Università degli studi di Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AL2 - Algebra 2, gruppi anelli e campi Soluzioni

31 ottobre 2004

1 Gruppo Simmetrico

1. Per ogni divisore p, primo, di $Ord(S_4)$ trovare un elemento di ordine p.

Soluzione 1.1. I divisori prini di $Ord(S_4)$ sono 2 e 3.

- (a) Ordine 2: (1,2).
- (b) Ordine 3: (1,2,3).
- 2. Per quali divisori n di $Ord(S_4)$ esiste un elemento di ordine n?

Soluzione 1.2. I divisori di $Ord(S_4)$ sono 1, 2, 3, 4, 6 e 8.

- (a) Ordine 1: identità.
- (b) Ordine 2: (1,2).
- (c) Ordine 3: (1,2,3).
- (d) Ordine 4: (1,2,3,4).
- (e) Ordine 6 e 8: non ci sono.
- 3. Verificare l'equazione delle classi per S_4 e S_3 .

Soluzione 1.3. L'equazione delle classi è

$$Ord\left(G\right) = \sum rac{Ord\left(G\right)}{Ord\left(C\left(a\right)\right)}$$

dove la somma è estesa ad elementi $a \in G$, uno per ogni classe di coniugio. Nel caso di S_3 si ottiene.

$$6 = Ord(S_3) = \frac{Ord(S_3)}{Ord(C(id))} + \frac{Ord(S_3)}{Ord(C((1,2)))} + \frac{Ord(S_3)}{Ord(C((1,2,3)))}$$
$$= \frac{6}{6} + \frac{6}{3} + \frac{6}{2} = 1 + 2 + 3.$$

Analogamente per S_4 .

4. Dimostrare che due qualsiasi sottogruppi di ordine 3 di S_4 sono coniugati.

Soluzione 1.4. I sottogruppi di ordine 3 in S_4 sono:

- (a) < (1,2,3) >
- (b) < (1,2,4) >
- (c) < (1,3,4) >
- (d) < (2,3,4) >.

Allora

- (a) < (1,2,4) > = (34) < (1,2,3) > (34)
- (b) < (1,3,4) >= (23)(34) < (1,2,3) > (34)(23) = (234) < (1,2,3) > (243)
- (c) < (2,3,4) >= (12)(23)(34) < (1,2,3) > (34)(23)(12) = (1234) < (1,2,3) > (1432).

Poichè il coniugio è una relazione di equivalenza abbiamo che due qualsiasi sottogruppi di ordine 3 sono coniugati.

2 Omomorfismi

1. Siano $G \in G'$ due gruppi di ordine primo fra loro, dimostrare che l'unico omomorfismo fra $G \in G'$ è quello banale.

Soluzione 2.1. Sia g = Ord(G) e g' = Ord(G') allora MCD(g, g') = 1 Sia ϕ un omomorfismo fra G e G', sia $H = \ker(\phi)$. Allora abbiamo tre possibilità.

- (a) H = 0: $cioè \phi è iniettiva \Rightarrow g|g' assurdo.$
- (b) $H \subset G$: $cioè\ G' \cong G/H \Rightarrow g' \cdot h = g$ assurdo.
- (c) H = G: $cioè \phi è l'omomorfismo banale$.
- 2. Trovare tutte gli omomorfismi fra \mathbb{Z}_n e \mathbb{Z}_m :
 - (a) per $m \in n = 2, 3, 4, 5$
 - (b) per m e n qualsiasi.

Soluzione 2.2. Consideriamo il caso generale. Sia ϕ un omomorfismo fra \mathbb{Z}_n e \mathbb{Z}_m , poniamo $H = \ker(\phi)$ e $I = \operatorname{Im}(\phi)$. Sia $h = \operatorname{Ord}(H)$ e $i = \operatorname{Ord}(I)$, allora

- (a) $n = a \cdot h \text{ perch} \hat{e} H < \mathbb{Z}_n$
- (b) $m = b \cdot i \text{ perchè } I < \mathbb{Z}_m$
- (c) $i = \frac{n}{h} \operatorname{perch} \dot{e} I \cong \mathbb{Z}_n/H$

Da cui abbiamo che a=i e $b=h\frac{m}{n} \Rightarrow I=h\frac{m}{n}\mathbb{Z}_m$. Dunque abbiamo un omomorfismo $\Leftrightarrow h\frac{m}{n} \in \mathbb{N}$.

3. Trovare tutti gli omomorfismi fra S_3 e $(\mathbb{Z}_6,+)$

Soluzione 2.3. I possibili nuclei sono i sottogruppi normali di S_3 , cioè S_3 , A_3 e $\{id\}$. Dunque abbiamo tre possibilità:

- (a) $\ker(\phi) = S_3$: dunque ϕ è l'omomorfismo nullo.
- (b) $\ker(\phi) = A_3$: dunque per il teorema di omomorfismo $\phi(S_3) \cong S_3/A_3 \cong \mathbb{Z}_2 \cong 3\mathbb{Z}_6$. Per cui

$$\phi\left(\sigma\right) = \left\{ \begin{array}{ll} 0 & \textit{se } \sigma \ \grave{e} \ \textit{pari} \\ 3 & \textit{se } \sigma \ \grave{e} \ \textit{dispari} \end{array} \right.$$

- (c) ker $(\phi) = \{id\}$: dunque ϕ è iniettiva, ma $|S_3| = |\mathbb{Z}_6|$, dunque ϕ è surriettiva. Ma non può essere un omomorfismo di gruppi perchè \mathbb{Z}_6 è commutativo, mentre S_3 non è commutativo.
- 4. Sia ϕ un automorfismo di G, dimostrare che $\phi(Z(G)) \subset Z(G)$.

Soluzione 2.4. Sia $g \in Z(G)$ allora $\forall x \in G \ x = gxg^{-1}$ dunque

$$\phi(x) = \phi(gxg^{-1}) = \phi(g)\phi(x)\phi(g^{-1}).$$

Poichè ϕ è un automorfismo, e dunque un isomorfismo, abbiamo che

$$x = \phi(g)x\phi(g^{-1}).$$

Dunque $\phi(x) \in Z(G) \forall x \in Z(G)$.

3 Gruppi

- 1. Prodotto semidiretto Sia G un gruppo, H e N sottogruppi con N normale. Sia γ_x la coniugazione per l'elemento $x \in G$.
 - (a) Dimostrare che $x \mapsto \gamma_x$ induce un omomorfismo $f: H \mapsto Aut(N)$
 - (b) Se $H \cap N = \{e\}$, dimostrare che la applicazione $H \times N \mapsto HN$ data da $(x,y) \mapsto xy$ è una biezione, e che questa applicazione è un isomorfismo se e solamente se f è triviale, i.e. $f(x) = id_N$ $\forall x \in H$.

Diremo che G è il prodotto semidiretto di H e N, e scriviamo $G = N \times_f H$ se G = HN e $H \cap N = \{e\}$.

(c) Viceversa siano H e N due gruppi, e sia $\phi: H \mapsto Aut(N)$ un omomorfismo dato. Costruiamo il prodotto semidiretto nel modo seguente. Sia G l'insieme delle coppie (x,h) con $x \in N$ e $h \in H$, definiamo il prodotto nel modo seguente:

$$(x,h)(y,k) = (x\phi(h)(y), hk)$$

Dimostrare che questa è una legge di gruppo e che $G = N \times_{\phi} H$ identificando N con (x, 1) e H con (1, h)

(d) Verificare che $N \times_{id} H \cong N \times H$.

Soluzione 3.1. ...

- 2. Dire quale dei seguenti gruppi è esprimibile come prodotto diretto o semidiretto di due sottogruppi:
 - (a) $(\mathbb{Z}, +),$
 - (b) $(\mathbb{Z}_8, +),$
 - (c) $(D_4, \circ),$
 - (d) $(\mathbb{Z}_6, +),$
 - (e) $(\mathbb{C}, +)$,
 - (f) (\mathbb{C}^*,\cdot) .

Soluzione 3.2. (a) $(\mathbb{Z},+)$ no,

- (b) $(\mathbb{Z}_8, +)$ no,
- (c) $(D_4, \circ) \cong <\sigma> \times_{\phi} <\rho> dove \ \rho \ \ \dot{e} \ \ la \ \ rotazione \ di \ angolo \ \frac{\pi}{2},$ $\sigma \ \dot{e} \ il \ ribaltamento \ orizontale \ e \ \phi \ \dot{e} \ l'omomorfismo \ da <\sigma> a$ $Aut(<\rho>) \ tale \ che \ \phi(\sigma)(x) = \sigma x \sigma^{-1},$
- (d) $(\mathbb{Z}_6, +) \cong <3 > \times <2 >$,
- (e) $(\mathbb{C}, +) \cong \mathbb{R} \times i\mathbb{R}$,
- (f) $(\mathbb{C}^*, \cdot) \cong \mathbb{R}^+ \times \{z \in \mathbb{C} : |z| = 1\}.$
- 3. Un sottogruppo C di un gruppo G si dice caratteristico se $\phi(C) \subseteq C$ per ogni automorfismo ϕ di G. Dimostrare che:
 - (a) ogni sottogruppo caretteristico è normale in G, e che il viceversa è falso,
 - (b) G', sottogruppo derivato, è caratteristico.

Soluzione 3.3. (a) Sia C un sottogruppo caratteristico, allora

$$gCg^{-1} = \phi_g\left(C\right) \subset C$$

perchè ϕ_g è un automorfismo. Dunquè C è normale. Per vedere che il viceversa è falso prendiamo $G = D_4$ e $C = \{id, r, \rho^2, r\rho^2\}$ Allora C è normale ma non caratteristico, trovare l'automorfismo tale che $\phi(C) \not\subset C$.

(b) Sia ϕ un automorfismo di G. Dimostriamo che ϕ manda i generatori, di G', in generatori. Infatti

$$\phi(xyx^{-1}y^{-1}) = \phi(x)\phi(y)\phi(x^{-1})\phi(y^{-1})$$

Dunque G' è caratteristico.

- 4. Con metodi elementari si studi la struttura dei possibili gruppi di ordine 1,2,3,4.
 - Soluzione 3.4. Utilizziamo la notazione moltiplicativa. Poichè un gruppo possiede sempre l'elemento neutro, e, abbiamo che $Ord(G) = 1 \Rightarrow G = \{e\}$. Se Ord(G) = 2 allora $G = \{e,a\}$ e, poichè ogni elemento ha un inverso, si ha che $a = a^{-1}$. Se Ord(G) = 3 allora $G = \{e,a,b\}$, deve risultare ab = e = ba; infatti non può essesre aa = e altrimenti $\{e,a\}$ è un sottogruppo di ordine 2 in un gruppo di ordine 3. Inoltre, dalla chiusura dell'operazione risulta aa = b e bb = a. Se Ord(G) = 4 allora $G = \{e,a,b,c\}$, se aa = b (analogamente se aa = c) allora $a^3 = ab = ba = c$, infatti se fosse ab = e allora $\{e,a,b\}$ sarebbe un sottogruppo di G. Pertanto dalla chiusura dell'operazione deve risultare $a^4 = e$, $a^{-1} = c$ e $b^{-1} = b$. L'altra possibilità è che aa = bb = cc = e e pertanto il prodotto fra due di questi elementi darà come risultato il terzo.
- 5. Si verifichi il teorema di Cayley per G gruppo ciclico di orine 4 e G gruppo di Klein.

Soluzione 3.5. Il teorema di Caylay dice che ogni gruppo si può realizzare come gruppo di trasformazioni. Applicando il teorema otteniamo

(a)
$$\mathbb{Z}_4 \cong \{id, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\}$$

(b)
$$\mathbb{K} \cong \{id, (1,2)(3,4), (1,3)(2,4), (1,4)(3,2)\}$$

4 Gruppo Diedrale

- 1. Consideriamo D_4 il gruppo dei movimenti rigidi del quadrato.
 - (a) Trovare tutti i sottogruppi di D_4 ,
 - (b) Trovare le classi di coniugio di D_4 .

Soluzione 4.1. (a) Sia ρ la rotazione di angolo $\pi/4$ e r la riflessione rispetto all'asse x. Allora

$$D_4 = \{ id, r, \rho, r\rho, r\rho^2, r\rho^3, \rho^2, \rho^3 \}$$

 $I\ sottogruppi\ sono$

$$Z = \{id, \rho, \rho^{2}, \rho^{3}\}$$

$$K_{1} = \{id, r, \rho^{2}, r\rho^{2}\}$$

$$K_{2} = \{id, r\rho, \rho^{2}, r\rho^{3}\}$$

$$R_{1} = \{id, \rho^{2}\} = Z(D_{4})$$

$$R_{2} = \{id, r\}$$

$$R_{3} = \{id, r\rho\}$$

$$R_{4} = \{id, r\rho^{2}\}$$

$$R_{3} = \{id, r\rho^{3}\}$$

(b) Osserviamo che $\rho r = r\rho^3$. Le classi di coniugio sono

$$C(r) = \{r, r\rho^2\}$$

$$C(r\rho) = \{r\rho, r\rho^3\}$$

$$C(\rho) = \{\rho, \rho^3\}$$

$$C(\rho^2) = \{\rho^2\}$$

2. Determinare il centro di D_n per ogni n.

Soluzione 4.2. (a) n dispari: $Z(D_n) = \{id\}$

- (b) n dispari: $Z(D_n) = \left\{ id, \rho^{\frac{n}{2}} \right\}$ dove ρ è lo rotazione di angolo $\frac{2\pi}{n}$.
- 3. Determinare $N(D_4)$ in S_4 .

Soluzione 4.3.
$$N(D_4) = \langle (2,4), (1,2)(3,4), (1,4)(2,3) \rangle$$
.

4. Dimostrare che D_n è generato da una riflessione e da una rotazione.

Soluzione 4.4. Sia ρ la rotazione di angolo $2\pi/n$, sia $Z = \langle \rho \rangle$. Osserviamo che Z ha indice due, dunque è un sottogruppo normale, sia r_0 un elemento non congruo a ρ , in particolare r_0 ha ordine 2. Sia $x \in D_n$ abbiamo due possibilità:

- (a) $x \mod Z = 1$, dunque $x = \rho^i$ per qualche i.
- (b) $x \mod Z = -1$ dunque $x = \rho^i r_0 \rho^i$ per qualche i

Dunque D_n è generato da ρ e r_0 .

5. Si dimostri che il gruppo dei movimenti di un rettangolo è il gruppo di Klein.

Soluzione 4.5. I movimenti del rettangolo sono dati da i ribaltamenti rispetto all'asse orizontale, verticale, e la rotazione di angolo π . Ogni elemento ha ordine 2, da cui l'isomorfismo.

5 Matrici

1. Sia M l'insieme delle matrici 3×3 a valori 0 e 1 e tali che ciascuna riga e ciascuna colonna contiene esattamente un 1. Si dimostri che rispetto al prodotto righe per colonne M è un gruppo e che esso è isomorfo a S_3 .

Soluzione 5.1.

$$M = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right\}.$$

Consideriamo
$$a = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $e \ b = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. È facile ve-

rificare che a ha ordine 2, b ha ordine 3 e che a e b generano M. Per costrire l'isomorfismo ricordiamoci che S_3 è generato da (1,2) e (1,2,3). Allora poniamo: $\phi(a) = (1,2)$ e $\phi(b) = (1,2,3)$.

2. Consideriamo l'insieme R delle matrici 2×2 della forma $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ per $\theta \in [0, 2\pi)$. Dimostrare che R è un gruppo rispetto al prodotto righe per colonne e che esso è isomorfo a $G = \{z \in \mathbb{C} : |z| = 1\}$

Soluzione 5.2. Ricordiamo le formule di addizione per il coseno e il seno.

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta).$$

Allora

$$\begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix} =$$

$$= \begin{pmatrix} \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) & \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ -(\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)) & \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix}$$

Dunque R è un gruppo rispetto al prodotto righe per colonne. L'isomorfismo è dato da $\phi\left(\begin{pmatrix}\cos(\alpha)&\sin(\alpha)\\-\sin(\alpha)&\cos(\alpha)\end{pmatrix}\right)=\cos(\alpha)+i\sin(\alpha)$.