Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Prima prova di valutazione intermedia 6 aprile 2009

$Cognome____$	Nome
Numero di matricola	
9 9	cizio nello spazio assegnato, senza consegnare le affermazioni fatte. E' consentito l'uso di
Trovare, al variare del parar sistema lineare in due varial	metro λ (0 $\leq \lambda \leq$ 4), le soluzioni del seguente bili:
$\left\{\begin{array}{c} \lambdaX\\ 2X\end{array}\right.$	$\begin{array}{cccc} + & 3Y & \equiv & 1 \pmod{5} \\ - & \lambda Y & \equiv & 4 \pmod{5} \end{array}$

- 2. Quali tra le seguenti funzioni aritmetiche sono moltiplicative? Quali totalmente moltiplicative? Motivare le risposte.
 - (a) $f(n) = \begin{cases} 1 & \text{se } n \text{ è un quadrato perfetto} \\ 0 & \text{altrimenti} \end{cases}$;
 - **(b)** $f(n) = n^3;$
 - (c) $f(n) = |\{p \text{ primo } | p|n\}|;$
 - (d) f(n) = n 1.

$Cognome____$	$Nome____$
Numero di matricola	

Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e **giustificando tutte le affermazioni fatte**. E' consentito l'uso di libri, appunti e calcolatrici.

3. Determinare il più piccolo intero positivo soluzione del seguente sistema di congruenze lineari:

$$\begin{cases} 3X \equiv 5 \pmod{8} \\ 2X \equiv 3 \pmod{9} \\ 7X \equiv 6 \pmod{13} \\ 4X \equiv 1 \pmod{5} \end{cases}$$

4. Determinare tutte le (eventuali) soluzioni della seguente congruenza polinomiale:

$$f(X) = X^{12} + 3X^{10} + 4X^7 + X + 1 \equiv 0 \pmod{225}$$

- $5. \quad {\rm (a) \ \, Trovare \ tutte \ le \ radici \ primitive \ modulo \ } 18.$
 - (b) Risolvere le seguenti congruenze:

 - i. $X^{10} \equiv 13 \pmod{18}$; ii. $13X^{15} \equiv 5 \pmod{18}$;
 - iii. $7^X \equiv 13 \pmod{18}$.

- 6. Sia p un numero primo dispari; sia a un numero intero primo con p tale che ord $_p$ a=3. Provare che:
 - (a) p non divide 1 + a;
 - (b) $1 + a + a^2 \equiv 0 \pmod{p}$;
 - (c) $\operatorname{ord}_p(1+a) = 6$.