Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2005/2006 AL2 - Algebra 2 - gruppi, anelli e campi Prova di Esame - Appello B 13 Febbraio 2006

$Cognome_{}$	Nome
Numero di matricola	

Avvertenza: Svolgere il maggior numero di esercizi nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'uso di libri, appunti e calcolatrici.

1. (4 pti) Determinare un sottogruppo di \mathbf{S}_5 isomorfo al gruppo diedrale \mathbf{D}_5 delle isometrie del pentagono regolare.

- 2. (10 pti)
 - (a) Determinare il gruppo $U(\mathbb{Z}_{25})$ delle unità di \mathbb{Z}_{25} .
 - (b) Mostrare che $U(\mathbb{Z}_{25})$ è ciclico e determinare i suoi generatori.
 - (c) Determinare tutti gli automorfismi di $U(\mathbb{Z}_{25})$.

3. (6 pti) Nell'anello degli Interi di Gauss $\mathbb{Z}[i]$, determinare un massimo comune divisore tra $\alpha:=19+25i$ e $\beta:=-18+30i$ e un'identità di Bézout per esso.

Determinare inoltre un generatore degli ideali $(\alpha) + (\beta)$ e $(\alpha) \cap (\beta)$.

- 4. (10 pti) Sia $\alpha = \sqrt[5]{3}$.
 - (a) Descrivere esplicitamente, in forma generica, gli elementi di $\mathbb{Q}(\alpha)$;
 - (b) Determinare una base di $\mathbb{Q}(\alpha)$ su \mathbb{Q} ;
 - (c) Stabilire se $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha + \frac{3}{5})$.