Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Prima prova di valutazione intermedia

9 Novembre 2006

Esercizio 1.
$$(A \cap \complement B) \cup (\complement A \cap B) = (A \cup (\complement A \cap B)) \cap (\complement B \cup (\complement A \cap B)) = (A \cup \complement A) \cap (A \cup B) \cap (\complement B \cup \complement A) \cap (\complement B \cap B) = X \cap (A \cup B) \cap \complement (A \cap B) = (A \cup B) \setminus (A \cap B).$$

Esercizio 2. Per dimostrare che ρ è una relazione d'ordine, bisogna verificare che soddisfa le proprietà (R) riflessiva, (AS) antisimmettrica e (T) transitiva.

- (R) $f \rho f$, perché f = f.
- (AS) Dato che non è possibile avere contemporaneamente $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$ e $\operatorname{Im}(g) \subseteq \operatorname{Im}(f)$, dalla definizione di ρ , se $f \rho g$ e $g \rho f$, necessariamente f = g.
 - (T) Sia $f \rho g$ e $g \rho h$. Per mostrare che $f \rho h$, bisogna distinguere vari casi :
 - 1) se $\operatorname{Im}(f) \subsetneq \operatorname{Im}(g)$ e $\operatorname{Im}(g) \subsetneq \operatorname{Im}(h)$, allora $\operatorname{Im}(f) \subsetneq \operatorname{Im}(h)$.
 - 2) Se $\operatorname{Im}(f) \subsetneq \operatorname{Im}(g)$ e g = h, allora $\operatorname{Im}(f) \subsetneq \operatorname{Im}(h) = \operatorname{Im}(g)$.
 - 3) Se f = g e $\operatorname{Im}(g) \subsetneq \operatorname{Im}(h)$, allora $\operatorname{Im}(f) = \operatorname{Im}(g) \subsetneq \operatorname{Im}(h)$.
 - 4) Se f = g e g = h, allora f = h.

Quindi ρ è una relazione d'ordine.

Cerchiamo ora gli elementi massimali. Consideriamo prima di tutto un'applicazione $f \in Y$ suriettiva. Se esistesse $g \in Y$, $g \neq f$, tale che $f \rho g$, si dovrebbe avere $X = \operatorname{Im}(f) \subsetneq \operatorname{Im}(g)$, che è impossibile. Quindi ogni applicazione suriettiva è un elemento massimale di Y. Se poi consideriamo $g \in Y$ non suriettiva, è sempre possibile trovare una funzione suriettiva f (ad esempio l'identità su X), tale che $\operatorname{Im}(g) \subsetneq \operatorname{Im}(f) = X$. Quindi se g non è suriettiva, non è un elemento massimale di Y. Pertanto gli elementi massimali di Y sono esattamente le applicazioni suriettive.

Cerchiamo ora gli elementi minimali. Sia $f \in Y$ un'applicazione costante con immagine $\{x\}$ per qualche $x \in X$. Se esistesse $g \in Y$, $g \neq f$, tale che $f \rho g$, bisognerebbe avere $\operatorname{Im}(g) \subsetneq \operatorname{Im}(f) = \{x\}$, cioè $\operatorname{Im}(f) = \emptyset$, assurdo. Quindi ogni applicazione costante è un elemento minimale. Se invece $g \in Y$ è una funzione non costante, si prenda $x \in \operatorname{Im}(g)$ e si consideri f l'applicazione costante che associa x ad ogni elemento di X. Allora $\operatorname{Im}(f) \subsetneq \operatorname{Im}(g)$ e quindi $f \rho g$. Quindi g non è un elemento minimale. Pertanto gli elementi minimali di Y sono esattamente le applicazioni costanti.

Esercizio 3.

- (a) $\operatorname{Im}(f) = \mathbb{R}$, infatti per ogni $a \in \mathbb{R}$, ad esempio f((a,1)) = a.
- (b) $[(x,y)]_{\rho} = \{(x',y') \in \mathbb{R}^2, x'y' = xy\}.$

- (c) Osserviamo che per ogni $(x,y) \in \mathbb{R}^2$, $[(x,y)]_{\rho_f} = [(xy,1)]_{\rho_f}$, quindi $\mathbb{R}^2/\rho_f =$ $\begin{aligned} \{ [(a,1)]_{\rho_f}, a \in \mathbb{R} \}. \\ (\mathrm{d}) \ \mathbb{R}^2/\rho_f \to \mathbb{R}, \ [(a,1)]_{\rho_f} \mapsto a. \end{aligned}$

Esercizio 4. Per n=1, si ha $1=\frac{(2)!}{2\cdot 1!}$. Supponiamo ora $1\cdot 3\cdot 5\cdots (2n-1)=\frac{(2n)!}{2^n\cdot n!}$. Vogliamo dimostrare che $1\cdot 3\cdot 5\cdots (2n-1)\cdot (2n+1)=\frac{(2(n+1))!}{2^{n+1}\cdot (n+1)!}$. Si ha $1\cdot 3\cdot 5\cdots (2n-1)\cdot (2n+1)=\frac{(2n)!}{2^n\cdot n!}\cdot (2n+1)=\frac{(2n)!}{2^n\cdot n!}\cdot (2n+1)\cdot \frac{2n+2}{2n+2}=\frac{(2n+2)!}{2^n\cdot n!\cdot 2(n+1))}=\frac{(2n)!}{2^n\cdot n!}$ $\frac{(2n+2)!}{2^{n+1} \cdot (n+1)!}$

Esercizio 5.

- a) Siano $a, b \in \mathbb{Z}$, $(a, b) \neq (0, 0)$. $d \in \mathbb{Z}$ è un massimo comune divisore di $a \in b$ se
 - (1) $d \mid a \in d \mid b$;
 - (2) Se $d' \in \mathbb{Z}$ è tale che $d' \mid a \in d' \mid b$, allora $d' \mid d$.

N.B Se a = b = 0, ogni intero d soddisfa la proprietà (1) e nessun intero d soddisfa la proprietà (2).

b) Sia ha:

$$1053 = 455 \cdot 2 + 143$$

$$455 = 143 \cdot 3 + 26$$

$$143 = 26 \cdot 5 + 13$$

$$26 = 13 \cdot 2$$

Quindi il massimo comune divisore fra 1053 e 455 è 13.

 $16 \cdot (1053 - 455 \cdot 2) - 5 \cdot 455 = 16 \cdot 1053 - 37 \cdot 455.$

Per trovare un'altra identità di Bezout, si può prendere ad esempio 471 = 16 + 455 e - 1090 = -37 - 1053. Infatti $1053 \cdot 471 + 455(-1090) = 1053 \cdot 16 + 1000$ $1053 \cdot 455 - 37 \cdot 455 - 1053 \cdot 455 = 1053 \cdot 16 - 37 \cdot 455 = 13.$