to factorize
a usually large graph into smaller units and to understand the general
structure of the graph. Our strategy for detecting the influencers is based on
communities.

However the task of detecting modules is not simple, both because of the
ambiguity in the definition of what precisely a community is, and in the actual
partitioning: besides the exponential number of possible partitions, there are
other complications, such as the possible overlapping of some communities,
i.e., the possibility that a node belongs to different communities at the same
time.

Intuitively, a community (or module) is a subgraph more clustered within
the graph, where the probability that an edge links two randomly chosen
nodes is higher than on the whole graph. To extract these subgraphs, one
needs to choose an objective function that describes this intuition.

We chose the optimisation of modularity.

Definition 1. Given a graph G(V,E) and a partition of its nodes in s subsets,
we call modularity of a module the quantity

Qi =
mi

m
−
(
di
2m

)2

and modularity of the partition the sum over the modules:

Q =
s∑
i=1

Qi

3

where m = |E(G)|, mi = |G[Vi](E)| and di =
∑

v∈Vi deg v.

The first term of the summand is the fraction of edges inside the module;
the second term represents instead the expected fraction of links that would
be inside the module, if they were located at random, under the constraint
of conserving each node’s degree.

We can understand this by referring to the configuration model ([Van13]).
We imagine that we have a graph and that we cut each edge in halves, then
we rewire uniformly at random the halves into full edges. Within the module,
we have di half edges (where their total number is 2m).

For each module, Qi can be anywhere in [−1, 1]. If it is positive, it means
that the module contains more edges than it would if their position were
random; hence, it is more likely an actual cluster within the graph. We can
conclude that a subgraph S with ms internal edges and total degree ds is a
module if

ms

m
−
(
ds
2m

)2

> 0

To select the multiple seeds, we compute a partition of the graph into
communities with Louvain algorithm (proposed in [Blo+08]), which unfolds
a complete hierarchical structure, through local optimization of modularity.
Then we choose into each community a node as a seed, in such a way that
the sum of their costs does not exceed the cost of the single spreader already
selected. This heuristic approach, without a given number of influencers to
select, is a variant of IMP not yet found in the literature.

We applied our community-based algorithm on several synthetic random
graphs and real large networks. Results are, mostly, in favour of a multiple
selection approach. Our algorithm has no approximation guarantee; hence,
we expect that more sophisticated algorithms can achieve a better gain.

Influence Maximization Problem

The Influence Maximisation Problem was initially arisen in [DR01] in the
context of viral marketing, and, due to its practical importance, has received
much attention. In general, we want to detect a set of nodes in order to achieve
a maximum spread of whatever we are going to spread, be it information,
the adoption of a product or a behaviour, or even a disease.

Since we want to spread something, it seems reasonable to consider
important those nodes that have more influence over the others. To evaluate
the influence capacity of a selected set in such a situation, in which a process
developing in time is involved, it is more convenient to choose a dynamic
model ([PMM18]). Thus the spreading of information (often called cascade)
can be simulated as a real process from a collective point of view.

In this type of applications, we are more interested in maximising the
influence, given a spendable budget, than in minimising the cost in order

4

to obtain a specific effect. Thus, the main goal of IMP is to find a set of
cardinality k with maximum influence over the graph.

To quantify the information diffusion, we formally define the influence
spread, as in [Li+18].

Definition 2. Given a graph G and a diffusion model M , the influence
spread is a function σ : P(V)→ R≥0 that maps each subset S in the expected
number of influenced node for a diffusion process run under the model M
using S as seeds set.

We chose the Independent Cascade Model, that describes accurately the
word-of-mouth process viral marketing is based on.

The Independent Cascade Model and its variants are stochastic models,
which means that the set of final active nodes can change in each simulation
of the cascade.

We assign to every edge (u, v) an activation probability puv. During the
simulation, when node u is first activated (suppose at time t − 1), it has
a single chance to activate each inactive neighbour v with probability puv
independently of the story of the process so far. If u succeeds, v becomes
active at time t, but if it fails, u cannot make further attempts to activate
v. If more than one neighbour of a vertex v is activated at time t− 1, each
of them can attempt to activate v in time u (attempts are considered in
arbitrary order).

In the most general case, the probability puv can depend on several factors,
such as the number of steps from the source, the number of nodes that have
already failed to activate v or time passed from the diffusion beginning.

A generalization can be obtained by allowing the probability to depend on
the exact set A of neighbours that have already tried (and failed) to activate
the node. The activation probabilities will then be puv(A), where v is the
target node and u the active one. The independent model is the special case
of puv(A) = puv, constant and independent of A.

It is convenient to consider only functions that are order-independent,
i.e., such that if r neighbours ui try to activate a node v, the probability
that v is active after the last try does not depend on the specific order in
which attempts are made. Formally if A = {ui, i ≤ r} and τ is an arbitrary
permutation on A, we require that

r∏
i=1

(
1− puπ(1)v({uπ(i) | i ≤ r − 1})

)
=

r∏
i=1

(
1− puτ(1)v({uτ(i) | i ≤ r − 1})

)
The general cascade model makes influence maximisation intractable. A

more tractable variant introduces a behaviour of diminishing return. This
variant is called Decreasing Cascade Model, and the additional request is
that puv(S) ≥ puv(T) if S ⊆ T , that is, the more attempts have been made
to activate v, the more difficult it will be to influence the node.

5

Influence Maximization. Thus, the IMP receives in input a graph G, a
diffusion model M and an integer k, and selects a set of k nodes in order to
maximize the influence spread σ. The output is

argmax
S⊆V :|S|=k

σ(S)

A natural generalisation consists in taking as input a graph with nodes
weighted with a cost and interpreting the integer k as the total cost of the
nodes, instead of their number.

For IMP, there are some known hardness results ([KKT03]).

Theorem 3. The Influence Maximisation Problem is NP-Hard to approxi-
mate within a factor of 1− 1

ε under the Independent Cascade Model for any
ε > 0.

Theorem 4. The Influence Maximization Problem is NP-Hard to approxi-
mate within a factor of n1−ε under the general cascade model for any ε > 0.

Thus, the IMP is at least NP-Complete under the independent cascade
dynamic, but in the general formulation, it is also highly intractable, while
under the other models is well approximable, for instance with the greedy
algorithm proposed in [KKT03].

Theorem 5. Let σ be a non-negative monotone and submodular function.
Then the greedy algorithm produces a set S such that σ(S) ≥ (1 − 1

e)σ(S̄),
where S̄ is the optimal solution.

The greedy algorithm is a simple hill-climbing: starting from the empty
set, at each step adds to the seed set the node u that maximises the marginal
gain σ(S ∪ {u})− σ(S).

The influence spread cannot be computed exactly in polynomial time,
both under the ICM ([WCW12]), but it is possible to obtain arbitrarily good
approximations by simulating the diffusion sufficiently many times ([KKT03]).

Proposition 6. If the diffusion process starting from S is simulated inde-
pendently at least

Ω

(
n2

ε2
ln
(1

δ

))
times, then the average number of activated nodes over these simulations is a
(1± ε)-approximation of σ(S) with probability at least 1− δ.

Despite the excellent approximation result, the greedy algorithm runs
in time O(knT), where T is the time needed to approximate the influence
spread of a set. This complexity makes the algorithm not scalable on large
graphs, which, speaking of social networks graphs with millions of nodes, is a
significant drawback.

6

Comparing Influence Capabilities

We aim to compare the influence capabilities of a single high-degree vertex
against several less important nodes. The fundamental question that arises
this comparison is if, in a viral marketing application, it is more convenient to
advertise on a social network a product through a single influencer or several.

Algorithm 1: Comparison Algorithm

Input :Graph G
Output :Costs and values for single and multiple influencers

/* Initialize Weights and Costs */
1 ∀e = uv ∈ E compute puv
2 ∀u ∈ V compute cu

/* Single Influencer Phase */
3 u← argmaxu deg u
4 Simulate IC for u
5 Save cost and value of u

/* Multiple Influencers Phase */
6 Compute partition P of V through Louvain
7 Select multiple influencers over P and put them in S
8 Simulate IC for S
9 Save cost and value of S

Algorithm 1 shows the process of computing costs and values for a single
influencer and for a multiple seeds selection, enabling us to compare them.

First of all, we need to compute the activation probabilities, puv = P(u→
v) for each uv ∈ E, and the cost of controlling each vertex, cu.

The first phase of the algorithm selects the node with the highest degree
as the best probable influencer and run an IC simulation starting from it.
Each simulation is run a fixed amount of times, and we calculate the empirical
average to evaluate the number of activated nodes.

The simulation of a single cascade follows algorithm 2, that is essentially a
breadth-first visit, in which nodes are added to the queue only when activated.
We know that a visit runs in O(n+m), so a single simulation costs at most
the same time.

We know ([Kit+10]) that degree is not an accurate indicator of the
popularity of a node in a network, but it is a good one: a node with
significantly fewer neighbours is a less popular node. Because of this, we
simulate the single influencer diffusion for a fixed number of high degree
nodes (eight by default), and choose the best one. Being the graph scale-free,
we know that the next node in degree order has significantly fewer neighbours
than the most popular one. To select the candidates we do not actually sort
vertices in degree order, but we compute the minimum degree that a node

7

Algorithm 2: Independent Cascade

Input :Graph G, set of seeds S
Output :Number of activated nodes

/* Initialize structures */
1 Q← ∅, a← 0 /* Queue and number of activated nodes */
2 foreach v ∈ V do
3 if v ∈ S then
4 Q← Q ∪ {v}
5 Activated(v)← true
6 a← a+ 1

7 else
8 Activated(v)← false
9 end

10 end
/* Compute Spreading */

11 while Q 6= ∅ do
12 Pop u from Q
13 foreach v ∈ N(u) do
14 if v is not active and u succeeds in activating it then
15 Activated(v)← true
16 Q← Q ∪ {v}
17 a← a+ 1

18 end
19 end
20 end
21 return a

8

must have to be a candidate with algorithm 3.

Algorithm 3: Degree-Based Single Influencer Selection

Input :Graph G with n nodes, maximum number of candidates h
Output :Minimum degree d to be a candidate

/* Initialize an array for degree distribution */
1 i← 0
2 for i ≤ n do
3 Di ← 0
4 i← i+ 1

5 end
/* Compute degree distribution */

6 foreach v ∈ G do
7 Ddeg v ← Ddeg v + 1
8 end

/* Compute minimum degree */
9 d← 0

10 while n > h do
11 n← n−Di

12 d← d+ 1

13 end
14 return d

After finding the best single influencer, the second phase of the computa-
tion begins, the search for multiple spreaders.

Firstly, the Louvain algorithm detects the hierarchical structure and
partitions the graph. This algorithm appears to run in nearly linear time
on sparse data ([Blo+08]), but to this, we need to add the time needed to
read through the output and load to which module on each level each node
belongs. This additional scan takes O(nl) operations, where l is the number
of levels. For our instances, l was less than a half dozen, even on large graphs.

Given that, for each module, the algorithm adds to the seed set the node
with maximum degree such that its cost is at most the cost of the single
influencer over the number of communities. The condition on the cost is
necessary in order to avoid exceeding the single influencer’s cost.

It is possible to make this selection with a single loop on vertices followed
by another loop on communities. During the first loop, we compute the
vertex with the highest degree for all the communities, using a temporary
array. This process (described in algorithm 4) requires an additional O(k)
space but takes considerably less time than using only a variable and finding
the node for one community at a time (which takes O(nk), where k is the
number of communities). We know, however, from [FB07], that modularity

9

has a resolution limit. Thus it is not able to solve small communities, which,
in this case, keeps low the extra memory usage, at least for the last level of
the hierarchy.

Algorithm 4: Multiple Selection

Input :Graph G, partition P into communities, ∆, maximum
degree in G

Output :A set S of multiple spreaders, one for each module of P

/* Initialize structures */
1 S = ∅
2 foreach c ∈ P do
3 bestc ← NULL
4 end

/* Loops on nodes */
5 foreach v ∈ V do
6 c← Community(v)
7 if deg v < ∆

|P | and (bestc = NULL or deg v > deg(bestc)) then
8 bestc = v
9 end

10 end
/* Seeds selection */

11 foreach c ∈ P do
12 S ← S ∪ {bestc}
13 end

On top of all these considerations, it is possible to run the community-
based multiple spreader selection for all the partitions of the hierarchy found
by Louvain algorithm. This process takes a little more time but can be very
rewarding, allowing for a better gain.

Lastly, we observe that an algorithm should run within time O(n log n), in
order to be successfully used on massive inputs, such as graphs with millions
of edges. This scalability property is necessary when working with massive
datasets, such as in applications to viral marketing.

All the process described runs under this time, assuming that m ∝ n,
which is true if the graph is sparse.

We recall the computational cost of the overall process. For computing the
activation probability, we need m operations; for computing the community,
the Louvain algorithm appears to run in nearly linear time on sparse data
([Blo+08]); during the single influencer phase, we compute a maximum
among the n vertices (or we select h candidates with algorithm 3, that is
also linear), and we simulate the independent cascade through a breadth-first
search (n+m operations in the worst case of massive activation); lastly, after

10

Louvain algorithm, we need n operations to add to the seed set a node for
each community.

The total time is then the sum of all these operations (we omitted
constants), m+ T + n+ (n+m) + n, where the important terms are m and
T , that is the running time of Louvain algorithm (nearly linear on sparse
data). Considering that the sparseness of the graph bounds m, the algorithm
runs in nearly linear time.

Conclusions

The Influence Maximization Problem is of particular interest in applications
in which one wants to spread information (or the like) within a graph, for
instance, in viral marketing.

Since in many situations a single influencer provides coverage for a sig-
nificant part of the network, for solving the IMP is often faster and easier
to find the best single spreader than trying to coordinate many. Thus, the
literature seems to lack an analysis of the advantages and disadvantages of
detecting a single seed against selecting multiple ones.

We defined a measure, the average number of activated nodes after an
independent cascade starting from the seeds, and a cost, the vertex degree.
Our aim is making a step towards understanding whether, proportionally, it
is possible to achieve a better result, selecting many cheaper seeds instead of
one more expensive.

We weighted edges with an activation probability, computed with depen-
dence on the degree of both ends: the higher the degree of the already active
node is with respect to the others, the higher the probability will be. The
exact formula used is

puv = max

(
0,

deg u− deg v + λ

∆

)
In this computation, we introduced a parameter, λ, representing the maximum
degree distance between two nodes, such that the less popular of the two can
activate the other during a cascade. We showed that the number of activated
nodes in the multiple spreaders cascade has a phase-change-like phenomenon
as λ varies, or at least a sudden growth, before which a negligible part of
the graph is active, but after which a considerable fraction of it is covered.
Figure 1 shows the average number of activated nodes as λ varies for one of
our instances.

Moreover, we developed a simple way of choosing these multiple seeds.
For this strategy, we took advantage of the fact that, in real networks, and,
in particular, social networks, nodes tend to aggregate themselves in dense
communities. We use the Louvain Algorithm to partition the graph into
such modules and then we choose the node with the highest degree as an
influencer for each community.

11

(a) socfb-Penn94

Figure 1: Number of Activated Nodes

This heuristic approach has no performance guarantees on the optimality
of the solution, but it is incredibly fast, processing a graph with three million
nodes and twenty-four million edges in less than ten minutes. Moreover, it
does not require to know beforehand how many influencers there will be.

The simulations we made with our implementation of this community-
based multiple influencers detection algorithm showed that it is often possible
to obtain, proportionally, a broader coverage, spending considerably less
using the multiple-seeds approach. Sometimes this gain was marginal, or
even absent, but, usually, it was noticeable. Our simulations were run on a
synthetic graph based on the Barabási-Albert model and several real-world
graphs from the Facebook social network.

For better comparison, we used the same parameters for all the instances
considered: in particular, we set λ = 128 and the number of possible single
influencer candidates to 8.

Table 1 shows the general characteristics of the considered graphs used in
the simulations, while table 2 summarises the results of the simulations. As
we said in the previous section, it is possible to run the multiple spreaders
selection several times, one for each level of the hierarchy found by Louvain
algorithm. The second table shows both the last level and the best level
results.

On the first table, |V | is the number of vertices, |E| of edges, |L| of
hierarchical levels and |Cb|, |Cl| respectively the number of communities in
the best and the last level. On the other table, there are fS , average number
of activated nodes with seed set S, fu for the single spreader u, cS and cu,
costs of the seed set S and of the vertex u; T is the running time when only
the selection on last level is considered, while Ta is the total running time for
the selection over all levels. Moreover, f% = fS

fu
, c% = cS

cu
and g = f%

c%
.

Our next aim is to explore the comparison further, firstly refining the

12

Graph Name |V | |E| |L| |Cl| |Cb|

BA5000m1 5000 4999 4 84 84
socfb-UF 35111 1465654 3 15 123

socfb-Penn94 41536 1362220 3 20 185
socfb-OR 63392 816886 4 53 53

socfb-A-anon 3097165 23667394 5 372 375

Table 1: Graph characteristics

Last Level Best Level

Graph
fS
fu

cS
cu

g T
fS
fu

cS
cu

ga Ta

BA5000m1 0.749 0.600 1.25 0 0.749 0.600 1.25 0
socfb-UF 0.714 0.924 0.77 18 0.678 0.710 0.95 21

socfb-Penn94 0.895 0.894 1.00 21 0.897 0.608 1.48 23
socfb-OR 0.992 0.472 2.10 13 0.992 0.472 2.10 15

socfb-A-anon 0.251 0.441 0.57 463 0.334 0.420 0.79 543

Table 2: Simulation results

selection of seed by calculating the k-shell value for all nodes. The k-shells (or
cores) are an indicator of both the centrality and the degree of a node. The
idea is to choose for each community the node with the highest degree among
those with maximum k-coreness. This further computation could increase
the spreading value for the multiple influencers, but we need to verify that
the gain is worth the extra time required.

Besides this refining, we want to implement other types of dynamic
models, in particular, the decreasing cascade. In the IC model considered,
the probability puv is independent of the history of the process. However, the
inclination of a node of being influenced may change, decreasing for each of
its neighbours that have already attempted and failed to influence it.

About the results themselves, we would like to analyse two facts. Firstly,
it can be interesting to study how the gain/loss varies with λ. Looking at
how the number of activated nodes does, we would expect a phase-change
phenomenon for the gain, too. For instance, for the A-anon graph, setting
λ = 160 hields a gain g ≈ 2.00. Then, we want to identify which structural
property is more favourable for our algorithm. For instance, we expect that
a large number of little communities could easily disrupt our approach since
the algorithm would waste resources in selecting a multitude of nodes with a
minimal degree.

Moreover, we do not know beforehand how many multiple influencers
there will be, but we could make a guess and use a known algorithm, for

13

instance, the greedy hill-climbing, that has some performance guarantee, in
order to select the multiple seeds and make a comparison with our heuristic.

Lastly, and more importantly, we know that many social networks, like
Instagram and Twitter, are naturally modelled as directed graphs. It is
easy, from a directed graph, to derive the underlying undirected one, but
in this process, we forget about the follower-leader relationship between
nodes. Considering directions on edges makes the topic more complicated:
for instance, it is not clear what a directed community is (while, at least
intuitively, an undirected community is easy to understand). Moreover, the
Louvain algorithm, in its original implementation, is not able to deal with
directed graphs. Nevertheless, directed social networks are at least as common
as undirected ones, and an attractive target for IMP instances, making of
primary importance to adapt our comparison algorithm on directed networks.

14

Bibliography

[Aru+09] Ashwin Arulselvan et al. “Detecting critical nodes in sparse
graphs”. In: Computers & Operations Research 36.7 (2009), pp. 2193–
2200.

[BA99] Albert-László Barabási and Réka Albert. “Emergence of scaling
in random networks”. In: Science 286.5439 (1999), pp. 509–512.

[BJP18] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar.
“A Survey on Influence Maximization in a Social Network”. In:
arXiv preprint arXiv:1808.05502 (2018).

[Blo+08] Vincent D. Blondel et al. “Fast unfolding of communities in
large networks”. In: Journal of statistical mechanics: theory and
experiment 2008.10 (2008), P10008.

[BM08] John Adrian Bondy and Uppaluri Siva Ramachandra Murty.
Graph Theory. Springer, 2008.

[Bor06] Stephen P. Borgatti. “Identifying sets of key players in a so-
cial network”. In: Computational & Mathematical Organization
Theory 12.1 (2006), pp. 21–34.

[Boz+16] Arastoo Bozorgi et al. “INCIM: A community-based algorithm
for influence maximization problem under the linear threshold
model”. In: Information Processing & Management 52.6 (2016),
pp. 1188–1199.

[Bra+06] Ulrik Brandes et al. “Maximizing modularity is hard”. In: arXiv
preprint physics/0608255 (2006).

[Bra+07] Ulrik Brandes et al. “On finding graph clusterings with maximum
modularity”. In: International Workshop on Graph-Theoretic
Concepts in Computer Science. Springer. 2007, pp. 121–132.

[Cal+02] Guido Caldarelli et al. “Scale-free networks from varying ver-
tex intrinsic fitness”. In: Physical review letters 89.25 (2002),
p. 258702.

[Cor+10] Thomas H. Cormen et al. Introduzione agli algoritmi e strutture
dati 3/ed. McGraw-Hill, 2010.

15

[CYZ10] Wei Chen, Yifei Yuan, and Li Zhang. “Scalable influence max-
imization in social networks under the linear threshold model”.
In: 2010 IEEE international conference on data mining. IEEE.
2010, pp. 88–97.

[DB02] Zoltán Dezső and Albert-László Barabási. “Halting viruses in
scale-free networks”. In: Physical Review E 65.5 (2002), p. 055103.

[DR01] Pedro Domingos and Matt Richardson. “Mining the network
value of customers”. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM. 2001, pp. 57–66.

[ER59] P Erdős and A Rényi. “On random graphs I”. In: Publ. Math.
Debrecen 6 (1959), pp. 290–297.

[FB07] Santo Fortunato and Marc Barthelemy. “Resolution limit in
community detection”. In: Proceedings of the National Academy
of Sciences 104.1 (2007), pp. 36–41.

[FC12] Santo Fortunato and Claudio Castellano. “Community structure
in graphs”. In: Computational Complexity: Theory, Techniques,
and Applications (2012), pp. 490–512.

[GN02] Michelle Girvan and Mark E.J. Newman. “Community structure
in social and biological networks”. In: Proceedings of the national
academy of sciences 99.12 (2002), pp. 7821–7826.

[HFC15] Jia-Lin He, Yan Fu, and Duan-Bing Chen. “A novel top-k strategy
for influence maximization in complex networks with community
structure”. In: PloS one 10.12 (2015), e0145283.

[Ker+88] Brian W. Kernighan et al. The C programming language. Vol. 2.
prentice-Hall Englewood Cliffs, NJ, 1988.

[Kit+10] Maksim Kitsak et al. “Identification of influential spreaders in
complex networks”. In: Nature physics 6.11 (2010), p. 888.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the
spread of influence through a social network”. In: Proceedings of
the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 2003, pp. 137–146.

[LFH10] Andrea Landherr, Bettina Friedl, and Julia Heidemann. “A criti-
cal review of centrality measures in social networks”. In: Business
& Information Systems Engineering 2.6 (2010), pp. 371–385.

[LGC13] Etienne Lefebvre, Jean-Loup Guillaume, and Federico Campig-
otto. Louvain’s algorithm. 2013. url: https://sourceforge.
net/projects/louvain/.

16

https://sourceforge.net/projects/louvain/
https://sourceforge.net/projects/louvain/

[Li+18] Yuchen Li et al. “Influence maximization on social graphs: A sur-
vey”. In: IEEE Transactions on Knowledge and Data Engineering
30.10 (2018), pp. 1852–1872.

[LLM10] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. “Empirical
comparison of algorithms for network community detection”. In:
Proceedings of the 19th international conference on World wide
web. ACM. 2010, pp. 631–640.

[LTK16] Mohammed Lalou, Mohammed Amin Tahraoui, and Hamamache
Kheddouci. “Component-cardinality-constrained critical node
problem in graphs”. In: Discrete Applied Mathematics 210 (2016),
pp. 150–163.

[LTK18] Mohammed Lalou, Mohammed Amin Tahraoui, and Hamamache
Kheddouci. “The critical node detection problem in networks: a
survey”. In: Computer Science Review 28 (2018), pp. 92–117.

[Lü+16] Linyuan Lü et al. “Vital nodes identification in complex networks”.
In: Physics Reports 650 (2016), pp. 1–63.

[New06] Mark E.J. Newman. “Modularity and community structure in
networks”. In: Proceedings of the national academy of sciences
103.23 (2006), pp. 8577–8582.

[NG04] Mark E.J. Newman and Michelle Girvan. “Finding and evaluating
community structure in networks”. In: Physical review E 69.2
(2004), p. 026113.

[Ngu+17] Hung T. Nguyen et al. “Social influence spectrum at scale: Near-
optimal solutions for multiple budgets at once”. In: ACM Trans-
actions on Information Systems (TOIS) 36.2 (2017), p. 14.

[NN10] Ramasuri Narayanam and Yadati Narahari. “A shapley value-
based approach to discover influential nodes in social networks”.
In: IEEE Transactions on Automation Science and Engineering
8.1 (2010), pp. 130–147.

[PG12] Lorenzo Pantieri and Tommaso Gordini. “L’arte di scrivere con
LaTeX, 2012”. In: URL http://www. lorenzopantieri. net (2012).

[PMM18] Sen Pei, Flaviano Morone, and Hernán A. Makse. “Theories
for influencer identification in complex networks”. In: Complex
Spreading Phenomena in Social Systems. Springer, 2018, pp. 125–
148.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repos-
itory with Interactive Graph Analytics and Visualization”. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence. 2015. url: http://networkrepository.com.

17

http://networkrepository.com

[SS12] Siqian Shen and J. Cole Smith. “Polynomial-time algorithms
for solving a class of critical node problems on trees and series-
parallel graphs”. In: Networks 60.2 (2012), pp. 103–119.

[Van13] Remco Van Der Hofstad. Random graphs and complex networks.
Vol. 1. Cambridge University Press, 2013. url: https://www.
win.tue.nl/~rhofstad.

[Ven12] Mario Ventresca. “Global search algorithms using a combinatorial
unranking-based problem representation for the critical node
detection problem”. In: Computers & Operations Research 39.11
(2012), pp. 2763–2775.

[WCW12] Chi Wang, Wei Chen, and Yajun Wang. “Scalable influence
maximization for independent cascade model in large-scale social
networks”. In: Data Mining and Knowledge Discovery 25.3 (2012),
pp. 545–576.

[WS98] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics
of ‘small-world’networks”. In: Nature 393.6684 (1998), p. 440.

[Yan81] Mihalis Yannakakis. “Node-deletion problems on bipartite graphs”.
In: SIAM Journal on Computing 10.2 (1981), pp. 310–327.

[ZH17] Yangming Zhou and Jin-Kao Hao. “A fast heuristic algorithm
for the critical node problem”. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. ACM. 2017,
pp. 121–122.

18

https://www.win.tue.nl/~rhofstad
https://www.win.tue.nl/~rhofstad

