Università degli studi di Roma Tre Corso di Laurea in Matematica, a.a. 2005/2006 TE1 (Teoria di Galois) - Prof. S. Gabelli Prima prova di valutazione intermedia, 5 Aprile 2006

1. Sia $\alpha = \sqrt[3]{5}$ e $K := \mathbb{Q}(\alpha)$. Verificare che K ha grado 3 su \mathbb{Q} ed esprimere i seguenti elementi come polinomi di grado al più 2 in α :

$$\alpha^5 - \alpha^6$$
 e $\frac{\alpha}{\alpha^2 + 1}$.

- 2. Sia $f(X) := X^3 + 3X + 6 \in \mathbb{Q}[X]$ e sia α una sua radice reale.
 - (1) Stabilire se f(X) è irriducibile su \mathbb{Q} ;
 - (2) Stabilire se $\mathbb{Q}(\alpha)$ è normale su \mathbb{Q} ;
 - (3) Determinare la struttura del gruppo di Galois di f(X) su \mathbb{Q} .
- 3. Sia $f(X) := X^4 2X^2 2$ e sia K il suo campo di spezzamento in \mathbb{C} .
 - (1) Determinare la struttura del gruppo di Galois di f(X) su \mathbb{Q} ;
 - (2) (facoltativo) Determinare un elemento primitivo per K.
- 4. Sia ξ una radice primitiva decima dell'unità.
 - (1) Determinare esplicitamente gli automorfismi di $\mathbb{Q}(\xi)$;
 - (2) Verificare che $\mathbb{Q}(\xi) = \mathbb{Q}(\xi^2)$;
 - (3) Determinare il polinomio minimo del numero $\alpha := \xi^2 + \xi^8$;
 - (4) Usando (3), calcolare esplicitamente α .