Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a.2004/2005

AL4 - Numeri Algebrici (Prof. S. Gabelli)

Esercizi 5

- 1. Sia A un dominio con campo dei quozienti K. Mostrare che:
 - (a) I è un ideale frazionario se e soltanto se $I = \frac{1}{d}J$, dove $J \subseteq A$ è un ideale e $d \in A \setminus \{0\}$;
 - (b) Se I è un sotto A-modulo di K finitamente generato, allora I è un ideale frazionario;
 - (c) Ogni sotto A-modulo di un ideale frazionario è un ideale frazionario.
- 2. Siano I, J ideali frazionari di A. Mostrare che: $IJ, I \cap J, I + J$ e $(I :_K J) = \{x \in K ; xJ \subseteq I\}$ sono ideali frazionari.
- 3. Mostrare che, se I è un ideale frazionario di A, allora $(I:_KI)$ è un sottoanello di K contenente A.

Mostrare inoltre con un esempio che $(A:_KI)$ non è necessariamente un anello.

4. Sia I un ideale frazionario di A. Mostrare che l'applicazione

$$\varphi: (A:_K I) \longrightarrow Hom_A(I,A); (\varphi(x))(y) = xy$$

è un isomorfismo di A-moduli.

Per questo motivo l'ideale frazionario $(A :_K I)$ si dice anche il duale di I.

- 5. Sia $K:=\mathbb{Q}(\sqrt{d})$ e sia $I\neq (0)$ un ideale di \mathcal{O}_K tale che $I\nsubseteq xO_K$, per ogni $x\in\mathbb{Z},\,x\geq 2$. Mostrare che
 - (1) $I \cap \mathbb{Z} = N(I)\mathbb{Z}$.
 - (2) I è primo se e soltanto se N(I) = p è un numero primo.

6. Stabilire se i seguenti numeri primi p sono inerti, ramificati o decomposti nell'anello degli interi di $\mathbb{Q}(\sqrt{d})$ e fattorizzare l'ideale $p\mathcal{O}_K$ in ideali primi.

$$p=2,3,7\,;\,d=7$$
 $p=2\,;\,d=47$ $p=23\,;\,d=37$ $p=11\,;\,d=-163.$

7. Se $f(X) \in \mathbb{Z}[X]$ e $p \in \mathbb{Z}$ è un numero primo, denotiamo con $\overline{f}(X) \in \mathbb{Z}_p[X]$ il polinomio ottenuto riducendo i coefficienti di f(X) modulo p. (Provare a) dimostrare il seguente

Teorema di Dedekind (1878):

Sia $K = \mathbb{Q}(\theta)$ di grado n su \mathbb{Q} e supponiamo che $\{1, \theta, \dots, \theta^{n-1}\}$ sia una base intera di \mathcal{O}_K . Sia $m(X) \in \mathbb{Z}[X]$ il polinomio minimo di θ su \mathbb{Q} e sia

$$\overline{m}(X) = \overline{q_1}(X)^{e_1}\overline{q_2}(X)^{e_2}\dots\overline{q_s}(X)^{e_s}$$

la fattorizzazione di $\overline{m}(X)$ in polinomi irriducibili su \mathbb{Z}_p . Allora, per $i=1,\ldots,s$,

- (1) $P_i = (p, q_i(\theta)) \subseteq \mathcal{O}_K$ è un ideale primo;
- (2) $P_i \neq P_j \text{ per } i \neq j$;
- (2) $N(P_i) = p^{\deg(q_i(X))};$
- (3) $p\mathcal{O}_K = P_1^{e_1} P_2^{e_2} \dots P_s^{e_s}$.

Suggerimento: Verificare il teorema per alcuni esempi noti nel caso quadratico n=2 e cercare una dimostrazione (vedi anche l'Esercizio 1.5). Poi generalizzare.