Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a.2006/2007

AL4 - Numeri Algebrici (Prof. S. Gabelli)

Esercizi 3

Con $N(\alpha)$ e $Tr(\alpha)$ indichiamo rispettivamente la Norma e la Traccia di un numero algebrico α .

- 1. Sia K un campo numerico e \mathcal{O}_K il suo anello degli interi. Mostrare che:
 - (a) $\alpha \in \mathcal{O}_K$ è invertibile se e soltanto se $N(\alpha) = \pm 1$;
 - (b) $\alpha, \beta \in \mathcal{O}_K$ sono associati se e soltanto se α divide β e $N(\alpha) = N(\beta)$;
 - (c) Se $|N(\alpha)|$ è un numero primo, allora α è irriducibile in \mathcal{O}_K ;
 - (d) Ogni elemento non nullo e non invertibile di \mathcal{O}_K è prodotto di elementi irriducibili.
- 2. Determinare un elemento α in un anello di interi quadratici tale che $N(\alpha) = 31, Tr(\alpha) = 17.$
- 3. Determinare due elementi di un campo di interi quadratici che hanno stessa norma ma che non sono né coniugati né associati.
- 4. Sia $\{\alpha_1, \ldots, \alpha_n\}$ una base di $\mathbb{Q}(\theta)$ su \mathbb{Q} , dove θ ha grado n su \mathbb{Q} con polinomio minimo m(X). Dimostrare le seguenti formule per il discriminante:
 - (a) $D(\alpha_1, \ldots, \alpha_n) = |Tr(\alpha_i \alpha_i)|;$
 - (b) $D(1, \theta, \dots, \theta^{n-1}) = (-1)^{\frac{n(n-1)}{2}} N(m'(\theta)).$
- 5. Sia G un gruppo abeliano additivo e $n \geq 2$. Mostrare che se ng = 0 per ogni $g \in G$, allora G è un modulo su $\frac{\mathbb{Z}}{n\mathbb{Z}}$.
- 6. Sia A un dominio integro. Un elemento $m \in M$ si dice di torsione se esiste $a \in A, a \neq 0$ tale che am = 0. Mostrare che l'insieme T degli elementi di torsione di M è un sottomodulo di M.
 - M si dice un modulo di torsione se M=T, si dice privo di torsione se T=0. Mostrare che $\frac{M}{T}$ è privo di torsione.

- 7. Mostrare che ogni gruppo abeliano finito è uno Z-modulo di torsione.
- 8. Siano M, M' A-moduli e sia N un sottomodulo di M. Mostrare che:
 - (a) L'applicazione $\pi:M\longrightarrow \frac{M}{N}$ definita da $x\to x+N$ è un omomorfismo di A-modulie il suo nucleo è N.
 - (b) Se $\varphi: M \longrightarrow M'$ è un omomorfismo di A-moduli e $N \subseteq Ker(\varphi)$, allora l'applicazione $\overline{\varphi}: \frac{M}{N} \longrightarrow M'$ definita da $x+N \to \varphi(x)$ è ben definita ed è un omomorfismo di A-moduli.

Inoltre $\varphi=\overline{\varphi}\pi$ e, se $\psi:\frac{M}{N}\longrightarrow M'$ è un omomorfismo di A-moduli tale che $\varphi=\psi\pi,$ allora $\psi=\overline{\varphi}.$