Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Seconda prova di valutazione intermedia 4 giugno 2009

Cognome.		Nome		
$Numero\ a$	di matricola			
altri fogli	nza: Svolgere ogni ese e giustificando tutt unti e calcolatrici.	-		_
1. Si co	onsideri la congruenza	_		
	$X^2 \equiv$	≅ 825 (mod 4624)	(*)	
(a)	Verificare che la cong delle sue soluzioni.	gruenza (*) è risolub	ile e deterrmin	are il numero

(b) Trovare le soluzioni della congruenza $(\ast).$

- 2. (a) Calcolare il simbolo di Jacobi $\left(\frac{509}{32901}\right)$, sapendo che 509 e 997 sono numeri primi.
 - (b) Stabilire se la congruenza quadratica $X^2 \equiv 509 \ \mathrm{mod}(32901)$ è risolubile.

- 3. (a) Stabilire quali dei seguenti numeri sono somma di due quadrati:
 - i. 605;
 - ii. 424589 (divisibile per 11 e 29);
 - iii. 841639 (divisibile per 23, 37, 43).
 - (b) Scrivere i numeri del punto precedente, quando possibile, come somma di due quadrati.

4. Sia $p\geqslant 5$ un numero primo. Provare che l'equazione $3X^2+Y^2=p$ ha soluzioni intere se e solo se $p\equiv 1$ mod (3).

(Sugg.: per \Longrightarrow si consideri $\left(\frac{-3}{p}\right)$; per \Longleftarrow si utilizzi il lemma di Thue.)

- 5. (a) Scrivere come frazione continuata $\frac{253}{436}$;
 - (b) calcolarne tutte le convergenti;
 - (c) dedurre le soluzioni dell'equazione diofante
a253X+436Y=2.

6. Sia Λ la funzione di $von\ Mangoldt,$ definita nel modo seguente:

$$\Lambda(n) := \left\{ \begin{array}{ll} \log(p) & \quad \text{se } n = p^h, \ p \ \text{numero primo} \ , \ h \geq 1 \\ 0 & \quad \text{altrimenti} \end{array} \right. .$$

Dimostrare che:

- (a) $\log(n) = \sum_{d|n} \Lambda(d)$;
- **(b)** $\Lambda(n) = \sum_{d|n} \left(\mu(d) \log \left(\frac{n}{d} \right) \right) = -\sum_{d|n} \left(\mu(d) \log(d) \right).$