Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2013/2014 TN410 - Introduzione alla teoria dei numeri Appello A - Prima parte 17 giugno 2014

$Cognome____$	Nome
Numero di matricola	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. E' consentito l'uso di libri, appunti e calcolatrici.

1. (a) Sia p un numero primo. Provare che:

$$(p-1)! \equiv p-1 \pmod{1+2+\cdots+(p-1)}$$

(b) Provare che per ogni numero intero positivo n si ha che:

$$\sum_{d|n} \frac{1}{d} = \frac{\sigma(n)}{n}.$$

2. Determinare tutte le (eventuali) soluzioni della seguente congruenza polinomiale:

$$f(X) = X^6 - 5X^5 + 4X^3 - X + 22 \equiv 0 \pmod{441}$$

- 3. (a) Determinare tutte le radici primitive modulo 50.
 - (b) Scrivere la tabella degli indici rispetto alla più piccola radice primitiva positiva modulo 50.
 - (c) Risolvere le seguenti congruenze:
 - i. $X^6 \equiv 11 \pmod{50}$;
 - ii. $7^X \equiv 49 \pmod{50}$.

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2013/2014 TN410 - Introduzione alla teoria dei numeri Appello A - seconda parte 17 giugno 2014

$Cognome____$	Nome
Numero di matricola	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. E' consentito l'uso di libri, appunti e calcolatrici.

1. Provare che:

- (a) Se $p \in q = 2p + 1$ sono entrambi numeri primi dispari, allora -4 è una radice primitiva modulo q e un non-residuo quadratico di q.
- (b) Se p è un numero primo dispari tale che $p \equiv 1 \pmod 4$, allora -4 e $\frac{p-1}{4}$ sono entrambi residui quadratici di p.

- 2. (a) Siano p un numero primo dispari e a, b, c numeri interi non divisibili per p; provare che se $ab \equiv c \pmod{p}$ e c è un residuo quadratico di p, allora a e b sono entranbi residui quadratici di p oppure a e b sono entranbi non-residui quadratici di p.
 - (b) Sia p un numero primo dispari; provare che la congruenza

$$2X^2 + 1 \equiv 0 \pmod{p}$$

- è risolubile se e solo se $p \equiv 1 \pmod{8}$ oppure $p \equiv 3 \pmod{8}$.
- (c) Trovare le soluzioni della congruenza $2X^2 + 1 \equiv 0 \pmod{17^2}$.

3. Si considerino le seguenti funzioni aritmetiche:

$$t_1(n) = |\{d \in \mathbb{N}^+ : d | n \in d \equiv 1 \pmod{4}\}|$$

 $t_3(n) = |\{d \in \mathbb{N}^+ : d | n \in d \equiv 3 \pmod{4}\}|$
 $s(n) = t_1(n) - t_3(n)$

- (a) Stabilire se t_1 e t_3 sono moltiplicative.
- (b) Provare che s è moltiplicativa.
- (c) Calcolare $s(p^h)$ con p primo e $h \in \mathbb{N}^+$.