Università degli Studi di Roma Tre

Corso di Laurea in Matematica, a.a. 2007/2008

TE1 - Esercizi 4 (14 Marzo 2008)

a cura di Carmelo Antonio Finocchiaro

Esercizio 1. Siano p un numero primo e $\zeta \in \mathbb{C}$ una radice quinta primitiva dell'unità.

- (a) Determinare tutte le \mathbb{Q} -immersioni di $\mathbb{Q}(\sqrt[5]{p},\zeta)$ in \mathbb{C} . Quali di queste sono \mathbb{Q} -automorfismi?
- (b) Determinare tutte le \mathbb{Q} -immersioni di $\mathbb{Q}(\sqrt[5]{p})$ in \mathbb{C} . Quali di queste sono \mathbb{Q} -automorfismi?
- (c) Stabilire se ciascuno dei campi $\mathbb{Q}(\sqrt[5]{p},\zeta)$, \mathbb{R} , \mathbb{C} è campo di spezzamento su \mathbb{Q} di qualche polinomio $f \in \mathbb{Q}[X]$.

Esercizio 2. Siano p, q numeri primi distinti.

(a) Determinare un campo di spezzamento K del polinomio

$$X^4 - (p+q)X^2 + pq \in \mathbb{Q}[X]$$

su \mathbb{Q} .

- (b) Calcolare $[K:\mathbb{Q}]$, e determinare due basi distinte di K come \mathbb{Q} -spazio vettoriale.
- (c) Determinare tutte le \mathbb{Q} -immersioni di K in \mathbb{C} , e mostrare che ognuna di esse è un \mathbb{Q} -automorfismo di K.
- (d) Stabilire, motivando la risposta, se esiste una \mathbb{Q} -immersione φ di K in \mathbb{C} tale che $\varphi(\sqrt{p} + \sqrt{q}) = \sqrt{p}$.

Esercizio 3. Poniamo $\alpha := i + \sqrt[3]{7}, K := \mathbb{Q}(\alpha)$.

- (a) Determinare il grado del polinomio minimo di α su \mathbb{Q} .
- (b) Dopo aver mostrato che $\mathbb{Q}(i) \subset K$, determinare tutte le $\mathbb{Q}(i)$ -immersioni di K in \mathbb{C} .

(c) Sia $\phi: K \longrightarrow \mathbb{C}$ un omomorfismo di campi non nullo. Determinare i possibili valori di $\phi(\alpha + \sqrt[3]{49})$.

Esercizio 4. Si consideri il polinomio $f := X^3 + 2X^2 + 2 \in \mathbb{F}_3[X]$.

- (a) Determinare un campo di spezzamento K di f su \mathbb{F}_3 , e determinare un elemento $\alpha \in K$ tale che $K = \mathbb{F}_3(\alpha)$.
- (b) Scrivere tutti gli elementi di K.
- (c) Determinare tutti i generatori del gruppo moltiplicativo K^* .
- (d) Per ogni $\beta \in K \setminus \mathbb{F}_3$, determinare il polinomio minimo di β su \mathbb{F}_3 .

Sia L un'estensione di K e sia $\gamma \in L$ un elemento algebrico di grado 5 su K.

- (e) Dire perché γ è algebrico su \mathbb{F}_3 e determinare il grado del polinomio minimo di γ su \mathbb{F}_3 .
- (f) Determinare la cardinalità del campo $K(\gamma)$.

Esercizio 5. Siano p un numero primo e U un'indeterminata su \mathbb{F}_p .

- (a) Posto $T := U^p, K := \mathbb{F}_p(T)$, verificare che $K(U) = \mathbb{F}_p(U)$.
- (b) Dire perché ogni elemento di $\mathbb{F}_p(U)$ è algebrico su K.
- (c) Dimostrare che il polinomio $f := X^p T \in K[X]$ è irriducibile. [Sugg.: ricordare che l'anello $\mathbb{F}_p[T]$ è un dominio a fattorizzazione unica...]
- (d) Dimostrare che f ha un'unica radice in ogni suo campo di spezzamento.
- (e) Determinare un campo di spezzamento L di f su K, e calcolare [L:K].

Esercizio 6. Siano L/K un'estensione di campi, $\alpha \in L$.

- (a) Dimostrare che, se α ha grado dispari su K, allora $K(\alpha) = K(\alpha^2)$.
- (b) Mostrare con degli esempi che, se α ha grado pari su K, allora la precedente asserzione può essere in alcuni casi vera e in altri falsa.