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ABSTRACT

We study the “local’’ behavior of several relevant properties concerning semistar
operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the
“global” problem of building a new semistar operation on a given integral
domain, by “gluing’’ a given homogeneous family of semistar operations defined
on a set of localizations. We apply these results for studying the local-global
behavior of the semistar Nagata ring and the semistar Kronecker function ring.
We prove that an integral domain D is a Priifer *-multiplication domain if and
only if all its localizations Dp are Priifer *p-multiplication domains.
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INTRODUCTION

Krull’s theory on ideal systems and star operations was motivated by the
construction of Kronecker function rings in a more general context than that of
algebraic integers, originally considered by L. Kronecker. The theory developed by
Krull requires some restrictions on the integral domain, which has to be integrally
closed, and on the star operation, which has to be e.a.b. (Gilmer, 1972, Sec. 32).
Semistar operations, introduced by Okabe and Matsuda (1994), lead to very general
theory of Kronecker function rings, also in case of nonnecessarily integrally
closed domains (cf. Fontana and Loper, 2001a,b, 2003; Halter-Koch, 2003a;
Matsuda, 1998; Okabe and Matsuda, 1997).

Semistar operations are an appropriate tool for extending the theory of Priifer
domains and, more generally, of Priifer v-multiplication domains (cf. Griffin, 1967,
Kang, 1989; Mott and Zafrullah, 1981) to the nonnecessarily integrally closed
domains case. Let * be a semistar operation of finite type on an integral domain
D (the formal definition is recalled in Sec. 1), then D is called a Priifer *-multiplication
domain (for short, PxMD) if each nonzero finitely generated fractional ideal I of D
is *-invertible (i.e., (II"")* = D*). In the semistar case, if D is a PAMD, then the
semistar integral closure of D is integrally closed, thus, in the Krull’s setting of
e.a.b. star operations, we recover the classical situation that D has to be integrally
closed (Houston et al., 1984). Several characterizations of Priifer *-multiplication
domains were obtained recently, making also use of the semistar Nagata ring
Na(D, *) and the semistar Kronecker functions ring Kr(D, x) (cf. El Baghdadi
and Fontana, 2004; Fontana and Loper, 2003; Fontana et al., 2003; Halter-Koch,
2003b).

The starting point of this paper is the study of the localization of a P*MD, D, at
any prime ideal (possibly, not quasi-*-prime, i.e., not a prime ideal P such that
P = P* N D, since the localization at any prime ideal of this type is known to be a
valuation domain). As a consequence of this local study, we obtain new examples
of local P*MDs.

One of the first results proved here is a characterization of a PxMD, D, through
a local property, concerning the localizations of D at a family of prime ideals P of D,
and a global “arithmetical’’ condition, concerning a finiteness property of the ideals
of the type (aDnNbD)*, see Theorem 2.9. We apply this result to characterize
Px*MDs as those domains such that the localization at any prime ideal P is a PxpMD
(where *p is a semistar operation canonically associated to * by “ascent’’ to Dp), see
Theorem 3.13. This result points out the important fact that Priifer multiplication-
like properties are really local properties and it opens the way for a local-global
study of Priifer *-multiplication domains.

In order to realize these results we develop, preliminarily, a study on the
behavior of semistar operations properties under localizations. In particular, we
show that finite type, spectral, stable, a.b. or e.a.b. properties on a semistar operation
* transfer to the induced semistar operation *p, defined on Dp, for any any prime
ideal P € Spec(D).

At this stage, it is also natural to investigate on the relationship between the
semistar Nagata ring Na(D, x) [respectively, semistar Kronecker function ring
Kr(D, *)] and the Nagata rings Na(Dp, *p) [respectively, the Kronecker function
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rings Kr(Dp, *p)] (i.e., on the local behavior of the general Nagata ring and Kronecker
function rings). In this context, we show that Na(D,*) = ({Na(Dp,*p)|P €
Spec(D)} [respectively, Kr(D,*) = ({Kr(Dp, *p) | P € Spec(D)}]; we observe also
that the canonical inclusions Na(D, %), p € Na(Dp, *p) [respectively, Kr(D, *) p C
Kr(Dp, *xp)] are not equalities, in general.

In the last section we deal with the ““global’’ problem of building a semistar
operation in an integral domain D by “gluing’’ a given family of semistar operations
defined on Dp, for P varying in a subset ® of Spec(D). Since the description of this
semistar operation is in part folklore (at least in the star setting), we deal specially with
the problem of which properties, verified by all the semistar operations defined on the
localizations Dp, transfer to the “glued’’ semistar operation defined on D. Among the
other results, we prove that the finite type and stable properties pass on, in the case
the representation D = ({Dp | P € O} has finite character. In order to glue semistar
operations verifying other relevant properties, like e.a.b. and a.b., we evidentiate some
obstructions; in fact, this type of semistar operations we prove giving rise to a semistar
operation of the same type under an extra condition, a sort of ‘“‘stability under
generalizations’’, denoted here by (), see Theorem 4.6. Finally, we have included
several examples in order to better illustrate the different constructions considered
here and to show the essentiality of the assumptions in the main results.

1. BACKGROUND

Let us consider a commutative integral domain D with quotient field K. Let
F(D) [respectively, F(D) and f(D)] denote the set of nonzero D-submodules of K
[respectively, fractional ideals and nonzero finitely generated D-submodules of K].
Note that f(D) C F(D) C F(D).

A semistar operation on D is a map * : F(D) — F(D), E+~ E*, such that

(1) (xE)* = xE*,
(2) EC F implies E* C F*
(3) ECE* and E* = (E*)" =: E**,

for each 0 # x € K and for all E, F € F(D).

When D* = D, we say that * is a (semi)star operation on D. The identical
operation dp on D (simply denoted by d), defined by E? :=E, for each
E € F(D), is a (semi)star operation on D. If not stated explicitly, we generally assume
that * is not the trivial semistar operation ep on D (simply denoted by e), where
E» := K, for each E € F(D). It is easy to see that * # e if and only if D # K implies
that D* # K.

A semistar operation * is of finite type, if for any E € F(D), we have:

E* :=| {F*|F CEand F € f(D)} = E*.

In general, for each semistar operation defined on D, *;, as defined before, is also
a semistar operation on D and *; < *, i.e., for any E € F(D) we have E* C E*.
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There are several examples of finite type semistar operations; the most known is
probably the r-operation. Indeed, we start from the vp-operation on an integral
domain D (simply denoted by v), defined as follows:

E' .= (E"")' = (D:(D:E)),

for any E € F(D), and we set tp := (vp), (or, simply, 7 := vy).

Other examples can be constructed as follows: let 7' be an overring of an integral
domain D and let *;7) be the semistar operation on D, defined by E*m .= ET, for
each E € F(D), then *ry is a finite type semistar operation on D. In particular,
*ipy = d and *igy =e.

In the following, we will construct several new semistar operations from a given
one and we will show that most of them are of finite type.

Let * be a semistar operation on D, we define the following set of prime ideals
of D:

IT* := {P € Spec(D) | P # (0) and P* N D # D}.

It may be that IT* is an empty set but, in the particular case in which * is nontrivial
of finite type, then IT* £ (). In fact, we have that each proper ideal I is always con-
tained in a proper quasi-*-ideal of D, i.e., a proper ideal J of D such that such that
J* N D = J, and moreover (in the finite type case) each proper quasi-*-ideal of D is
contained in a maximal element in the set I' of all proper quasi-*-ideals; finally,
maximal elements in I" are prime ideals. We will denote by

2(%) = Spec* (D) := {Q € Spec(D) | @ = 0* N D}

the set of all the quasi-*-prime ideals of D.

If * is possibly not of finite type, we say that * possesses enough primes, if each
proper quasi-*-ideal is contained in a quasi-*-prime ideal. As a consequence, for
each semistar operation that possesses enough primes (e.g., a nontrivial finite type
semistar operation), we have Max(IT*) = Max(I") (and it is a nonempty set). We will
denote simply by .# (%) the set of all the maximal elements in T".

After analyzing this situation, we ask about how to relate semistar operations
and prime ideals. For any nonempty set IT of prime ideals on D, we define a semistar
operation *r on D as follows:

E*" :=("{EDp|P €10},

for any E € F(D). If TT = (), we set * := e; obviously, if IT = {(0)}, then * := e.
Semistar operations defined by sets of prime ideals are called spectral semistar
operations.

If x is a finite type semistar operation, we define *,, := * ,(4); we have always
that *,, < *. Of course, we can start from a general semistar operation *, in that
case we have a new spectral semistar operation * := (* f)sps this is the biggest finite
type spectral semistar operation in the set of all the finite type spectral semistar
operations on D, smaller or equal to *.
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A semistar operation * is stable if (ENF)" = E*NF*, for each pair E,
F € F(D); any spectral semistar operation is stable, and stable finite type semistar
operations coincide with spectral finite type semistar operations.

The semistar operation * can be also defined using the general Nagata ring
Na(D, *) associated to *. Indeed, if we define:

Na(D, *) := D[X]n(),

where N(*) := {f € D[X]|¢(f)* = D*} is a saturated multiplicative subset of D[X],
then, for any E € F(D), we have E* = ENa(D, *x) N K.

Nagata ring has a parallel behavior to the general Kronecker function ring
associated to a semistar operation *, defined as follows:

Kr(D, %) := {g € K(X)|f, g € DIX]\{0} and there exists 0 # h € D[X]

such that(e(f)e(h))" € (C(g)C(h))*} U {0}.

Note that Na(D, *) C Kr(D, *) and a “new’’ finite type semistar operation can be
defined on D by the Kronecker function ring by setting:

F* .= FKr(D,*) N K,

for any F € f(D). This finite type semistar operation *, on D has another more
arithmetic description, as follows:

Fo = {(FH)": H) | H € f(D)},

for any F € f(D). Moreover, x, has a useful “cancellation’” property: if E, F,
G € f(D) and (EF)* C (EG)*, then F* C G*. A semistar operation * satisfying this
property is called an e.a.b. (= endlich arithmetisch brauchbar) semistar operation.
In the previous “cancellation’’ property, if we take E € f(D) and F, G € F(D),
a semistar operation having this modified cancellation property is called an a.b.
semistar operation. In general, we have the following characterizations: a finite type
semistar operation * is e.a.b. if and only if it is a.b. if and only if * = *,.

A Kronecker function ring, and its “counterpart’ the associated finite type a.b.
semistar operation, parameterizes certain valuation overrings of D. A valuation
overring V D D is called a *-valuation overring of D if F* C FV for any F € f(D)
(or, equivalently, if *; < *y,), then a finite type a.b. semistar operation * is
characterized by the following property:

F* = ﬂ{FV |V is a *-valuation overring of D},

for each F € f(D).
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We refer to Fontana et al. (2003), and to the references contained in that paper,
as a documented source on semistar operations and on some of their properties
briefly recalled above.

The following notation shall be use throughout the text. For a nonempty subset
A C Spec(D) of prime ideals of an integral domain D we define

A* = {Q € Spec(D) | Q C P, for some P € A},

and we say that A is closed under generizations if A = A*. In the same way, for any
prime ideal P € Spec(D), we define P+ := {P}".

2. LOCALIZING SEMISTAR OPERATIONS

Let * be a semistar operation on an integral domain D and let K be the quotient
field of D. For each P € Spec(D), we consider the inclusion D C Dp of D into its
localization Dp and the semistar operation %P7 denoted simply *p, on Dp, obtained
from * by “ascent to”’ Dp, i.e., EX" := E** := E*, for each E € F(Dp) (C F(D)).
Note that if P = (0) then Dp = K and so *p coincides with dg (= ex) on K.

Our first goal is to study the transfer of some relevant properties from * to *p.

Lemma 2.1. Let * be a semistar operation on an integral domain D and let
P € Spec(D).

(@) If * is a finite type semistar operation on D, then *p is a finite type
semistar operation on Dp.

(b) If x is an e.a.b. [respectively, a.b.] semistar operation on D, then *p is an
e.a.b. [respectively, a.b.] semistar operation on Dp.

Proof. (a) is a consequence of Fontana et al. (2003, Example 1(e.1)).

(b) We give the proof in the a.b. case; a similar argument shows the e.a.b. case.
Let G, H € F(Dp) C F(D) and F € f(Dp) such that (FG)* C (FH)™". Since we can
find Fy € f(D) such that F = FyDp, then we obtain (FyG)* = (FoDpG)™" C
(FoDpH)™ = (FoH)*. Therefore, G** = G* C H* = H*", because * is a.b. O

If * is a finite type a.b. semistar operation on an integral domain D, then it is
wellknown that * coincides with the semistar operation *,-, where ¥ := ¥ (%) :=
{V 2 D|V is a *-valuation overring} and E*" :=({EV|V € 7'}, for each E €
F(D) (Fontana et al., 2003, Lemma 2.8(d)).

Corollary 2.2. Let * be a finite type a.b. semistar operation on an integral domain
D. For each prime ideal P € Spec(D), we consider the (finite type a.b.) semistar
operation *p on Dp and the subset of overrings Vp:={V2D|Visa
*-valuation overring and Dp C V}. Then ¥p is exactly the set ¥ (*p) of the *p-
valuation overrings of Dp, i.e., E** := ({EV |V € ¥ (*p)} = ({EV|V € ¥}, for
each E € F(Dp).
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Proof. We know already, from the previous lemma, that *p is a finite type a.b.
semistar operation on Dp. If V € ¥p and F € f(D), then (FDp)* = (FDp)* C
(FDp)V, thus V is a *p-valuation overring of Dp. Conversely, if W is a *p-valuation
overring of Dp, then we have F* C (FDp)* = (FDp)* C DpW = FW, for each
F € f(D), thus W(2 Dp) is a *-valuation overring of D. As a consequence, for each
F € f(D), we obtain that (FDp)* = (FDp)*" = {FDpW |W is a *p-valuation
overring} = (\{FV |V € ¥»} = F*'». The conclusion follows since * is a finite type
semistar operation. O

Proposition 2.3. Let *x be a semistar operation on an integral domain D and let
P € Spec(D). If * =% (is a finite type stable semistar operation on D), then
*p = *p (is a finite type stable semistar operation on Dp).

Proof. Note that if * is a stable semistar operation then, from the definitions of
stability and of the semistar operation *p, it follows that *p is a stable semistar
operation. The conclusion follows from Lemma 2.1(a).

We give another proof that describes explicitly the set 2(*p) of all the quasi-
*p-prime ideals of Dp in relation with the set 2(*) of all the quasi-*-prime ideals
of D.

To avoid the trivial case, we can assume that * # e¢p and that P is a nonzero
prime ideal of D. Note that * = %/, because * is a finite type semistar operation,
and so *p = (*p), (Lemma 2.1(a)). Let 2 := 2(*) be the set of all the quasi-*-prime
ideals of D then, for each F € F(D), we have F* = (\{FDg | Q € 2}, because * = *
(Fontana and Loper, 2003, Corollary 2.11(2)).

Assume that P € 2. Let E € F(Dp) C F(D), then

E*" = E* =(\{EDg|Q € 2} = {EDo | Q € 2\{P}} NE CE,

hence *p = dp, is the identical (semi)star operation on Dp and so, obviously, *p =
dp, = dp, = *p. B B
Assume that P ¢ 2. Let E € F(Dp) C F(D), then

E** = (EDp)"" = (EDp)" = [ {EDpDg | Q € 2}

= (N{EDrDo | 0 € 20}) 1 (({EDsDo | 0 € 21})

where 2, :={Q € 2| PN Q contains a nonzero prime ideal of D} and 2;:=
{0 € 2| PN Q does not contain a nonzero prime ideal of D}.

Note that if Q € 2, i.e., if PN Q does not contain a nonzero prime ideal, then
DpDy coincides necessarily with K, the quotient field of D.

Assume that Q € 2. It is wellknown that there exists a natural bijective
correspondence between the set of prime ideals of DpDy and the set
{H € Spec(D) |H C PN Q}, hence DpDy = (\{Dy|H C PN Q and H € Spec(D)}.
Moreover, note that the set ¥ (P; Q) of all nonzero quasi-*-ideals I of D contained
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in PN Q is not empty (since at least H* N D is in ¥ (P;Q), if HC PN Q and
H € Spec(D)). It is easy to see that the set of maximal elements % (P; Q)x Of
S (P; Q) is a nonempty set of prime ideals, with % (P; Q),.x € 21 € 2 and, further-
more, each prime ideal H, with H C PN Q, is contained in some element of
S (P; Q)max- Thus, we can rewrite:

E* =EKN (m{EDH |H C PN Q and H € Spec(D), for Q varying in Ql})

= ﬂ{EDH |H € S (P; O)pmax, for Q varying in 2;}

:ﬂ{EDH\HgPandHeQ}.

Therefore it is easy to see that the set {HDp|H C P and H € 2} coincides with
the set 2(*p) of all the quasi-*p-prime ideals of Dp, which “defines’” *p, i.e.,

*p = (;P) O

Remark 2.4. Note that the proof of the previous proposition shows the following
statement: If * is a finite type spectral semistar operation on D, defined by a subset
A C Spec(D) (i.e., * := *,), then *p is also a finite type spectral semistar operation
on Dp and it is defined by the set Ap := {HDp|H C P, H € A} (i.e., *Xp = *,,).

Remark 2.5. Let * be a semistar operation on D and P € Spec(D), then we have the
following diagram of semistar operations on Dp.

*p
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where the equalities are direct consequences of Lemma 2.1 and Proposition 2.3. As a
consequence of the proof of Proposition 2.3, we obtain that:

P € Spec* (D) = Spec*”(Dp) = Spec*?)(Dp)

= Spec*7(Dp) = Spec™r (Dp).
Indeed, if ODp € Spec™r(Dp), then

0Dy = (QDp)™" N Dp = (QDy)* N Dy
- (m{QDPDH| He Spec*/(D)}) N Dp = (QDp)*" N Dy

C ODpNDp=0QDp.

Let * be a semistar operation on an integral domain D. Assume that D is a P*MD,
i.e., an integral domain such that each F € f(D) is a *,-invertible ideal, that is
(FF~')* = D*. P*MDs are characterized in several different ways in (Fontana
et al, 2003, Theorem 1): for instance, Dy is a valuation domain for each
Q € M (*y), where .#(*y) is the (nonempty) set of all the maximal elements of
Spec™ (D). A consequence of this fact is that D is a P*MD if and only if it is a
P*MD, since .# (%) = .#(*;) (Fontana et al., 2003, Lemma 3(g)).

Remark 2.6. Note that, if 0 # a, b belong to an integral domain D, then the follow-
ing equality holds:

i(aDm bD) = ((a,b)D)"".
ab

Proof. Let x € aD N bD, then x = ax’ = bx", for some x’, x” € D, thus we obtain
that x/ab = (1/b)x' = (1/a)x". Henceforth, for each az; + bz, € (a,b)D, we have
(x/ab)(az, + bzy) = x"z) + x'z; € D. Therefore x/ab € ((a,b)D)"". Conversely, let
y€ ((a,b)D)"", then ya=x' and yb=x", for some x', x" € D. Henceforth
aby = bx' = ax”, and so aby € (aD N bD). Il

Lemma 2.7. Let * be a semistar operation on an integral domain D. Assume that D

isa P *MD. For each pair of nonzero elements a, b € D, there exists F € f(D) such
that:

(aDNbD)* = F*
(in this situation, we say briefly that (aD N bD)* is an ideal of *-finite type).
Proof. Recall that (1/ab)(aD N bD) = ((a, b)D)f1 and thus note that (aD N bD)*

is an ideal of *-finite type if and only if (((a,b)D)fl)* is a (fractional) ideal of
*-finite type, i.e., there exists G € f(D) such that G* = (((a, b)D)fl)*, (Remark 2.6).
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Since D is a P*MD, each nonzero finitely generated (fractional) ideal F of D is
* p-invertible and so (F~!)* is also a (fractional) ideal of *-finite type. Therefore,
we conclude that (((a,b)D)™")* is a (fractional) ideal of *-finite type. O

The converse of this result holds if we add some extra conditions.

Theorem 2.8. Let * be a spectral semistar operation on D defined by a set A of
valuation prime ideals of D (or, equivalently, by a family of essential valuation
overrings of D), i.e., E* :=(\{EDp|P € A}, for each E € F(D), where Dp is a
valuation domain for each P € A. If, for each pair of nonzero elements a, b € D,
we have that (aD N bD)* is an ideal of *-finite type, then D is a PxMD.

Proof. Step 1. 1If I is a finitely generated ideal of D and a € D, with a # 0, then
(INaD)” is an ideal of *-finite type.

The proof is based on an argument from Zafrullah (1978). Set I := ", a;D
and J; := a;DNaD, for 1 <i < n. By the hypothesis (J;)* is an ideal of *-finite
type. For each index i, 1 <i<n, let F; be a finitely generated ideal of D such
that (J;)* = (F,)*. Since Dp is a valuation domain and a D-flat overring of D, we
have:

(528) = (S =(520) =(54)

i i i

=N (Z(a,-DﬂaD))Dp =N (Z(aiDﬂaD)Dp>

— POA <Z:(a,-DpﬂaDp)) = POA <(Zai)meaDp>
— (g(Zai)Dp> N <pDAaDP> = (ZaiD>*ﬁ(aD)*

=I"N(aD)* = (INaD)* (as * is stable).

Step 2. Any finite intersection of nonzero principal ideals of D is an ideal of
*-finite type.

Let aj,as,...,a, € D be a family of nonzero elements. We may assume that
t > 2 and, by induction on ¢, we may assume that ajD Na, DN ---Na, 1D is an ideal
of *-finite type, i.e., there is a finitely generated ideal F of D such that
(aiDNayDN---Na,_D)* = F*. Then, we have:

(aiDNaDN---NaD)* = (aDNa;DN --- Na,_1D)* N (a,D)*)*
= (F*N(a,D)")" = (FNa,D)*

and, by Step 1, this is an ideal of *-finite type.

Marcer DekkER, Inc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

) 1



ORDER | _=*_[Il REPRINTS

Local-Global Properties for Semistar Operations 3121

Step 3. If I is a nonzero finitely generated ideal of D, then I~! is a (fractional)
ideal of *-finite type.

The case of an ideal I generated by two elements a,b € D follows immediately
from Remark 2.6, since we know already that (aD N bD)™ is an ideal of *-finite type
if and only if (((a,b)D)™")* is a (fractional) ideal of *-finite type. The conclusion
follows from the assumption that (aD N bD)™ is an ideal of *-finite type. The general
case of a finitely generated ideal I := (x1,x2,...,x,)D follows from Step 2. In fact,
without loss of generality, we can assume that x; # 0, for each 1 <i <1, thus:

=:n=(D:) xD\= () (D:xD)= () x'D
1<i<t 1<i<t 1<i<t
and, if we write x;l := a;/d, with a; and d nonzero elements in D, for 1 <i < ¢, then:
* * *
( N xilD) = <d1( N a,-D)) =d1( N a,-D) =d 'F*=(d'F)*,
1<i<t 1<i<t 1<i<t

for some F € f(D).

Let I be any nonzero finitely generated ideal of D. By Step 3, we know that /! is
a (fractional) ideal of *-finite type. Since Dp is a valuation domain and a D-flat
overring of D, we have:

(" = (ur"pp = (UDp1"'Dp)

PeA PeA
= (\UDp (IDp)"") = () Dp = D
PeA PeA
We conclude that D is a PxMD. O

Theorem 2.9. Let * be a semistar operation on an integral domain D. Then the
following statements are equivalent:

(i) D isa P*MD.
(ii) The following two conditions hold:

(a) For each subset ® C Spec(D), such that * = Ng = A*p|P e O},
where E' :=({(EDp)*’|P € ®}, for each E € F(D), we have
that Dp is a PxpMD, for each P € ©.

(b)  For any pair of nonzero elements a, b € D, we have that (aD N bD)*
is an ideal of *-finite type.

Proof. (i) = (ii). We can assume that * = *, since the notions of P*MD and
P*MD coincide (Fontana et al., 2003, Sec. 3, Theorem 1) and *p= (%), =*p
(Proposition 2.3). By Lemma 2.7, we only need to show that condition (a) holds.
More generally, we show that, under the assumption (i), Dp is a P*pMD, for each
P € Spec(D). Let IDp be a finitely generated ideal of Dp, with I a nonzero finitely
generated ideal of D. Since D is a P*MD by assumption, there exists a finitely
generated (fractional) ideal J of D such that (1J)* = (IJ)"
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Assume that P € 2(%;) = 2(*) (since * = * implies that * = *,). Then
E*Dp = EDp, for every E € F(D) (because * = *) hence, in particular, (1J)*Dp =
IJDp = IDpJDp = Dp and thus IDp is invertible in Dp (i.e., Dp is a valuation domain
and so, trivially, it is a PxMD, for every semistar operation % on Dp).

Assume that P € Spec(D)\2(*). Then (IJ)* = D* implies 1 € 1D, for each
Q € 2(*); in particular 1 € IJDy, for each Q € 2(*) such that Q C P (this set of
prime ideals is nonempty, since each minimal prime ideal of a nonzero principal
ideal of D is in 2(*), for any finite type semistar operation *). Therefore, by the
proof of Proposition 2.3, D C ({IJDg | Q € 2(*),0 C P} = (IJDp)*" C (IDpJDp)*" =
(IDpJDp)*", thus we obtain (IDpJDp)*"7 = D** and, hence, IDp is a (*p) -invertible
ideal of Dp (with *p = (*p)f), i.e., Dp is a P*xpMD. See also (Fontana et al., 2003,
Sec. 3, Theorem 1).

(i)= (i). Note that, by (a), we have that, for each E € F(D), E* = E'® =
N{(EDp)™ | P € ©} = {N{(EDp)Dy = EDy | Q€% (*p)} | P € ®}, where Dy is
a valuation domain, for each Q € . (;;) and for each P € @. By Theorem 2.8,
we deduce that D is a P*MD, ie., D is a PxMD (Fontana et al., 2003, Sec. 3,
Theorem 1). O

Remark 2.10. From the previous proof it follows that: if D is a PXxMD, then Dp is a
P*p,MD, for each P € Spec(D). In the next section, we will show that the converse
holds. Furthermore, in Sec. 4, we will deepen the study of the semistar operations
of the type A@; in particular, we will establish a natural relation between the semistar
operation Ag (considered in Theorem 2.9) and the finite type stable semistar

operation, (/\A@J), canonically associated to Ag, where A is defined as follows:
E"e .= {(EDp)*" | P € ®}, for each E € F(D).

3. COMPATIBILITY WITH LOCALIZATIONS

Let D be an integral domain with quotient field K and let P € Spec(D). On the
localization Dp of D at P, we can consider the (semi)star operation vp, [respectively,
the semistar operation vp := i)g”] which denotes the (semi)star v-operation on Dp
[respectively, the semistar operation on Dp induced by the (semi)star v-operation
vp on D]. If the conductor (D : Dp) is zero, then (Dp)”" = (Dp)"> = (D : (0)) = K,
hence, in general, the (semi)star operation vp, (on Dp) does not coincide with the
semistar operation vp (on Dp). Let us now relate vp and vp, in some particular case.

As a special case of Kang (1989, Lemma 3.4(2)) we have the following:

Lemma 3.1. Let D be an integral domain. For each F € f(D) and for each
P € Spec(D), we have (FDp)'?» = (F*» Dp)"».

It is known that, if D is a PuMD, then D is a v-coherent domain in the sense of
Fontana and Gabelli (1996), i.e., if I, J € f(D), then I' N J" is an ideal of v-finite
type. Also in Fontana and Gabelli (1996) there is the following characterization of
v-coherent domains: D is a v-coherent domain if and only if, for each I € f(D), there
exists F € f(D) such that I"! = F? (i.e, I"! is an ideal of v-finite type).
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Lemma 3.2. Let D be a v-coherent domain (in particular, a PvMD). For each
F € f(D) and for each P € Spec(D), we have (FDp)'> = F'> Dp.

Proof. Since we are assuming that D is a v-coherent domain, if I € f(D), then there
exists F € f(D) such that I-! = F*» (or, equivalently, 1" = F~!). Now we localize
both sides of the previous equality at P and we obtain:

F»Dp=1"Dp = (IDp)"".

Since I"> = (D: F)=(D: F)", then (FDp)"?» = (Dp: (Dp: FDp)) = (Dp: (D: F)Dp) =
(Dp: I'""Dp) C (Dp:IDp) = (D :I)Dp = I"'Dp=F"Dp. By the previous Lemma 3.1,
we know that (FDp)"r = (F'»Dp)""r, thus we conclude immediately that (FDp)""r =
F" Dp. O

Proposition 3.3. If D is a v-coherent domain (in particular, if D is a PvMD
domain) then, for each P € Spec(D) and for each F € f(Dp), we have F'>» C F'r,

Proof. For each F € f(Dp) (C F(D)) there exists Fy € f(D) such that F = FyDp,
then by using Lemma 3.2 we have:

F'r = (FoDp)"» = Fo"" Dp
C F™Dp=F" = (D: (D: F)) = F

(note that the first equality in the second line is a consequence of the following
general fact: if E € F(Dp), then (D : E) is also in F(Dp) and so E™ belongs to
F(Dp)). 0

Remark 3.4. Let * be a semistar operation on D and, for each P € Spec(D), let *p
be the semistar operation induced on Dp, defined in the previous section. For which
properties (P) concerning (D, *) we have that (Dp, *p) satisfies (P)?

A positive answer to this question was already given for the following properties:
(a) * is a finite type semistar operation on D; (b) * is a stable semistar operation on
D; (c) * is a finite type spectral semistar operation on D; (d) * is a finite type stable
semistar operation on D (i.e., * = *); (e) * is an e.a.b semistar operation on D; (f) *
is an a.b semistar operation on D; (g) D is a P*MD, (cf. Lemma 2.1, Proposition 2.3,
Remarks 2.4 and 2.10).

In this ambit, a natural problem is to study the behavior of the generalized
Nagata ring and of the generalized Kronecker function ring in relation with the
localization at any prime ideal P. We have the following:

Proposition 3.5. Let *x be a semistar operation on an integral domain D and let
P € Spec(D). Then the following statements hold:

(1) Na(D, *)p,p € Na(Dp, *p).
(2) Na(D,*)=({Na(Dp,*p)|P € Spec(D)} = ({{Na(Du, *u) | MEMax(D)}.
(3) Kr(D,*)p\p C Kr(Dp, *p).
(4) Kr(D,*) = ({Kr(Dp, *p)| PESpec(D)} = ({Kr(Dy, *y) | M € Max(D)}.
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Proof. (1) Set 2:= 2(*y). Recall from the proof of Proposition 2.3, see Remark
2.5, that 2((*y)p) ={0Dp|Q C P,Q € 2}. Set simply 2p:= 2((*s)p) and
2p := {0 € Spec(D) | ODp € 2p}. Note also that 2 =|J{2p|P € Spec(D)}. We
know that Na(D, *) = Na(D, *y) = ({Do(X) | Q € 2}. Therefore Na(D,*)p, p =
(M{Do(X) [Q € 2})p\p C(WDo(X)prp| Q€ 2} =({Do(X)| Q € 2and Q C P} =
({Do(X)| Q € 2p} = Na(Dp, (*s)p) = Na(Dp, *p).

(2) Since 2=J{2p| P € Spec(D)}, then Na(D,*)=({Do(X)| Q€ 2} =
(W N{Do(X)| Q € 2p}| P € Spec(D)} = ({Na(Dp, *p) | P € Spec(D)}. The proof
is similar for the Max(D) case.

(3) Westart by recalling, from Corollary 2.2, the following fact: A *p-valuation
overring W of Dp is the same as a *-valuation overring W of D such that W D Dp.

We know that Kr(D,*) = {W(X)|W is a *-valuation overring of D}.
Therefore, using Corollary 2.2, the fact that W(X)p, p = Wp\p(X) and that Wp,p is
a valuation overring of Dp, for each valuation overring W of D, then

Kr(D, *)p\p = (ﬂ{W(X) | W is a *-valuation overring of D})D\P

C ﬂ{W(X) | W is a *-valuation overring of D and W 2 Dp}
= ﬂ{W(X) | W is a *p-valuation overring of D}
= KI'(DP, *p).
(4) From the Corollary 2.2 we deduce that {W |W is a *-valuation overring

of D} =|J{{W|W is a *p-valuation overring of Dp}|P € Spec(D)}. Therefore,
we have that:

Kr(D, x) = ﬂ{W(X) | Wis a *-valuation overring of D}
= ﬂ{ﬂ{W(X) | W is a *p-valuation overring of Dp}|P € Spec(D)}
= [{Kr(Dp, *p) | P € Spec(D)}.
The proof is similar for the Max(D) case. O

Next problem is to relate the Nagata ring or the Kronecker function ring,
associated to a localized semistar operation, to the corresponding localization of
the Nagata ring or of the Kronecker function ring, respectively. More precisely,

Problem 3.6. Let D be an integral domain, * a semistar operation on D and P a
prime ideal of D.

(1)  Under which conditions on D and P, Na(D, *)p, p = Na(Dp, *p)?

(2) Under which conditions on D and P, Kr(D, *)p, p = Kr(Dp, *p)?

(3) In case of a Prifer-*-multiplication domain is the answer to both
questions positive?
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We deal first with the Nagata ring. Without loss of generality, we may assume
that * = *. For each prime ideal P € Spec(D), we have the following picture of finite
type stable semistar operations:

DIX] or - Dp[X]

D

Np (= N(%p))

K (=N {@Pw)

where 7 [respectively, 7] is the semistar operation on D[X] [respectively, on Dp[X]]
“defined by the saturated multiplicative subset’” N(*) [respectively, N(*xp)],
ie, E":= ED[X]yw+) = ENa(D,*), for each E € F(D[X]) [respectively, E'"" :=
EDp[X]y(*,) = ENa(Dp, *p), for each E € F(Dp[X])], and ¢p(n) (or, simply, (7))
is the semistar operation on Dp[X] defined as follows:

E°" = {z € K(X)| ¢~ (E :p,px1 zDp[X]) N N (%) # 0},

for each E € F(Dp[X]). Note that 1, np and ¢(n) are finite type stable semistar opera-
tions. In general, we have ¢(7) < np. Indeed, given an ideal J C Dp[X] satisfying
¢ '(J)NN(*) #0, then there exists f € ¢ '(J) such that ¢(f)* = D*, hence
(@)™ = (e(/)Dp)™" = (e(/)Dp)" = (¢(f)"Dp)* = (D*Dp)* = Dy = D}’, thus
¢(f) € N(*p). From this remark, we deduce immediately that E*( C E"»_ for each
E € F(Dp[X]).

With this background, now we use some well-known fact of hereditary torsion
theories (Bueso et al., 1995) or, equivalently, of localizing systems associated to
semistar operations (Fontana and Huckaba, 2000). More precisely, we know that
applying a finite type stable semistar operation is exactly the same as doing the
localization with respect to the associated finite type hereditary torsion theory
or with respect to the associated localizing system of ideals and, moreover, it is
well known that it is possible to ““interchange’’, in a natural way, two subsequent
localizations of the previous type. Therefore:

Na(D, #)p\p = (DIX]")p p= (DIX1pp) "" = (DRIXD*"

C Dp[X]" = Na(Dp, *p),

since the localizing system of ideals of D[X] associated to # is the set Z#":=
{I ideal of D[X]|I" = D[X]"} = {I ideal of D[X]|IN N(*) # (0} and the localizing
system of ideals of Dp[X] associated to ¢(i7) [respectively, n,] is the set Z ¢ .=
{IDp[X]|1 ideal of D[X], (IDp[X])*"" = Dp[X]?™} = {IDp[X]|I ideal of D[X],
IDp[X]N N(*) £ 0} [respectively, Z'"r :={J ideal of Dp[X]|J" = Dp[X]"r} =
{J ideal of Dp[X]|J N N(*p) # 0}].
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To show that Dp[X]°™ and Dp[X]"* are either equals or different we only need
to compare the prime spectra associated to the finite type stable semistar operations
¢@(n) and np, defined on Dp[X]. More precisely,

Spec”” (Dp[X1) = {Q € Spec(Dp[X]) | Q N N(*p) = 0}
= {0 € Spec(Dp[X]) | for all g € O, e(g)" # (Dp)"}

and

Spec”™ (Dp[X]) = {Q € Spec(Dp[XD)| ¢~ (Q) N N(¥) = 0}
= {Q & Spec(Dp[X]) | for all f € p~'(Q), ()" # D*}
= {Q € Spec(Dp[X]) | for all f € ¢~ '(Q), there exists H €
Spec*(D) with ¢(f) C H}.

Recall also that the prime ideals in Na(D, *)D\P:DP[X]("(”) [respectively, in
Na(Dp, *p) = Dp[X]""] are in a natural bijective correspondence with prime ideals
in Spec”™ (Dp[X]) [respectively, Spec’” (Dp[X])].

Finally, observe that, in general, Spec’”(Dp[X]) C Spec‘/’(”)(Dp[X]), since if
%) < %, are two semistar operations on an integral domain R, then Spec*?(R) C
Spec* (R).

Remark 3.7. Let * be a semistar operation defined on an arbitrary integral domain
D. Note that: if P € Spec™ (D), then Na(D, *)p\p = Na(Dp, *p). As a matter of fact,
without loss of generality, we can assume that *x = * and, in this case, PDp belongs
to Spec™*”)r(Dp) and so (Fontana et al., 2003, Lemma 2.5(f)):

Na(D.#)pp = ([(1(De(X)Q € Spect/(D)}) | = Dr(X) = Na(Dp. #7).

Proposition 3.8. If D is a Bezout domain then, for each P € Spec(D) and for each
semistar operation * on D, we have Na(D, %), p = Na(Dp, *p) (and Kr(D, *)p p =
KI'(DP, *p)).

Proof. 1f D is a Bézout domain, then ¢(g)D is a nonzero principal ideal, for any
nonzero polynomial g € D[X]. Let Q € Spec? (Dp[X]), if Q € PDp[X] there exists
f € O\PDp[X], and, without loss of generality, we may also assume that f € Im(¢p)
(ie., f=f/1, with f € D[X]), such that ¢p,(f) = cp(f)Dp = Dp. Henceforth,
cp(f) =sD for some s€& D\P. Therefore, f/se€ D[X] and cp(f/s) =D. On
the other hand, f € Q and thus f/s € ¢ '(Q), which is a contradiction. As a
consequence, we have Q C PDp[X] and we conclude that Spec”™ (Dp[X]) =
Spec’”(Dp[X]). As we have noticed above, this fact implies that Na(D, %) p\p =
Na(Dp, *p). The parenthetical equality follows from the fact that, for any Priifer
domain D and for any semistar operation * on D, Na(D, *) = Kr(D, *) (Fontana
et al., 2003, Remark 3.2) and so, in particular, Na(Dp, *p) = Kr(Dp, *p), for each
P € Spec(D). O
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Next two examples show that the identity Na(D, %), p = Na(Dp, *p) does not
hold in general.

Example 3.9. Let D := Z[Y] and let * := d be the identical semistar operation on
D, ie., E*:=E, for any E € F(D). We consider the prime ideal P :=2Z[Y] =
2D = (2). With the notation introduced in the previous Problem 3.6, in case of the
local domain D), we have:

Spec’® (D[ X])
= {0 € Spec(Z[Y]»[X]) | Q C 2Z[Y]»[X]} S Spec?™ (D)) [X])
= {0 € Spec(Z[Y]»[X]) [for all f € ¢~ 1(0Q), there exists
H € Spec(D) with ¢(f) C H}.

As a matter of fact, if we take f:= YX + 3 € D[X], then ¢(f) = (¥,3) # Z[Y] = D,
hence there exists a maximal ideal H of D such that f € H[X]. In addition, ¢(f) is
not invertible in D [X] and o@(f) € 2D)[X], hence there exists Q€
Spec? (Dy[X1), with Q # 2D»[X], such that ¢(f) € Q; in particular, Q ¢
Spec"® (D)[X]). As a consequence, we have Na(D,*) p\p =Na(D,d)p, 5 #
Na(D), d(z)) = Na(Dp, *p).

It is also possible to give a direct arithmetic proof of the previous fact, that is
Na(D,d)p\(2) # Na(D(),d)). We consider as before f:=YX+3 € D[X], then
@(f) € D)[X] satisfies ¢p, (¢(f)) = (Y,3)D@) = D(z), hence ¢(f) is invertible in
Na(Dq),d(). If f is invertible in Na(D,d)p (5, then there exist h € D[X],
k € N(d) and b € D\(2) such that fh =kb. Since D is a factorial domain, let
b= p\p>--- p; be a factorization in prime elements of » in D. For any p; we have
either p;|f or p;|h, hence we may find an identity of the following type:
fW =kpips---ps, where h' € D[X], s <t, pi4 W, forany i =1,2,...,s.

Case 1. If ¢(h') = D, then ¢(f) = c¢(fh') =c(k)pip2--- ps = p1p2- - ps, Which is a
contradiction, since ¢(f) is not a principal ideal of D.

Case 2. If c¢(#') # D, then there exists a maximal ideal H in D such that ¢(#') C H.
From fh' =kpipr---ps, with p;f#/, for any i=1,2...,s, we have
p1--psf'W =kpy---ps, for some f' € D[X]. Therefore, ¢(f'h') =c(k) = D. On
the other hand, ¢(f'h’) C ¢(h’') C H # D, which is a contradiction.

From the previous argument we deduce that f is not invertible in the ring
Na(D, d)p\ (), and so Na(D, d)p, 5 # Na(D(), d(2))-

Example 3.10. Let D be an integral domain and assume that D possesses two
incomparable_prime ideals Py and P. Set P := Py and * := *(p  (ie, E* := EDp,,
for each E € F(D)), then we have: i

Na(D, *)p\p = (DIXInw)p\p, = (Dp [XD s
Na(Dp, *p) = Dp [X]n(x,,)-
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(For simplicity of notation, we have identified D[X], and N(*), with its canonical
image in Dp [X]). We claim that Dp [X]y+) # Dp, [X]N(*pl)'

We compare the two multiplicative sets N(*) and N(*p,); more precisely, we
show that there is a canonical injective map (Dp,[X1)y(x) — Dp,[X]n(x,,), which is
not surjective.

Note that if fe N(x)(C DLX]), then ¢(f)* = D*, hence (c(f)Dp,)*" =
(€(f)Dp)" = (D*Dp))* = Dy, = D", i, f € N(*p,).

Let f € Dp,[X], then there is s € D\ P such that f = §'f with ' € D[X], then —
without loss of generality — we may assume f € D[X].

If f € N(*p,) N D[X], then ¢(f)*" = (¢(f)Dp,)* = (Dp,)*. On the other hand,
the finite type stable semistar operation * and the localization at P; commute, as
they are defined by hereditary torsion theories of finite type. Therefore, we have
c(f)*DPl = (c(f)DPl)* = (DPI)* = (D*)D\Pl'

It is obvious that, in general, the previous equality does not imply ¢(f)* = D*,
ie., f € N(%). In fact, if f € P,[X]\Pi[X], then c(f) C P,\P, and c(f)Dp, = Dp,
hence, in particular, ¢(f)*Dp, = (D*)D\Pl. On the other hand, ¢(f)* = ¢(f)Dp, C
P>Dp, C Dp, = D*, hence f & N(*).

Since f € N(*p,), then 1/f € (DPI[X])N(*pl)' If 1/f = h/k, for some h/k €
Dp,[X]n(x), where h e Dp[X] and k € N(%), then hf =k e N(*). Therefore,
c(hf)* =e(k)* =D*, which is a contradiction, as ¢(hf)* C ¢(f)* C P,Dp, # Dp, =D*.

Let us now consider the second question considered in Problem 3.6, concerning
the Kronecker function rings. Also in this case the answer is negative in general, as
the following Example 3.12 proves. First we give a positive example.

Example 3.11. Let V a valuation overring of an integral domain D, with maximal
ideal M, which is not essential (i.e., DpC V, where P:= M NV). Set * := *
(i.e., E* := EV, for each E € F(D)). In this situation, * is a finite type a.b. semistar
operation on D and P is the only maximal quasi-*-ideal of D.

In this particular case, the description of the Kronecker function ring Kr(D, *) is
rather easy. Let a, b € V, we set as usual a |y if there exists v € V such that av = b
and, for each f € D[X], we denote by a(f) a generator (in V) of the principal ideal
c(f)V. Then, using also Fontana and Loper (2001a, Example 3.6), we have:

K0, = {1 .6 € DIXINO}, with a(e) [va(r) | U (0}
=V(X).
Therefore Kr(D, *)p, p = Kr(D, %), because each element b € D\P is a unit in V

(ie., e(b)* = (bD)* = bV = V).
On the other hand, Kr(Dp, *xp) has a similar description:

Kr(Dp, +7) = {% /.8 € DIXIV{0}, b,c € D\P with a(cg)| va(bf)}

and we conclude immediately that Kr(Dp, *xp) = Kr(D, *) = Kr(D, %), p.
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Next we give a negative example for the Kronecker function rings case.

Example 3.12. Let D := Z[+/—5]. Since D is a Dedekind domain, if d is the identi-
cal semistar operation on D, then Kr(D,d) = Na(D,d) = D(X). We take f :=
(14++/=5)+ (1 —+/=5)X € D[X] and we consider, for instance, the prime ideal
P:=(3,1+ B)DQ Q :=(1++/-51—-+/=5D (=rad(2D)). Then, arguing for
f as in Example 3.9, we obtain that D(X) p = Kr(D, d)p\ p # Kr(Dp,dp) = Dp(X).
Note that this example produces also a negative answer to Problem 3.6 (3).

We finish this section with a local characterization of P*MDs. Recall that
PxMDs were characterized in Fontana et al. (2003), using quasi-* ;-prime ideals;
here we extend this characterization by using the whole prime spectrum. In particu-
lar, next result provides new examples of nontrivial local P*MDs, by taking the
localizations of a P*MD at its prime non quasi-* s-ideals.

Theorem 3.13. Let * be a semistar operation on an integral domain D. Then the
following statements are equivalent:

(i) D isa P*MD.

(1) Dp is a PxpMD, for each P € Spec(D).
(iii) Dy is a PxyMD, for each M € Max(D).
(iv) Dy is a PxyMD, for each N € 4 (*y).
(v) Dg is a PxgMD, for each Q € 2(*y).

Proof. We already proved that (i) = (i) (Remark 2.10). Obviously, (ii) = (iii), (v);
and (v) = (iv).

(i) (or (i1)) = (i). Recall from Fontana et al. (2003, Sec. 3, Theorem | and
Remark 2) that D is a P*MD if and only if Na(D, *) = Kr(D, *) and this last equal-
ity follows from Proposition 3.5 (2) and (4).

(iv)=(1). We have already observed (Remark 3.7) that Na(D,*), y =
Na(Dy, *y) and we know that Kr(D, *)p y C Kr(Dy, *y), for each N € .4 (%)
(Proposition 3.5 (3)). On the other hand, by assumption, Na(Dy, *y) =
Kr(Dy, *y), for each N € .4 (*7). From the previous relations and from the fact that
Na(D, *) C Kr(D, ), we deduce immediately that Na(D,*)p y = Kr(D,*)py,
for each N € .#(*;). The conclusion follows immediately, since Na(D,*) =
N{Na(D, *)p\w |N € (*p)} and Kr(D, *) = N{Kr(D, *) p\w |N € #(*5)}
(Proposition 3.5 (2) and (4)). O

Remark 3.14. Zafrullah (1988), proves a different local characterization of P*xMDs
in the particular case where * = v. More precisely, he obtains that a domain D is a
PvMD if and only if (a) Dp is a Pvp,MD for every prime ideal P of D and (b) for
every prime tp-ideal Q of D, QD is a tp,-ideal (about condition (b) see also Remark
4.12). As we have already observed at the beginning of this section, recall that vp, is
different, in general, from vp.
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4. INDUCING SEMISTAR OPERATIONS

In this section, we deal with the converse of the problem considered in the first
part of this paper, i.e., we start from a family of “local’’ semistar operations on the
localized rings Dp, where P varies in a nonempty set of prime ideals of an integral
domain D, and the goal is the description of a gluing process for building a new
“global’’ semistar operation on the ring D.

Let D be an integral domain. Let P be a prime ideal of D and let %p be a semistar
operation on the localization Dp of D at P. Then we may consider *p, the induced
semistar operation on D defined as follows, for each E € F(D):

E" = (EDp)".

Let O be a given nonempty subset of Spec(D) and let {xp | P € ®} be a family of
semistar operations, where *p is a semistar operation on the localization Dp of D at
P. We define A := Ag .} := Ne := A{xp| P € O} as the semistar operation on D
defined as follows, for each E € F(D),

E" :=("{(EDp)" | P € ©}.

If © is the empty set, then we set A := Ay := ep. Given a semistar operation * on D,
for each prime ideal P of D, we denote as usual by *p the semistar operation *°# on
Dp, deduced from * by ascent to Dp (i.e., E*" := E*, for each E € F(Dp) (2 F(D)));
in particular if * coincides with the semistar operation A := Ag ¢, defined on D, we
can consider a semistar operation Ap on Dp, for each P € ©.

Note that:

(a) For each P € ©, (E"Dp)** = (EDp)™".

(b) For each P € ©, Ap < *p.

() AN=N{Ap|P B} =N{xp|Pc O}

(d) For each semistar operation * on D, * < ni= N{*p| P € Spec(D)}.

(a) We remark that: E® = N{(EDp)™ | P’ € ®} C (EDp)**, for each P € ©.
Therefore, we deduce that:

(E"Dp)™" C ((EDp)" Dp)** = (EDpDp)** = (EDp)™.

The opposite inclusion is trivial.

(b), (¢) and (d) are straightforward.

Theorem 4.1. Let * be a semistar operation on an integral domain D. For each
P € Spec(D), denote as usual by *p the semistar operation *°* on Dp, induced
from * by ascent to Dp. Set N = N{*p| P € Spec(D)}. If * is a spectral semistar
operation on D then * = /*\
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Proof. Let A C Spec(D) be such that * = *,. For each E € F(D), then:
*
E* = ()" = (({{EDo| 0 € A}) 2 ({(EDg)" |0 € A}

=({(EDg)* |0 € A} =({E™|Q € A}
O (E™ | P e Spec(D)} = E* = ({(EDp)*" | P € Spec(D)} 2 E*.

As for any P € A and any E € F(D) we have (EDp)* := (\{EDpDg|Q € A} C
EDpDp = EDp. 0

Lemma 4.2. Let D be an integral domain and let P be a prime ideal of D. If xp is a
spectral semistar operation on Dp, defined by a nonempty subset Ap C Spec(Dp),
then *p is a spectral semistar operation on D defined by the (nonempty) set
Ap :={Q € Spec(D) | ODp € Ap}.

Proof. For each E € F(D):

E" = (EDp)" = ({(EDp), | H € Ap}
= ﬁ{EDQ | ODp =: H € AP} = ﬂ{EDQ | (oS AP} = E*AP.

O

Corollary 4.3. Let D be an integral domain and let ® be a nonempty subset of
Spec(D). If xp is a spectral semistar operation on Dp, defined by a subset
Ap C Spec(Dp), for each P € ©, and if N := Ng () := N*p| P € O} is the semi-
star operation on D defined as above, then N is a spectral semistar operation on
D defined by the subset A := | J{Ap|P € ©®} C Spec(D) (i.e., A = *,).

Proof. This statement is a straightforward consequence of the previous
Lemma 4.2. |

Lemma 4.4. Let D be an integral domain with quotient field K. Let ® be a given
nonempty subset of Spec(D) and let {xp|P € ®} be a family of semistar opera-
tions, where xp is a semistar operation on the localization Dp of D at P. Assume that
*p IS a semistar operation of finite type and that the family {Dp|P € ®} has the
finite character (i.e., for each non zero element x € K, xDp = Dp for almost all
the Dp’s). Then the semistar operation N\ := Ng 1.} := N*p | P € @} is a finite type
semistar operation on D.

Proof. Let E € F(D), recall that E := ("{(EDp)"" | P € ®}. We want to show that
if x € E” then there exists F C E, with F € f(D), such that x € F”. By the finite char-
acter condition, we may assume that xDp = Dp, for all P € ®\{Py, P,,..., P,}. Since
x € {(EDp)™ | P € @}, by the finiteness condition on the *p’s, we can find F; C E,
with F; € f(D), such that xDp, C (F;Dp)™ C (EDp)*, for 1<i<r, and
(F;Dp)™* = (Dp)**, for each P € ®\{P,,P,,...,P,} andeach 1 <i<r.
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If weset F:= F), + F, + - - - + F,, then we have that F C E, with F € f(D), such
that FDp = Dp = xDp, for each P € ®\{Py, P, ..., P,},and (FDp,)*" D (F;Dp,)™" D
xDp,, for 1 <i < r. We conclude that x € F" = ﬂ{(FDp)*” | P € O}. O

Corollary 4.5. Let D be an integral domain, let ® be a nonempty subset of Spec(D)
and let {xp|P € O} be a family of semistar operations, where *p is a semistar
operation on the localization Dp of D at P € ®. We can associate to the semistar
operation Ng := Ne (.} := NM*p|P € O} (defined on D) two semistar operations
(both defined on D): Ne and Nxp|P € @} =: Ne 7} =Ng. Assume that the
family {Dp| P € ®} has the finite character, then:

/f\\@/)Z/\@.

Proof. By the previous Lemma 4.4, A5 is a finite type semistar operation on D, since
*p 1s a finite type semistar operation on D, because *p is a finite type semistar operation
on Dp, for each P € O, and the family {Dp | P € ®} has the finite character.

Note that *p is a spectral semistar operation on Dp, defined by the subset
Ap := Spec”r(Dp). In this situation, we know from Corollary 4.3 and Lemma
4.2 that Ag is a spectral semistar operation on D defined by the set A:=
\U{Ap| P € ®} (C Spec(D)), i.e., Ng = *a- Therefore, we deduce that Ng =Ngs since
A 1s a finite type stable semistar operation (Fontana and Huckaba, 2000, Corollary
3.9(2)). On the other hand, Ag < Ae (because xp < *p, for each P € ©®), thus we have
also that Ag = /\ < Ne. Moreover for each Q € A ODp C (QODp )(*”)f N Dp # Dp,
for some P ¢ €0. Since (ho) ;< (xp)s. then Q C Q(A@)f N D # D. From this fact, we
deduce that Ag < %, = Ng and so we conclude that Ag = N O

Theorem 4.6. Let D be an integral domain, let ® be a nonempty subset of Spec(D)
andlet {xp| P € O} be a family of spectral semistar operations, where xp is a semistar
operation onthe localization Dp of D at P € O, defined by a subset Ap C Spec(Dp). Set
Ap :={Q € Spec(D) | QDp € Ap} and set A := Mg y.,} := Ne. Assume that the family
of spectral semistar operations {xp | P € O} satisfies the following condition:

({) For each pair of prime ideals P, P' € ©, with P' # P, then
ApN P C Ap.

Set A := {Q € Spec(D) | ODp € Ap, for some P € ®}. Then, the spectral semistar
operation * := x5 on D verifies the following properties:

(a) For each P € ®, xp = xp (where, as usual, *p := *Pr),
(b) (*a =)* = A(= Ne) (hence, in particular, Ap = *p = xp, foreach P € ©).
Proof. (a) Fix P € © and, to avoid the trivial case, assume that P # (0). Set

©®) := {P' € ®| PN Pdoes not contain a nonzero prime ideal}, and

©®, := {P" € ® | P" N Pcontains a nonzero prime ideal}.

Note that if P’ € @, then DpDp: coincides necessarily with K, the quotient field of D;
note also that P belongs to ©;.

Copyright © Marcel Dekker, Inc. All rights reserved.
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Assume that P” € ®;. We know that there is a bijective correspondence between
prime ideal of DpDpr and the set {H € Spec(D)|H C P" N P}, hence DpDpr =
({Du|H C P"NPand H € Spec(D)} C K. Therefore, by assumption, for each
P" €@y, the set AprNP*C Ap and so, for each G €F(Dp), (GDpr)™ O (GDp)*" =
G*r. Henceforth, for each nontrivial G € F(Dp), we have K 2 N {(GDp:)""" | P" €
®,} = (GDp)*™ = G**; therefore:

G*" = G* = G*
- ﬂ{ ((GDo| 0Dy € Ay} |H € @}
Zﬂ{ﬂ{GDQIQeA, QQH}\HG@}
=({(GDw)™ | H € ©}
= (NG [P @a}) 1 ((H(GDp)™ | P € ©1})

=& (NiGDp)™ [P € @1})
= G™.

(b) If E € F(D), then

E* = ﬂ{ ({EDo|QDs € Ap}| P € @}
=N{N{EDrD, | 0Dy € A} PO}

=({(EDp)" | P € ®}
=E".

Next example shows that condition (].) does not hold in general. Later (Example
4.13), we will give an example for which condition (J) holds.

Example 4.7. Let D be an integral domain and let ® be a nonempty subset of
Spec(D) and let {xp| P € ®} be a family of semistar operations, where *p is a semi-
star operation on the localization Dp of D at P€ ®. Let Ap:= 2((xp);) =
Specr)r(Dp) be the set of all the quasi-(p) ¢~prime ideals of Dp, for each P € ©.
The family of spectral semistar operations {*p | P € ®} does not verify condition (}).

For instance, let D be a domain with two incomparable prime ideals P; and P,
containing a common nonzero prime ideal Q. Let *p, := d (=dp, ) be the identical
semistar operation on Dp,, and let *p, := e (= ep, ) be the trivial semistar operation
on Dp,. We have that xp and *p, are both finite type stable semistar operations (i.e.,
xp, = *p, and xp, = *p,), with Ap, = {P € Spec(D)|P C P;} and Ap, = {(0)}. The
ideal Q produces a counterexample to condition ({). Indeed O € Ap, N P% and Q & Ap,.

Moreover, set ©® := {Py, P,, 0} and @' := {Py, P,}. Let *p, and *p, be as above
and let o := e (= ep,) (thus xg = *g is also a finite type stable semistar operation).
Note that Ap, = {PDp, € Spec(Dp,)|P C P1}, Ap, = {(0) € Spec(Dp,)} and Ay =
{(0) € Spec(Dg)}. In this situation, A := Ap, UAp, UAg = {P € Spec(D) | P C P;}.
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Therefore, it is easy to see that A@ = Ag and it coincides with the finite type spectral
semistar operation * := %, but (Ae)y = *o = dg S eg = *¢.

Theorem 4.8. Let D be an integral domain, let ® be a nonempty subset of Spec(D)
and let {xp | P € O} be a family of spectral semistar operations, where *p is a semi-
star operation on the localization Dp of D at P € ®, defined by a subset
Ap C Spec(Dp). Set N := Ng (4} Assume that {xp|P € @} satisfies the condition
(}) and that xp is an e.a.b. [respectively, a.b.] semistar operation on Dp. Then the
spectral semistar operation N (Theorem 4.6(b)) is also an e.a.b. [respectively,
a.b.] semistar operation on D.

Proof. Note that from the previous Theorem 4.6, we have that Ap = *p, for each
P € 0®.Let F, G, H € f(D) and suppose that (FG)" C (FH)". Then, for each P € ©,
we have (FDpGDp)*" = (FGDp)*" = ((FG)"Dp)* C ((FH)"Dp)*" = (FDpHDp)"*".
Therefore, for each P € ®, from the e.a.b. hypothesis on x*p we have
(GDp)" C (HDp)**. We conclude immediately, since we have that G =
N{(GDp)" |P€®} C({(HDp)”" | P € ®} = H. A similar argument shows the
a.b. case. O

We apply next the previous theory to the case of the finite type stable (semi)star
operation w := v canonically associated to the (semi)star operation v.

Corollary 4.9. Let D be an integral domain. For each P € Spec(D), let wp, := vp,
be the finite type spectral (semi)star operation on Dp, defined by the set Spec’™ (Dp)
of all the t-prime ideals of Dp. If

A = Nwp, | P € Spec(D)}

then A is a spectral (semi)star operation on D defined by the following set of prime
ideals of D:

T = U{{Q € Spec(D) | ODp € Spec' (Dp)} | P € Spec(D)},

Proof. This statement is a particular case of Corollary 4.3. O

At this point, it is natural to investigate the relationship between the spectral
(semi)star operation A (considered in the previous Corollary 4.9) and the finite type
spectral (semi)star operation, wp := vp, on D defined by the set Spec™ (D) of all the
t-prime ideals of D. We will see that, in general, they are different.

Lemma 4.10. Let D be an integral domain. For any prime ideal P of D, we denote
by tp the semistar operation (tp)p of Dp (defined by E"™ :=E™ =|J{F" =
(D:(D:F))|FCEandF € f(D)}, for each E € F(Dp)). Let P be a prime ideal
of D, we have that P € Spec™(D) if and only if PDp € Spec” (Dp). In addition,
for any prime ideal P, we have Spec’™ (Dp) C Spec” (D).
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Proof. (=). Assume that, for some P € Spec’”(D), we have (PDp)"" 2 PDp. Then
there exists z € (PDp)"" = (PDp)"” = |J{F" | F C PDp and F € f(D)}, butz & PDp.
Hence, for some F C PDp and F € f(D), z € F*»\PDp. Since F is finitely generated
and F C PDp then, for some b € D\P, we have that bF C PDp N D = P. Therefore,
bz € bF"> = (bF)'"> C P'» = P, thus z € b~'P C PDp, which is a contradiction.

(«<). Assume that (PDp)” = PDp. Note that PDp = (PDp)" = (PDp)"> D P'».
Henceforth, P = PDpN'D D P» N D = P, hence P = P'».

For the final statement we proceed as follows. Let PDp € Spec™ (Dp) and let F
be a finitely generated ideal of D contained in P, then F° C (FDp)"™ C
(FDp)" C (PDp)""r = PDp. Therefore P"» C PDp and so P'» = P. O

Remark 4.11. The same proof given above (Lemma 4.10) shows the following
general statement: Let P, Q be two prime ideals of an integral domain D, then
PDg € Spec'®(Dyg), for each prime ideal Q, with P C Q, if and only if P € Spec™ (D).

Remark 4.12. We emphasize that, in general, the semistar operation tp does not
coincide with the (semi)star operation tp,, i.e., tp is not the t-operation on Dp. For
a prime fp-ideal P of D, the question of when the extended ideal PDp is a fp,-ideal
was studied by Zafrullah (1988, 1990) (where the 7p-primes P of D such that PDp is a
tp,-ideal were called well behaved prime t-ideals).

For instance, if P is not a well behaved prime #-ideal of D, then necessarily
PDp = (PDp)"" C (PDp)"™".

Using the same argument of the proof of the last statement of Lemma 4.10, note
that, if PDg isa tDQ-ideal, (for some prime ideal Q containing P) then P is a t-ideal of
D. Therefore, using Remark 4.11, we have: if Q € Spec(D) satisfies Q O P and
PDg € Spec'® (Dg), then P € Spec”(D), and this happens if and only if for any
Q € Spec(D), such that Q O P, we have PDy € Spec’®(Dy).

Example 4.13. The set of all the 7-prime ideals of an integral domain D induces a
“natural’” example for which condition (]) of Theorem 4.6 holds.

For each P € Spec(D), we consider on Dp the set Qp := Spec””(Dp). Let wp be
the spectral semistar operation on Dp, defined by Qp, i.e., wp := *q,. From Remark
4.11, we deduce immediately that Qp N P' C Qp, for each pair P, P’ € Spec(D) such
that P # P'. Therefore, the family of spectral semistar operations {wp | P € Spec(D)}
verifies condition ().

Corollary 4.14. Let D be an integral domain. Let wp := vp be the finite type
spectral (semi)star operation on D, defined by the set Spec’”(D) of all the t-prime
ideals of D. For each P € Spec(D), set as usual wp := (wp)p and let wp, := vp,
[respectively, wp] be the spectral semistar operation on Dp, defined by the set
Spec’ (Dp) [respectively, Spec”” (Dp)]. Then:

wp = NMwp | P € Spec’”(D)} = A{wp | P € Spec™ (D)}
= A (= N{wp| P € Spec(D)})

w

< {:\ (:= A{wp| P € Spec(D)}).
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Proof. From Theorem 4.6 (and Example 4.13), we have that A{wp | P € Spec’”(D)}
is the spectral semistar operation *q, where Q := {Q € Spec(D) | QDp € Spec” (Dp),
for some P € Spec™”(D)}. It is easy to see that Q= Spec™(D), hence wp =
*q = AMwp | P € Spec(D)}. Moreover, again from Theorem 4.6, we have that
wp = (*q)p = wp, for each P & Spec”(D), hence A{wp|P € Spec”(D)} =
Nwp | P € Spec’”(D)} = wp. The last inequality in the statement is a consequence
of Corollary 4.9, since by Lemma 4.10 T C Q and thus wp = *q < %y = A, O

w
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