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ABSTRACT

We study the ‘‘local’’ behavior of several relevant properties concerning semistar

operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the
‘‘global’’ problem of building a new semistar operation on a given integral
domain, by ‘‘gluing’’ a given homogeneous family of semistar operations defined
on a set of localizations. We apply these results for studying the local–global

behavior of the semistar Nagata ring and the semistar Kronecker function ring.
We prove that an integral domain D is a Prüfer Z-multiplication domain if and
only if all its localizations DP are Prüfer ZP-multiplication domains.
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INTRODUCTION

Krull’s theory on ideal systems and star operations was motivated by the
construction of Kronecker function rings in a more general context than that of
algebraic integers, originally considered by L. Kronecker. The theory developed by
Krull requires some restrictions on the integral domain, which has to be integrally
closed, and on the star operation, which has to be e.a.b. (Gilmer, 1972, Sec. 32).
Semistar operations, introduced by Okabe and Matsuda (1994), lead to very general
theory of Kronecker function rings, also in case of nonnecessarily integrally
closed domains (cf. Fontana and Loper, 2001a,b, 2003; Halter-Koch, 2003a;
Matsuda, 1998; Okabe and Matsuda, 1997).

Semistar operations are an appropriate tool for extending the theory of Prüfer
domains and, more generally, of Prüfer v-multiplication domains (cf. Griffin, 1967;
Kang, 1989; Mott and Zafrullah, 1981) to the nonnecessarily integrally closed
domains case. Let Z be a semistar operation of finite type on an integral domain
D (the formal definition is recalled in Sec. 1), thenD is called a Prüfer Z-multiplication
domain (for short, PZMD) if each nonzero finitely generated fractional ideal I of D
is Z-invertible (i.e., ðII�1ÞZ ¼ DZ). In the semistar case, if D is a PZMD, then the
semistar integral closure of D is integrally closed, thus, in the Krull’s setting of
e.a.b. star operations, we recover the classical situation that D has to be integrally
closed (Houston et al., 1984). Several characterizations of Prüfer Z-multiplication
domains were obtained recently, making also use of the semistar Nagata ring
NaðD;ZÞ and the semistar Kronecker functions ring KrðD;ZÞ (cf. El Baghdadi
and Fontana, 2004; Fontana and Loper, 2003; Fontana et al., 2003; Halter-Koch,
2003b).

The starting point of this paper is the study of the localization of a PZMD, D, at
any prime ideal (possibly, not quasi-Z-prime, i.e., not a prime ideal P such that
P ¼ PZ \D, since the localization at any prime ideal of this type is known to be a
valuation domain). As a consequence of this local study, we obtain new examples
of local PZMDs.

One of the first results proved here is a characterization of a PZMD, D, through
a local property, concerning the localizations of D at a family of prime ideals P of D,
and a global ‘‘arithmetical’’ condition, concerning a finiteness property of the ideals
of the type ðaD \ bDÞZ, see Theorem 2.9. We apply this result to characterize
PZMDs as those domains such that the localization at any prime ideal P is a PZPMD
(where ZP is a semistar operation canonically associated to Z by ‘‘ascent’’ to DP), see
Theorem 3.13. This result points out the important fact that Prüfer multiplication-
like properties are really local properties and it opens the way for a local–global
study of Prüfer Z-multiplication domains.

In order to realize these results we develop, preliminarily, a study on the
behavior of semistar operations properties under localizations. In particular, we
show that finite type, spectral, stable, a.b. or e.a.b. properties on a semistar operation
Z transfer to the induced semistar operation ZP , defined on DP , for any any prime
ideal P 2 SpecðDÞ.

At this stage, it is also natural to investigate on the relationship between the
semistar Nagata ring NaðD;ZÞ [respectively, semistar Kronecker function ring
KrðD;ZÞ] and the Nagata rings NaðDP;ZPÞ [respectively, the Kronecker function
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rings KrðDP;ZPÞ] (i.e., on the local behavior of the general Nagata ring andKronecker
function rings). In this context, we show that NaðD;ZÞ ¼ TfNaðDP;ZPÞ jP 2
SpecðDÞg [respectively, KrðD;ZÞ ¼ TfKrðDP;ZPÞ jP 2 SpecðDÞg]; we observe also
that the canonical inclusions NaðD;ZÞDnP � NaðDP;ZPÞ [respectively, KrðD;ZÞDnP �
KrðDP;ZPÞ] are not equalities, in general.

In the last section we deal with the ‘‘global’’ problem of building a semistar
operation in an integral domain D by ‘‘gluing’’ a given family of semistar operations
defined on DP , for P varying in a subset Y of SpecðDÞ. Since the description of this
semistar operation is in part folklore (at least in the star setting), we deal specially with
the problem of which properties, verified by all the semistar operations defined on the
localizations DP , transfer to the ‘‘glued’’ semistar operation defined onD. Among the
other results, we prove that the finite type and stable properties pass on, in the case
the representation D ¼ TfDP jP 2 Yg has finite character. In order to glue semistar
operations verifying other relevant properties, like e.a.b. and a.b., we evidentiate some
obstructions; in fact, this type of semistar operations we prove giving rise to a semistar
operation of the same type under an extra condition, a sort of ‘‘stability under
generalizations’’, denoted here by (#), see Theorem 4.6. Finally, we have included
several examples in order to better illustrate the different constructions considered
here and to show the essentiality of the assumptions in the main results.

1. BACKGROUND

Let us consider a commutative integral domain D with quotient field K. Let
FðDÞ [respectively, FðDÞ and fðDÞ] denote the set of nonzero D-submodules of K
[respectively, fractional ideals and nonzero finitely generated D-submodules of K].
Note that fðDÞ � FðDÞ � FðDÞ.

A semistar operation on D is a map Z : FðDÞ�!FðDÞ, E 7!EZ, such that

(1) ðxEÞZ ¼ xEZ;
(2) E � F implies EZ � FZ;
(3) E � EZ and EZ ¼ ðEZÞZ ¼: EZZ,

for each 0 6¼ x 2 K and for all E, F 2 FðDÞ.
When DZ ¼ D, we say that Z is a (semi)star operation on D. The identical

operation dD on D (simply denoted by d), defined by EdD :¼ E, for each
E 2 FðDÞ, is a (semi)star operation on D. If not stated explicitly, we generally assume
that Z is not the trivial semistar operation eD on D (simply denoted by e), where
EeD :¼ K, for each E 2 FðDÞ. It is easy to see that Z 6¼ e if and only if D 6¼ K implies
that DZ 6¼ K.

A semistar operation Z is of finite type, if for any E 2 FðDÞ, we have:

EZf :¼
[

fFZ jF � E and F 2 fðDÞg ¼ EZ:

In general, for each semistar operation defined on D, Zf , as defined before, is also
a semistar operation on D and Zf � Z, i.e., for any E 2 FðDÞ we have EZf � EZ.
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There are several examples of finite type semistar operations; the most known is
probably the t-operation. Indeed, we start from the vD-operation on an integral
domain D (simply denoted by v), defined as follows:

Ev :¼ ðE�1Þ�1 ¼ ðD: ðD:EÞÞ;

for any E 2 FðDÞ, and we set tD :¼ ðvDÞf (or, simply, t :¼ vf ).
Other examples can be constructed as follows: let T be an overring of an integral

domain D and let ZfTg be the semistar operation on D, defined by EZfTg :¼ ET , for
each E 2 FðDÞ, then ZfTg is a finite type semistar operation on D. In particular,
ZfDg ¼ d and ZfKg ¼ e.

In the following, we will construct several new semistar operations from a given
one and we will show that most of them are of finite type.

Let Z be a semistar operation on D, we define the following set of prime ideals
of D:

PZ :¼ fP 2 SpecðDÞ jP 6¼ ð0Þ and PZ \D 6¼ Dg:

It may be that PZ is an empty set but, in the particular case in which Z is nontrivial
of finite type, then PZ 6¼ ;. In fact, we have that each proper ideal I is always con-
tained in a proper quasi-Z-ideal of D, i.e., a proper ideal J of D such that such that
JZ \D ¼ J , and moreover (in the finite type case) each proper quasi-Z-ideal of D is
contained in a maximal element in the set G of all proper quasi-Z-ideals; finally,
maximal elements in G are prime ideals. We will denote by

QðZÞ :¼ SpecZðDÞ :¼ fQ 2 SpecðDÞ jQ ¼ QZ \Dg

the set of all the quasi-Z-prime ideals of D.
If Z is possibly not of finite type, we say that Z possesses enough primes, if each

proper quasi-Z-ideal is contained in a quasi-Z-prime ideal. As a consequence, for
each semistar operation that possesses enough primes (e.g., a nontrivial finite type
semistar operation), we have MaxðPZÞ ¼ MaxðGÞ (and it is a nonempty set). We will
denote simply by MðZÞ the set of all the maximal elements in G.

After analyzing this situation, we ask about how to relate semistar operations
and prime ideals. For any nonempty set P of prime ideals on D, we define a semistar
operation ZP on D as follows:

EZP :¼
\

fEDP jP 2 Pg;

for any E 2 FðDÞ. If P ¼ ;, we set Z; :¼ e; obviously, if P ¼ fð0Þg, then ZP :¼ e.
Semistar operations defined by sets of prime ideals are called spectral semistar
operations.

If Z is a finite type semistar operation, we define Zsp :¼ ZMðZÞ; we have always
that Zsp � Z. Of course, we can start from a general semistar operation Z, in that
case we have a new spectral semistar operation ~ZZ :¼ ðZfÞsp; this is the biggest finite
type spectral semistar operation in the set of all the finite type spectral semistar
operations on D, smaller or equal to Z.
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A semistar operation Z is stable if ðE \ FÞZ ¼ EZ \ FZ, for each pair E,
F 2 FðDÞ; any spectral semistar operation is stable, and stable finite type semistar
operations coincide with spectral finite type semistar operations.

The semistar operation ~ZZ can be also defined using the general Nagata ring
NaðD;ZÞ associated to Z. Indeed, if we define:

NaðD;ZÞ :¼ D½X�NðZÞ;

where NðZÞ :¼ ff 2 D½X� j cðfÞZ ¼ DZg is a saturated multiplicative subset of D½X�,
then, for any E 2 FðDÞ, we have E

~ZZ ¼ ENaðD;ZÞ \ K.
Nagata ring has a parallel behavior to the general Kronecker function ring

associated to a semistar operation Z, defined as follows:

KrðD;ZÞ :¼
�
f

g
2 KðXÞ j f ; g 2 D½X�nf0g and there exists 0 6¼ h 2 D½X�

such thatðcðfÞcðhÞÞZ � ðcðgÞcðhÞÞZ
�
[ f0g:

Note that NaðD;ZÞ � KrðD;ZÞ and a ‘‘new’’ finite type semistar operation can be
defined on D by the Kronecker function ring by setting:

FZa :¼ FKrðD;ZÞ \ K;

for any F 2 fðDÞ. This finite type semistar operation Za on D has another more
arithmetic description, as follows:

FZa ¼
[

fððFHÞZ:HZÞ jH 2 fðDÞg;

for any F 2 fðDÞ. Moreover, Za has a useful ‘‘cancellation’’ property: if E, F ,
G 2 fðDÞ and ðEFÞZ � ðEGÞZ, then FZ � GZ. A semistar operation Z satisfying this
property is called an e.a.b. (¼ endlich arithmetisch brauchbar) semistar operation.
In the previous ‘‘cancellation’’ property, if we take E 2 fðDÞ and F , G 2 FðDÞ,
a semistar operation having this modified cancellation property is called an a.b.
semistar operation. In general, we have the following characterizations: a finite type
semistar operation Z is e.a.b. if and only if it is a.b. if and only if Z ¼ Za.

A Kronecker function ring, and its ‘‘counterpart’’ the associated finite type a.b.
semistar operation, parameterizes certain valuation overrings of D. A valuation
overring V � D is called a Z-valuation overring of D if FZ � FV for any F 2 fðDÞ
(or, equivalently, if Zf � ZfVg), then a finite type a.b. semistar operation Z is
characterized by the following property:

FZ ¼
\

fFV jV is a Z-valuation overring of Dg;

for each F 2 fðDÞ.
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We refer to Fontana et al. (2003), and to the references contained in that paper,
as a documented source on semistar operations and on some of their properties
briefly recalled above.

The following notation shall be use throughout the text. For a nonempty subset
D � SpecðDÞ of prime ideals of an integral domain D we define

D# :¼ fQ 2 SpecðDÞ jQ � P; for some P 2 Dg;

and we say that D is closed under generizations if D ¼ D#. In the same way, for any
prime ideal P 2 SpecðDÞ, we define P# :¼ fPg#.

2. LOCALIZING SEMISTAR OPERATIONS

Let Z be a semistar operation on an integral domain D and let K be the quotient
field of D. For each P 2 SpecðDÞ, we consider the inclusion D � DP of D into its
localization DP and the semistar operation _ZZDP , denoted simply ZP , on DP , obtained
from Z by ‘‘ascent to’’ DP , i.e., E

_ZZDP :¼ EZP :¼ EZ, for each E 2 FðDPÞ ð� FðDÞÞ.
Note that if P ¼ ð0Þ then DP ¼ K and so ZP coincides with dK ð¼ eKÞ on K.

Our first goal is to study the transfer of some relevant properties from Z to ZP .

Lemma 2.1. Let Z be a semistar operation on an integral domain D and let
P 2 SpecðDÞ.

(a) If Z is a finite type semistar operation on D, then ZP is a finite type
semistar operation on DP .

(b) If Z is an e.a.b. [respectively, a.b.] semistar operation on D, then ZP is an
e.a.b. [respectively, a.b.] semistar operation on DP .

Proof. (a) is a consequence of Fontana et al. (2003, Example 1(e.1)).

(b) We give the proof in the a.b. case; a similar argument shows the e.a.b. case.
Let G; H 2 FðDPÞ � FðDÞ and F 2 fðDPÞ such that ðFGÞZP � ðFHÞZP . Since we can
find F0 2 fðDÞ such that F ¼ F0DP , then we obtain ðF0GÞZ ¼ ðF0DPGÞZP �
ðF0DPHÞZP ¼ ðF0HÞZ. Therefore, GZP ¼ GZ � HZ ¼ HZP , because Z is a.b. &

If Z is a finite type a.b. semistar operation on an integral domain D, then it is
wellknown that Z coincides with the semistar operation ZV, where V :¼ VðZÞ :¼
fV � D jV is a Z-valuation overringg and EZV :¼ TfEV jV 2 Vg, for each E 2
FðDÞ (Fontana et al., 2003, Lemma 2.8(d)).

Corollary 2.2. Let Z be a finite type a.b. semistar operation on an integral domain
D. For each prime ideal P 2 SpecðDÞ, we consider the (finite type a.b.) semistar
operation ZP on DP and the subset of overrings VP :¼ fV � D jV is a

Z-valuation overring and DP � Vg. Then VP is exactly the set VðZPÞ of the ZP-
valuation overrings of DP , i.e., E

ZP :¼ TfEV jV 2 VðZPÞg ¼ TfEV jV 2 VPg, for
each E 2 FðDPÞ.
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Proof. We know already, from the previous lemma, that ZP is a finite type a.b.
semistar operation on DP . If V 2 VP and F 2 fðDÞ, then ðFDPÞZP ¼ ðFDPÞZ �
ðFDPÞV , thus V is a ZP-valuation overring of DP . Conversely, if W is a ZP-valuation
overring of DP , then we have FZ � ðFDPÞZ ¼ ðFDPÞZP � DPW ¼ FW , for each
F 2 fðDÞ, thus Wð� DPÞ is a Z-valuation overring of D. As a consequence, for each
F 2 fðDÞ, we obtain that ðFDPÞZ ¼ ðFDPÞZP ¼ TfFDPW jW is a ZP-valuation
overringg ¼ TfFV jV 2 VPg ¼ FZVP . The conclusion follows since ZP is a finite type
semistar operation. &

Proposition 2.3. Let Z be a semistar operation on an integral domain D and let
P 2 SpecðDÞ. If Z ¼ ~ZZ (is a finite type stable semistar operation on D), then
ZP ¼ ~ZZP (is a finite type stable semistar operation on DP).

Proof. Note that if Z is a stable semistar operation then, from the definitions of
stability and of the semistar operation ZP , it follows that ZP is a stable semistar
operation. The conclusion follows from Lemma 2.1(a).

We give another proof that describes explicitly the set QðZPÞ of all the quasi-
ZP-prime ideals of DP in relation with the set QðZÞ of all the quasi-Z-prime ideals
of D.

To avoid the trivial case, we can assume that Z 6¼ eD and that P is a nonzero
prime ideal of D. Note that Z ¼ Zf , because Z is a finite type semistar operation,
and so ZP ¼ ðZPÞf (Lemma 2.1(a)). Let Q :¼ QðZÞ be the set of all the quasi-Z-prime
ideals of D then, for each F 2 FðDÞ, we have FZ ¼ TfFDQ jQ 2 Qg, because Z ¼ ~ZZ
(Fontana and Loper, 2003, Corollary 2.11(2)).

Assume that P 2 Q. Let E 2 FðDPÞ � FðDÞ, then

EZP ¼ EZ ¼
\

fEDQ jQ 2 Qg ¼
\

fEDQ jQ 2 QnfPgg \ E � E;

hence ZP ¼ dDP
is the identical (semi)star operation on DP and so, obviously, ZP ¼

dDP
¼ gdDP

dDP
¼ fZPZP .

Assume that P 62 Q. Let E 2 FðDPÞ � FðDÞ, then

EZP ¼ ðEDPÞZP ¼ ðEDPÞZ ¼
\

fEDPDQ jQ 2 Qg

¼
\

fEDPDQ jQ 2 Q0g
� �

\
\

fEDPDQ jQ 2 Q1g
� �

where Q1 :¼ fQ 2 Q jP \Q contains a nonzero prime ideal of Dg and Q0 :¼
fQ 2 Q jP \Q does not contain a nonzero prime ideal of Dg.

Note that if Q 2 Q0, i.e., if P \Q does not contain a nonzero prime ideal, then
DPDQ coincides necessarily with K, the quotient field of D.

Assume that Q 2 Q1. It is wellknown that there exists a natural bijective
correspondence between the set of prime ideals of DPDQ and the set
fH 2 SpecðDÞ jH � P \Qg, hence DPDQ ¼ TfDH jH � P \Q and H 2 SpecðDÞg.
Moreover, note that the set SðP; QÞ of all nonzero quasi-Z-ideals I of D contained
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in P \Q is not empty (since at least HZ \D is in SðP;QÞ, if H � P \Q and
H 2 SpecðDÞ). It is easy to see that the set of maximal elements SðP; QÞmax of
SðP; QÞ is a nonempty set of prime ideals, with SðP; QÞmax � Q1 � Q and, further-
more, each prime ideal H, with H � P \Q, is contained in some element of
SðP; QÞmax. Thus, we can rewrite:

EZP ¼ EK \
\

fEDH jH � P \Q and H 2 SpecðDÞ; for Q varying in Q1g
� �

¼
\

fEDH jH 2 SðP; QÞmax; for Q varying in Q1g

¼
\

fEDH jH � P and H 2 Qg:

Therefore it is easy to see that the set fHDP jH � P and H 2 Qg coincides with
the set QðZPÞ of all the quasi-ZP-prime ideals of DP , which ‘‘defines’’ fZPZP , i.e.,
ZP ¼ ðeZZPÞ. &

Remark 2.4. Note that the proof of the previous proposition shows the following
statement: If Z is a finite type spectral semistar operation on D, defined by a subset
D � SpecðDÞ (i.e., Z :¼ ZD), then ZP is also a finite type spectral semistar operation
on DP and it is defined by the set DP :¼ fHDP jH � P; H 2 Dg (i.e., ZP ¼ ZDP

).

Remark 2.5. Let Z be a semistar operation on D and P 2 SpecðDÞ, then we have the
following diagram of semistar operations on DP .
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where the equalities are direct consequences of Lemma 2.1 and Proposition 2.3. As a
consequence of the proof of Proposition 2.3, we obtain that:

P 2 SpecZf ðDÞ ) SpeceZP ðDPÞ ¼ SpecðZPÞf ðDPÞ
¼ SpecðZf ÞP ðDPÞ ¼ Specð~ZZÞP ðDPÞ:

Indeed, if QDP 2 Specð~ZZÞP ðDPÞ, then

QDP ¼ ðQDPÞð~ZZÞP \DP ¼ ðQDPÞ~ZZ \DP

¼
�\

fQDPDH j H 2 SpecZf ðDÞg
�
\DP ¼ ðQDPÞeZP \DP

� QDP \DP ¼ QDP :

Let Z be a semistar operation on an integral domain D. Assume that D is a PZMD,
i.e., an integral domain such that each F 2 fðDÞ is a Zf -invertible ideal, that is
ðFF�1ÞZf ¼ DZ. PZMDs are characterized in several different ways in (Fontana
et al., 2003, Theorem 1): for instance, DQ is a valuation domain for each
Q 2 MðZf Þ, where MðZfÞ is the (nonempty) set of all the maximal elements of
SpecZf ðDÞ. A consequence of this fact is that D is a PZMD if and only if it is a
P~ZZMD, since Mð~ZZÞ ¼ MðZfÞ (Fontana et al., 2003, Lemma 3(g)).

Remark 2.6. Note that, if 0 6¼ a, b belong to an integral domain D, then the follow-
ing equality holds:

1

ab
ðaD \ bDÞ ¼ ðða; bÞDÞ�1:

Proof. Let x 2 aD \ bD, then x ¼ ax0 ¼ bx00, for some x0, x00 2 D, thus we obtain
that x=ab ¼ ð1=bÞx0 ¼ ð1=aÞx00. Henceforth, for each az1 þ bz2 2 ða; bÞD, we have
ðx=abÞðaz1 þ bz2Þ ¼ x00z1 þ x0z2 2 D. Therefore x=ab 2 ðða; bÞDÞ�1. Conversely, let
y 2 ðða; bÞDÞ�1, then ya ¼ x0 and yb ¼ x00, for some x0, x00 2 D. Henceforth
aby ¼ bx0 ¼ ax00, and so aby 2 ðaD \ bDÞ. &

Lemma 2.7. Let Z be a semistar operation on an integral domain D. Assume that D
is a P ZMD. For each pair of nonzero elements a, b 2 D, there exists F 2 fðDÞ such
that:

ðaD \ bDÞZ ¼ FZ

(in this situation, we say briefly that ðaD \ bDÞZ is an ideal of Z-finite type).

Proof. Recall that ð1=abÞðaD \ bDÞ ¼ ðða; bÞDÞ�1 and thus note that ðaD \ bDÞZ
is an ideal of Z-finite type if and only if ððða; bÞDÞ�1ÞZ is a (fractional) ideal of
Z-finite type, i.e., there exists G 2 fðDÞ such that GZ ¼ ððða; bÞDÞ�1ÞZ, (Remark 2.6).
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Since D is a PZMD, each nonzero finitely generated (fractional) ideal F of D is
Zf -invertible and so ðF�1ÞZ is also a (fractional) ideal of Z-finite type. Therefore,
we conclude that ððða; bÞDÞ�1ÞZ is a (fractional) ideal of Z-finite type. &

The converse of this result holds if we add some extra conditions.

Theorem 2.8. Let Z be a spectral semistar operation on D defined by a set D of
valuation prime ideals of D (or, equivalently, by a family of essential valuation
overrings of D), i.e., EZ :¼ TfEDP jP 2 Dg, for each E 2 FðDÞ, where DP is a
valuation domain for each P 2 D. If, for each pair of nonzero elements a, b 2 D,
we have that ðaD \ bDÞZ is an ideal of Z-finite type, then D is a PZMD.

Proof. Step 1. If I is a finitely generated ideal of D and a 2 D, with a 6¼ 0, then
ðI \ aDÞZ is an ideal of Z-finite type.

The proof is based on an argument from Zafrullah (1978). Set I :¼ Pn
i¼1 aiD

and Ji :¼ aiD \ aD, for 1 � i � n. By the hypothesis ðJiÞZ is an ideal of Z-finite
type. For each index i, 1 � i � n, let Fi be a finitely generated ideal of D such
that ðJiÞZ ¼ ðFiÞZ. Since DP is a valuation domain and a D-flat overring of D, we
have:

�X
i

Fi

�Z

¼
�X

i

ðFiÞZ
�Z

¼
�X

i

ðJiÞZ
�Z

¼
�X

i

Ji

�Z

¼
\
P2D

�X
i

ðaiD \ aDÞ
�
DP ¼

\
P2D

�X
i

ðaiD \ aDÞDP

�

¼
\
P2D

�X
i

ðaiDP \ aDPÞ
�

¼
\
P2D

��X
i

ai

�
DP \ aDP

�

¼
� \

P2D

�X
i

ai

�
DP

�
\
� \

P2D
aDP

�
¼

�X
i

aiD

�Z

\ ðaDÞZ

¼ IZ \ ðaDÞZ ¼ ðI \ aDÞZ (as Z is stable).

Step 2. Any finite intersection of nonzero principal ideals of D is an ideal of
Z-finite type.

Let a1; a2; . . . ;at 2 D be a family of nonzero elements. We may assume that
t � 2 and, by induction on t, we may assume that a1D \ a2D \ � � � \ at�1D is an ideal
of Z-finite type, i.e., there is a finitely generated ideal F of D such that
ða1D \ a2D \ � � � \ at�1DÞZ ¼ FZ. Then, we have:

ða1D \ a2D \ � � � \ atDÞZ ¼ ðða1D \ a2D \ � � � \ at�1DÞZ \ ðatDÞZÞZ

¼ ðFZ \ ðatDÞZÞZ ¼ ðF \ atDÞZ

and, by Step 1, this is an ideal of Z-finite type.
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Step 3. If I is a nonzero finitely generated ideal of D, then I�1 is a (fractional)
ideal of Z-finite type.

The case of an ideal I generated by two elements a; b 2 D follows immediately
from Remark 2.6, since we know already that ðaD \ bDÞZ is an ideal of Z-finite type
if and only if ððða; bÞDÞ�1ÞZ is a (fractional) ideal of Z-finite type. The conclusion
follows from the assumption that ðaD \ bDÞZ is an ideal of Z-finite type. The general
case of a finitely generated ideal I :¼ ðx1; x2; . . . ; xtÞD follows from Step 2. In fact,
without loss of generality, we can assume that xi 6¼ 0, for each 1 � i � t, thus:

I�1 ¼ ðD : IÞ ¼ D :
X
1�i�t

xiD
� �

¼
\

1�i�t

ðD : xiDÞ ¼
\

1�i�t

x�1
i D;

and, if we write x�1
i :¼ ai=d, with ai and d nonzero elements in D, for 1 � i � t, then:

� \
1�i�t

x�1
i D

�Z

¼
�
d�1

� \
1�i�t

aiD

��Z

¼ d�1

� \
1�i�t

aiD

�Z

¼ d�1FZ¼ ðd�1FÞZ;

for some F 2 fðDÞ.
Let I be any nonzero finitely generated ideal of D. By Step 3, we know that I�1 is

a (fractional) ideal of Z-finite type. Since DP is a valuation domain and a D-flat
overring of D, we have:

ðII�1ÞZ ¼
\
P2D

ðII�1ÞDP ¼
\
P2D

ðIDP I
�1DPÞ

¼
\
P2D

ðIDP ðIDPÞ�1Þ ¼
\
P2D

DP ¼ DZ:

We conclude that D is a PZMD. &

Theorem 2.9. Let Z be a semistar operation on an integral domain D. Then the
following statements are equivalent:

(i) D is a PZMD.
(ii) The following two conditions hold:

(a) For each subset Y � SpecðDÞ, such that ~ZZ ¼ ^eY :¼ ^ffZPZP jP 2 Yg,
where E

^eY :¼ TfðEDPÞeZP jP 2 Yg, for each E 2 FðDÞ, we have
that DP is a PZPMD, for each P 2 Y.

(b) For any pair of nonzero elements a, b 2 D, we have that ðaD \ bDÞZ
is an ideal of Z-finite type.

Proof. (i) ) (ii). We can assume that Z ¼ ~ZZ, since the notions of PZMD and
P~ZZMD coincide (Fontana et al., 2003, Sec. 3, Theorem 1) and ZP ¼ð~ZZÞP ¼fZPZP

(Proposition 2.3). By Lemma 2.7, we only need to show that condition (a) holds.
More generally, we show that, under the assumption (i), DP is a PZPMD, for each
P 2 SpecðDÞ. Let IDP be a finitely generated ideal of DP , with I a nonzero finitely
generated ideal of D. Since D is a PZMD by assumption, there exists a finitely
generated (fractional) ideal J of D such that ðIJÞZf ¼ ðIJÞZ ¼ DZ.
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Assume that P 2 QðZfÞ ¼ QðZÞ (since Z ¼ ~ZZ implies that Z ¼ Zf ). Then
EZDP ¼ EDP , for every E 2 FðDÞ (because Z ¼ ~ZZ) hence, in particular, ðIJÞZDP ¼
IJDP ¼ IDPJDP ¼ DP and thus IDP is invertible in DP (i.e., DP is a valuation domain
and so, trivially, it is a P�MD, for every semistar operation � on DP).

Assume that P 2 SpecðDÞnQðZÞ. Then ðIJÞZ ¼ DZ implies 1 2 IJDQ, for each
Q 2 QðZÞ; in particular 1 2 IJDQ; for each Q 2 QðZÞ such that Q � P (this set of
prime ideals is nonempty, since each minimal prime ideal of a nonzero principal
ideal of D is in QðZÞ, for any finite type semistar operation Z). Therefore, by the
proof of Proposition 2.3, D�TfIJDQ jQ2QðZÞ;Q� Pg¼ ðIJDPÞeZP � ðIDPJDPÞZP ¼
ðIDPJDPÞðZPÞf , thus we obtain ðIDPJDPÞðZPÞf ¼DZP and, hence, IDP is a ðZPÞf -invertible
ideal of DP (with ZP ¼ ðZPÞf ), i.e., DP is a PZPMD. See also (Fontana et al., 2003,
Sec. 3, Theorem 1).

(ii)) (i). Note that, by (a), we have that, for each E 2 FðDÞ, E~ZZ ¼ E
^eY ¼TfðEDPÞeZP j P 2 Yg ¼ TfTfðEDPÞDQ ¼ EDQ jQ2MðfZPZPÞg jP 2 Yg, where DQ is

a valuation domain, for each Q 2 MðfZPZPÞ and for each P 2 Y. By Theorem 2.8,
we deduce that D is a P~ZZMD, i.e., D is a PZMD (Fontana et al., 2003, Sec. 3,
Theorem 1). &

Remark 2.10. From the previous proof it follows that: if D is a PZMD, then DP is a
PZPMD, for each P 2 SpecðDÞ. In the next section, we will show that the converse
holds. Furthermore, in Sec. 4, we will deepen the study of the semistar operations
of the type ^Y; in particular, we will establish a natural relation between the semistar
operation ^eY (considered in Theorem 2.9) and the finite type stable semistar

operation, gð^YÞð^YÞ, canonically associated to ^Y, where ^Y is defined as follows:
E^Y :¼ TfðEDPÞZP jP 2 Yg, for each E 2 FðDÞ.

3. COMPATIBILITY WITH LOCALIZATIONS

Let D be an integral domain with quotient field K and let P 2 SpecðDÞ. On the
localization DP of D at P, we can consider the (semi)star operation vDP

[respectively,
the semistar operation vP :¼ _vvDP

D ] which denotes the (semi)star v-operation on DP

[respectively, the semistar operation on DP induced by the (semi)star v-operation
vD on D]. If the conductor ðD : DPÞ is zero, then ðDPÞvP ¼ ðDPÞvD ¼ ðD : ð0ÞÞ ¼ K,
hence, in general, the (semi)star operation vDP

(on DP) does not coincide with the
semistar operation vP (on DP). Let us now relate vP and vDP

in some particular case.
As a special case of Kang (1989, Lemma 3.4(2)) we have the following:

Lemma 3.1. Let D be an integral domain. For each F 2 fðDÞ and for each
P 2 SpecðDÞ, we have ðFDPÞvDP ¼ ðFvDDPÞvDP .

It is known that, if D is a PvMD, then D is a v-coherent domain in the sense of
Fontana and Gabelli (1996), i.e., if I, J 2 fðDÞ, then Iv \ Jv is an ideal of v-finite
type. Also in Fontana and Gabelli (1996) there is the following characterization of
v-coherent domains: D is a v-coherent domain if and only if, for each I 2 fðDÞ, there
exists F 2 fðDÞ such that I�1 ¼ Fv (i.e., I�1 is an ideal of v-finite type).
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Lemma 3.2. Let D be a v-coherent domain (in particular, a PvMD). For each
F 2 fðDÞ and for each P 2 SpecðDÞ, we have ðFDPÞvDP ¼ FvDDP .

Proof. Since we are assuming that D is a v-coherent domain, if I 2 fðDÞ, then there
exists F 2 fðDÞ such that I�1 ¼ FvD (or, equivalently, IvD ¼ F�1). Now we localize
both sides of the previous equality at P and we obtain:

FvDDP ¼ I�1DP ¼ ðIDPÞ�1:

Since IvD ¼ðD :FÞ¼ ðD :FÞvD , then ðFDPÞvDP ¼ðDP : ðDP :FDPÞÞ¼ ðDP : ðD :FÞDPÞ¼
ðDP : I

vDDPÞ � ðDP : IDPÞ ¼ ðD : IÞDP ¼ I�1DP ¼ FvDDP . By the previous Lemma 3.1,
we know that ðFDPÞvDP ¼ ðFvDDPÞvDP , thus we conclude immediately that ðFDPÞvDP ¼
FvDDP . &

Proposition 3.3. If D is a v-coherent domain (in particular, if D is a PvMD
domain) then, for each P 2 SpecðDÞ and for each F 2 fðDPÞ, we have FvDP � FvP .

Proof. For each F 2 fðDPÞ ð� FðDÞÞ there exists F0 2 fðDÞ such that F ¼ F0DP ,
then by using Lemma 3.2 we have:

FvDP ¼ ðF0DPÞvDP ¼ F0
vDDP

� FvDDP ¼ FvD ¼ ðD : ðD : FÞÞ ¼ FvP

(note that the first equality in the second line is a consequence of the following
general fact: if E 2 FðDPÞ, then ðD : EÞ is also in FðDPÞ and so EvD belongs to
FðDPÞ). &

Remark 3.4. Let Z be a semistar operation on D and, for each P 2 SpecðDÞ, let ZP

be the semistar operation induced on DP , defined in the previous section. For which
properties (P) concerning ðD;ZÞ we have that ðDP ;ZPÞ satisfies (P)?

A positive answer to this question was already given for the following properties:
(a) Z is a finite type semistar operation on D; (b) Z is a stable semistar operation on
D; (c) Z is a finite type spectral semistar operation on D; (d) Z is a finite type stable
semistar operation on D (i.e., Z ¼ ~ZZ); (e) Z is an e.a.b semistar operation on D; (f) Z
is an a.b semistar operation on D; (g) D is a PZMD, (cf. Lemma 2.1, Proposition 2.3,
Remarks 2.4 and 2.10).

In this ambit, a natural problem is to study the behavior of the generalized
Nagata ring and of the generalized Kronecker function ring in relation with the
localization at any prime ideal P. We have the following:

Proposition 3.5. Let Z be a semistar operation on an integral domain D and let
P 2 SpecðDÞ. Then the following statements hold:

(1) NaðD;ZÞDnP � NaðDP ;ZPÞ.
(2) NaðD;ZÞ ¼TfNaðDP;ZPÞ jP 2 SpecðDÞg ¼TfNaðDM ;ZMÞ jM2MaxðDÞg:
(3) KrðD;ZÞDnP � KrðDP;ZPÞ.
(4) KrðD;ZÞ ¼TfKrðDP;ZPÞ jP2SpecðDÞg ¼TfKrðDM ;ZMÞ jM 2MaxðDÞg:
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Proof. (1) Set Q :¼ QðZfÞ. Recall from the proof of Proposition 2.3, see Remark
2.5, that QððZf ÞPÞ ¼ fQDP jQ � P;Q 2 Qg. Set simply QP :¼ QððZfÞPÞ and
QP :¼ fQ 2 SpecðDÞ j QDP 2 QPg. Note also that Q ¼ SfQP jP 2 SpecðDÞg. We
know that NaðD;ZÞ ¼ NaðD;ZfÞ ¼

TfDQðXÞ jQ 2 Qg. Therefore NaðD;ZÞDnP ¼
ðTfDQðXÞ jQ 2 QgÞDnP � TfDQðXÞDnP j Q 2 Qg ¼ TfDQðXÞ j Q 2 Q and Q � Pg ¼TfDQðXÞ j Q 2 QPg ¼ NaðDP; ðZf ÞPÞ ¼ NaðDP;ZPÞ.

(2) Since Q ¼ SfQP j P 2 SpecðDÞg, then NaðD;ZÞ ¼ TfDQðXÞ j Q 2 Qg ¼TfTfDQðXÞ j Q 2 QPg j P 2 SpecðDÞg ¼ TfNaðDP;ZPÞ j P 2 SpecðDÞg. The proof
is similar for the MaxðDÞ case.

(3) We start by recalling, from Corollary 2.2, the following fact: A ZP-valuation
overring W of DP is the same as a Z-valuation overring W of D such that W � DP .

We know that KrðD;ZÞ ¼ TfWðXÞ jW is a Z-valuation overring of Dg.
Therefore, using Corollary 2.2, the fact that WðXÞDnP ¼ WDnPðXÞ and that WDnP is
a valuation overring of DP , for each valuation overring W of D, then

KrðD;ZÞDnP ¼
\

fWðXÞ jW is a Z-valuation overring of Dg
� �

DnP

�
\

fWðXÞ jW is a Z-valuation overring of D and W � DPg
¼

\
fWðXÞ jW is a ZP-valuation overring of Dg

¼ KrðDP;ZPÞ:

(4) From the Corollary 2.2 we deduce that fW jW is a Z-valuation overring
of Dg ¼ S ffW jW is a ZP-valuation overring of DPg jP 2 SpecðDÞg. Therefore,
we have that:

KrðD;ZÞ ¼
\

fWðXÞ jW is a Z-valuation overring of Dg

¼
\ \

fWðXÞ jW is a ZP-valuation overring of DPg jP 2 SpecðDÞ
n o

¼
\

fKrðDP ;ZPÞ j P 2 SpecðDÞg:

The proof is similar for the MaxðDÞ case. &

Next problem is to relate the Nagata ring or the Kronecker function ring,
associated to a localized semistar operation, to the corresponding localization of
the Nagata ring or of the Kronecker function ring, respectively. More precisely,

Problem 3.6. Let D be an integral domain, Z a semistar operation on D and P a
prime ideal of D.

(1) Under which conditions on D and P, NaðD;ZÞDnP ¼ NaðDP;ZPÞ?
(2) Under which conditions on D and P, KrðD;ZÞDnP ¼ KrðDP ;ZPÞ?
(3) In case of a Prüfer-Z-multiplication domain is the answer to both

questions positive?
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We deal first with the Nagata ring. Without loss of generality, we may assume
that Z ¼ ~ZZ. For each prime ideal P 2 SpecðDÞ, we have the following picture of finite
type stable semistar operations:

where Z [respectively, ZP ] is the semistar operation on D½X� [respectively, on DP½X�]
‘‘defined by the saturated multiplicative subset’’ NðZÞ [respectively, NðZPÞ],
i.e., EZ :¼ ED½X�NðZÞ ¼ ENaðD;ZÞ, for each E 2 FðD½X�Þ [respectively, EZP :¼
EDP½X�NðZPÞ ¼ ENaðDP;ZPÞ, for each E 2 FðDP½X�Þ], and jPðZÞ (or, simply, jðZÞ)
is the semistar operation on DP½X� defined as follows:

EjðZÞ :¼ z 2 KðXÞ jj�1 E :DP½X� zDP½X�
� � \ NðZÞ 6¼ ;	 


;

for each E 2 FðDP½X�Þ. Note that Z, ZP and jðZÞ are finite type stable semistar opera-
tions. In general, we have jðZÞ � ZP . Indeed, given an ideal J � DP½X� satisfying
j�1ðJÞ \ NðZÞ 6¼ ;, then there exists f 2 j�1ðJÞ such that cðfÞZ ¼ DZ, hence
ðcðjðfÞÞÞZP ¼ ðcðfÞDPÞZP ¼ ðcðfÞDPÞZ ¼ ðcðfÞZDPÞZ ¼ ðDZDPÞZ ¼ DZ

P ¼ D
ZP

P , thus
jðfÞ 2 NðZPÞ. From this remark, we deduce immediately that EjðZÞ � EZP , for each
E 2 FðDP½X�Þ.

With this background, now we use some well-known fact of hereditary torsion
theories (Bueso et al., 1995) or, equivalently, of localizing systems associated to
semistar operations (Fontana and Huckaba, 2000). More precisely, we know that
applying a finite type stable semistar operation is exactly the same as doing the
localization with respect to the associated finite type hereditary torsion theory
or with respect to the associated localizing system of ideals and, moreover, it is
well known that it is possible to ‘‘interchange’’, in a natural way, two subsequent
localizations of the previous type. Therefore:

NaðD;ZÞDnP ¼ D½X�Zð ÞDnP¼ D½X�DnP
� �jðZÞ ¼ DP½X�ð ÞjðZÞ

� DP½X�ZP ¼ NaðDP;ZPÞ;

since the localizing system of ideals of D½X� associated to Z is the set FZ :¼
fI ideal of D½X� j IZ ¼ D½X�Zg ¼ fI ideal of D½X� j I \ NðZÞ 6¼ ;g and the localizing
system of ideals of DP½X� associated to jðZÞ [respectively, ZP] is the set FjðZÞ :¼
fIDP½X� j I ideal of D½X�; ðIDP½X�ÞjðZÞ ¼ DP½X�jðZÞg ¼ fIDP½X� j I ideal of D½X�;
IDP½X� \ NðZÞ 6¼ ;g [respectively, FZP :¼ fJ ideal of DP½X� j JZP ¼ DP½X�ZPg ¼
fJ ideal of DP½X� j J \ NðZPÞ 6¼ ;g].
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To show that DP½X�jðZÞ and DP½X�ZP are either equals or different we only need
to compare the prime spectra associated to the finite type stable semistar operations
jðZÞ and ZP , defined on DP½X�. More precisely,

SpecZP ðDP½X�Þ ¼ fQ 2 SpecðDP½X�Þ j Q \ NðZPÞ ¼ ;g
¼ fQ 2 SpecðDP½X�Þ j for all g 2 Q ; cðgÞZ 6¼ ðDPÞZg

and

SpecjðZÞðDP½X�Þ ¼ fQ 2 SpecðDP½X�Þ j j�1ðQÞ \ NðZÞ ¼ ;g
¼ fQ 2 SpecðDP½X�Þ j for all f 2 j�1ðQÞ; cðfÞZ 6¼ DZg
¼ fQ 2 SpecðDP½X�Þ j for all f 2 j�1ðQÞ; there exists H 2

SpecZðDÞ with cðfÞ � Hg:

Recall also that the prime ideals in NaðD;ZÞDnP ¼ DP½X�jðZÞ [respectively, in
NaðDP;ZPÞ ¼ DP½X�ZP ] are in a natural bijective correspondence with prime ideals
in SpecjðZÞðDP½X�Þ [respectively, SpecZP ðDP½X�Þ].

Finally, observe that, in general, SpecZP ðDP½X�Þ � SpecjðZÞðDP½X�Þ, since if
Z1 � Z2 are two semistar operations on an integral domain R, then SpecZ2ðRÞ �
SpecZ1ðRÞ.

Remark 3.7. Let Z be a semistar operation defined on an arbitrary integral domain
D. Note that: if P 2 SpecZf ðDÞ, then NaðD;ZÞDnP ¼ NaðDP;ZPÞ. As a matter of fact,
without loss of generality, we can assume that Z ¼ ~ZZ and, in this case, PDP belongs
to SpecðZPÞf ðDPÞ and so (Fontana et al., 2003, Lemma 2.5(f)):

NaðD;ZÞDnP ¼
\

fDQðXÞ jQ 2 SpecZf ðDÞg
� �

DnP
¼ DPðXÞ ¼ NaðDP;ZPÞ :

Proposition 3.8. If D is a Bézout domain then, for each P 2 SpecðDÞ and for each
semistar operation Z on D, we have NaðD;ZÞDnP ¼ NaðDP;ZPÞ (and KrðD;ZÞDnP ¼
KrðDP;ZPÞ).

Proof. If D is a Bézout domain, then cðgÞD is a nonzero principal ideal, for any
nonzero polynomial g 2 D½X�. Let Q 2 SpecjðZÞðDP½X�Þ, if Q 6� PDP½X� there exists
f 2 QnPDP½X�, and, without loss of generality, we may also assume that f 2 ImðjÞ
(i.e., f ¼ f=1, with f 2 D½X�), such that cDP

ðfÞ ¼ cDðfÞDP ¼ DP . Henceforth,
cDðfÞ ¼ sD for some s 2 DnP. Therefore, f=s 2 D½X� and cDðf=sÞ ¼ D. On
the other hand, f 2 Q and thus f=s 2 j�1ðQÞ, which is a contradiction. As a
consequence, we have Q � PDP½X� and we conclude that SpecjðZÞðDP½X�Þ ¼
SpecZP ðDP½X�Þ. As we have noticed above, this fact implies that NaðD;ZÞDnP ¼
NaðDP;ZPÞ. The parenthetical equality follows from the fact that, for any Prüfer
domain D and for any semistar operation Z on D, NaðD;ZÞ ¼ KrðD;ZÞ (Fontana
et al., 2003, Remark 3.2) and so, in particular, NaðDP ;ZPÞ ¼ KrðDP;ZPÞ, for each
P 2 SpecðDÞ. &
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Next two examples show that the identity NaðD;ZÞDnP ¼ NaðDP;ZPÞ does not
hold in general.

Example 3.9. Let D :¼ Z½Y � and let Z :¼ d be the identical semistar operation on
D, i.e., EZ :¼ E, for any E 2 FðDÞ. We consider the prime ideal P :¼ 2Z½Y � ¼
2D ¼ ð2Þ. With the notation introduced in the previous Problem 3.6, in case of the
local domain Dð2Þ, we have:

SpecZð2Þ ðDð2Þ½X�Þ
¼ fQ 2 SpecðZ½Y �ð2Þ½X�Þ jQ � 2Z½Y �ð2Þ½X�g�� SpecjðZÞððDð2ÞÞ½X�Þ
¼ fQ 2 SpecðZ½Y �ð2Þ½X�Þ j for all f 2 j�1ðQÞ; there exists

H 2 SpecðDÞ with cðfÞ � Hg:

As a matter of fact, if we take f :¼ YX þ 3 2 D½X�, then cðfÞ ¼ ðY ; 3Þ 6¼ Z½Y � ¼ D,
hence there exists a maximal ideal H of D such that f 2 H½X�. In addition, jðfÞ is
not invertible in Dð2Þ½X� and jðfÞ 62 2Dð2Þ½X�, hence there exists Q 2
SpecjðZÞ ðDð2Þ½X�Þ, with Q 6¼ 2Dð2Þ½X�, such that jðfÞ 2 Q; in particular, Q 62
SpecZð2Þ ðDð2Þ½X�Þ. As a consequence, we have NaðD;ZÞDnP ¼NaðD;dÞDnð2Þ 6¼
NaðDð2Þ; dð2ÞÞ ¼NaðDP;ZPÞ.

It is also possible to give a direct arithmetic proof of the previous fact, that is
NaðD;dÞDnð2Þ 6¼ NaðDð2Þ;dð2ÞÞ. We consider as before f :¼ YX þ 3 2 D½X�, then
jðfÞ 2 Dð2Þ½X� satisfies cDð2Þ ðjðfÞÞ ¼ ðY ; 3ÞDð2Þ ¼ Dð2Þ, hence jðfÞ is invertible in
NaðDð2Þ;dð2ÞÞ. If f is invertible in NaðD;dÞDnð2Þ, then there exist h 2 D½X�,
k 2 NðdÞ and b 2 Dnð2Þ such that fh ¼ kb. Since D is a factorial domain, let
b ¼ p1p2 � � �pt be a factorization in prime elements of b in D. For any pi we have
either pi j f or pi jh, hence we may find an identity of the following type:
fh0 ¼ kp1p2 � � �ps, where h0 2 D½X�, s � t, pi jh0, for any i ¼ 1; 2; . . . ; s.

Case 1. If cðh0Þ ¼ D, then cðfÞ ¼ cðfh0Þ ¼ cðkÞp1p2 � � �ps ¼ p1p2 � � �ps, which is a
contradiction, since cðfÞ is not a principal ideal of D.

Case 2. If cðh0Þ 6¼ D, then there exists a maximal ideal H in D such that cðh0Þ � H.
From fh0 ¼ kp1p2 � � �ps, with pi jh0, for any i ¼ 1; 2; . . . ; s, we have
p1 � � �psf

0h0 ¼ kp1 � � �ps, for some f 0 2 D½X�. Therefore, cðf 0h0Þ ¼ cðkÞ ¼ D. On
the other hand, cðf 0h0Þ � cðh0Þ � H 6¼ D, which is a contradiction.

From the previous argument we deduce that f is not invertible in the ring
NaðD;dÞDnð2Þ, and so NaðD;dÞDnð2Þ 6¼ NaðDð2Þ;dð2ÞÞ.

Example 3.10. Let D be an integral domain and assume that D possesses two
incomparable prime ideals P1 and P2. Set P :¼ P1 and Z :¼ ZfDP2

g (i.e., EZ :¼ EDP2
,

for each E 2 FðDÞ), then we have:

NaðD;ZÞDnP ¼ ðD½X�NðZÞÞDnP1
¼ ðDP1

½X�ÞNðZÞ
NaðDP ;ZPÞ ¼ DP1

½X�NðZP1
Þ:
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(For simplicity of notation, we have identified D½X�, and NðZ), with its canonical
image in DP1

½X�). We claim that DP1
½X�NðZÞ 6¼ DP1

½X�NðZP1
Þ.

We compare the two multiplicative sets NðZÞ and NðZP1
Þ; more precisely, we

show that there is a canonical injective map ðDP1
½X�ÞNðZÞ �!DP1

½X�NðZP1
Þ, which is

not surjective.
Note that if f 2 NðZÞð� D½X�Þ, then cðfÞZ ¼ DZ, hence ðcðfÞDP1

ÞZP1 ¼
ðcðfÞDP1

ÞZ ¼ ðDZDP1
ÞZ ¼ DZ

P1
¼ D

ZP1
P1

, i.e., f 2 NðZP1
Þ.

Let f 2 DP1
½X�, then there is s0 2 DnP1 such that f ¼ s0f 0 with f 0 2 D½X�, then –

without loss of generality – we may assume f 2 D½X�.
If f 2 NðZP1

Þ \D½X�, then cðfÞZP1 ¼ ðcðfÞDP1
ÞZ ¼ ðDP1

ÞZ. On the other hand,
the finite type stable semistar operation Z and the localization at P1 commute, as
they are defined by hereditary torsion theories of finite type. Therefore, we have
cðfÞZDP1

¼ ðcðfÞDP1
ÞZ ¼ ðDP1

ÞZ ¼ ðDZÞDnP1
.

It is obvious that, in general, the previous equality does not imply cðfÞZ ¼ DZ,
i.e., f 2 NðZÞ. In fact, if f 2 P2½X�nP1½X�, then cðfÞ � P2nP1 and cðfÞDP1

¼ DP1

hence, in particular, cðfÞZDP1
¼ ðDZÞDnP1

. On the other hand, cðfÞZ ¼ cðfÞDP2
�

P2DP2
��DP2

¼ DZ, hence f 62 NðZÞ.
Since f 2 NðZP1

Þ, then 1=f 2 ðDP1
½X�ÞNðZP1

Þ. If 1=f ¼ h=k, for some h=k 2
DP1

½X�NðZÞ, where h 2 DP1
½X� and k 2 NðZÞ, then hf ¼ k 2 NðZÞ. Therefore,

cðhfÞZ¼ cðkÞZ¼DZ, which is a contradiction, as cðhfÞZ� cðfÞZ�P2DP2
6¼ DP2

¼DZ.

Let us now consider the second question considered in Problem 3.6, concerning
the Kronecker function rings. Also in this case the answer is negative in general, as
the following Example 3.12 proves. First we give a positive example.

Example 3.11. Let V a valuation overring of an integral domain D, with maximal
ideal M, which is not essential (i.e., DP �� V , where P :¼ M \ V ). Set Z :¼ ZfVg
(i.e., EZ :¼ EV , for each E 2 FðDÞ). In this situation, Z is a finite type a.b. semistar
operation on D and P is the only maximal quasi-Z-ideal of D.

In this particular case, the description of the Kronecker function ring KrðD;ZÞ is
rather easy. Let a, b 2 V , we set as usual a j Vb if there exists v 2 V such that av ¼ b

and, for each f 2 D½X�, we denote by aðfÞ a generator (in V ) of the principal ideal
cðfÞV . Then, using also Fontana and Loper (2001a, Example 3.6), we have:

KrðD;ZÞ ¼ f

g
j f ; g 2 D½X�nf0g; with aðgÞ j VaðfÞ

� �
[ f0g

¼ V ðXÞ :

Therefore KrðD;ZÞDnP ¼ KrðD;ZÞ, because each element b 2 DnP is a unit in V

(i.e., cðbÞZ ¼ ðbDÞZ ¼ bV ¼ V ).
On the other hand, KrðDP;ZPÞ has a similar description:

KrðDP;ZPÞ ¼ bf

cg
j f ; g 2 D½X�nf0g; b; c 2 DnP with aðcgÞ j VaðbfÞ

� �
¼ VðXÞ;

and we conclude immediately that KrðDP;ZPÞ ¼ KrðD;ZÞ ¼ KrðD;ZÞDnP .
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Next we give a negative example for the Kronecker function rings case.

Example 3.12. Let D :¼ Z½ ffiffiffiffiffiffiffi�5
p �. Since D is a Dedekind domain, if d is the identi-

cal semistar operation on D, then KrðD;dÞ ¼ NaðD;dÞ ¼ DðXÞ. We take f :¼
ð1þ ffiffiffiffiffiffiffi�5

p Þ þ ð1� ffiffiffiffiffiffiffi�5
p ÞX 2 D½X� and we consider, for instance, the prime ideal

P :¼ ð3; 1þ ffiffiffiffiffiffiffi�5
p ÞD��Q :¼ ð1þ ffiffiffiffiffiffiffi�5

p
; 1� ffiffiffiffiffiffiffi�5

p ÞD ð¼ radð2DÞÞ. Then, arguing for
f as in Example 3.9, we obtain that DðXÞDnP ¼ KrðD;dÞDnP 6¼ KrðDP;dPÞ ¼ DPðXÞ.

Note that this example produces also a negative answer to Problem 3.6 (3).

We finish this section with a local characterization of PZMDs. Recall that
PZMDs were characterized in Fontana et al. (2003), using quasi-Zf -prime ideals;
here we extend this characterization by using the whole prime spectrum. In particu-
lar, next result provides new examples of nontrivial local PZMDs, by taking the
localizations of a PZMD at its prime non quasi-Zf -ideals.

Theorem 3.13. Let Z be a semistar operation on an integral domain D. Then the
following statements are equivalent:

(i) D is a PZMD.
(ii) DP is a PZPMD, for each P 2 SpecðDÞ.
(iii) DM is a PZMMD, for each M 2 MaxðDÞ.
(iv) DN is a PZNMD, for each N 2 MðZf Þ.
(v) DQ is a PZQMD, for each Q 2 QðZfÞ.

Proof. We already proved that (i) ) (ii) (Remark 2.10). Obviously, (ii) ) (iii), (v);
and (v) ) (iv).

(iii) (or (ii)) ) (i). Recall from Fontana et al. (2003, Sec. 3, Theorem 1 and
Remark 2) that D is a PZMD if and only if NaðD;ZÞ ¼ KrðD;ZÞ and this last equal-
ity follows from Proposition 3.5 (2) and (4).

(iv)) (i). We have already observed (Remark 3.7) that NaðD;ZÞDnN ¼
NaðDN ;ZN Þ and we know that KrðD;ZÞDnN � KrðDN ;ZN Þ, for each N 2 MðZfÞ
(Proposition 3.5 (3)). On the other hand, by assumption, NaðDN ;ZN Þ ¼
KrðDN ;ZN Þ, for each N 2 MðZfÞ. From the previous relations and from the fact that
NaðD;ZÞ � KrðD;ZÞ, we deduce immediately that NaðD;ZÞDnN ¼ KrðD;ZÞDnN ,
for each N 2 MðZfÞ. The conclusion follows immediately, since NaðD;ZÞ ¼TfNaðD;ZÞDnN jN 2 MðZfÞg and KrðD;ZÞ ¼ TfKrðD;ZÞDnN jN 2 MðZfÞg
(Proposition 3.5 (2) and (4)). &

Remark 3.14. Zafrullah (1988), proves a different local characterization of PZMDs
in the particular case where Z ¼ v. More precisely, he obtains that a domain D is a
PvMD if and only if (a) DP is a PvDP

MD for every prime ideal P of D and (b) for
every prime tD-ideal Q of D, QDQ is a tDQ

-ideal (about condition (b) see also Remark
4.12). As we have already observed at the beginning of this section, recall that vDP

is
different, in general, from vP .
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4. INDUCING SEMISTAR OPERATIONS

In this section, we deal with the converse of the problem considered in the first
part of this paper, i.e., we start from a family of ‘‘local’’ semistar operations on the
localized rings DP , where P varies in a nonempty set of prime ideals of an integral
domain D, and the goal is the description of a gluing process for building a new
‘‘global’’ semistar operation on the ring D.

Let D be an integral domain. Let P be a prime ideal of D and let �P be a semistar
operation on the localization DP of D at P. Then we may consider �

_
P , the induced

semistar operation on D defined as follows, for each E 2 FðDÞ:

E
�
_
P ¼ EDPð Þ�P :

Let Y be a given nonempty subset of SpecðDÞ and let f�P jP 2 Yg be a family of
semistar operations, where �P is a semistar operation on the localization DP of D at
P. We define ^ :¼ ^Y;f�Pg :¼ ^Y :¼ ^f�

_
P jP 2 Yg as the semistar operation on D

defined as follows, for each E 2 FðDÞ,

E^ :¼
\

fðEDPÞ�P jP 2 Yg:

If Y is the empty set, then we set ^ :¼ ^; :¼ eD. Given a semistar operation Z on D,
for each prime ideal P of D, we denote as usual by ZP the semistar operation _ZZDP on
DP , deduced from Z by ascent to DP (i.e., EZP :¼ EZ, for each E 2 FðDPÞ ð� FðDÞÞÞ;
in particular if Z coincides with the semistar operation ^ :¼ ^Y;f�Pg defined on D, we
can consider a semistar operation ^P on DP , for each P 2 Y.

Note that:

(a) For each P 2 Y, ðE^DPÞ�P ¼ ðEDPÞ�P .
(b) For each P 2 Y, ^P � �P .
(c) ^ ¼ ^f

_̂
P jP 2 Yg ¼ ^f�

_
P jP 2 Yg:

(d) For each semistar operation Z on D, Z �
Ẑ
:¼ ^fZ

_
P jP 2 SpecðDÞg:

(a) We remark that: E^ ¼ TfðEDP0 Þ�P0 jP0 2 Yg � ðEDPÞ�P , for each P 2 Y.
Therefore, we deduce that:

ðE^DPÞ�P � ððEDPÞ�PDPÞ�P ¼ ðEDPDPÞ�P ¼ ðEDPÞ�P :

The opposite inclusion is trivial.

(b), (c) and (d) are straightforward.

Theorem 4.1. Let Z be a semistar operation on an integral domain D. For each
P 2 SpecðDÞ, denote as usual by ZP the semistar operation _ZZDP on DP , induced
from Z by ascent to DP . Set

Ẑ
:¼ ^fZ

_
P jP 2 SpecðDÞg. If Z is a spectral semistar

operation on D then Z ¼
Ẑ
.
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Proof. Let D � SpecðDÞ be such that Z ¼ ZD. For each E 2 FðDÞ, then:

EZ ¼ ðEZÞZ ¼
\

fEDQ jQ 2 Dg
� �Z

�
\

fðEDQÞZ jQ 2 Dg

¼
\

fðEDQÞZQ jQ 2 Dg ¼
\

fEZ
_
Q jQ 2 Dg

�
\

fEZ
_
P jP 2 SpecðDÞg ¼ E Ẑ ¼

\
fðEDPÞZP jP 2 SpecðDÞg � EZ:

As for any P 2 D and any E 2 FðDÞ we have ðEDPÞZ :¼ TfEDPDQ jQ 2 Dg �
EDPDP ¼ EDP . &

Lemma 4.2. Let D be an integral domain and let P be a prime ideal of D. If �P is a
spectral semistar operation on DP , defined by a nonempty subset DP � SpecðDPÞ,
then �

_
P is a spectral semistar operation on D defined by the (nonempty) set

D
_
P :¼ fQ 2 SpecðDÞ jQDP 2 DPg.

Proof. For each E 2 FðDÞ:

E
�
_
P ¼ ðEDPÞ�P ¼

\
fðEDPÞH jH 2 DPg

¼
\

fEDQ jQDP ¼: H 2 DPg ¼
\

fEDQ jQ 2 D
_
Pg ¼ E

ZD
_
P
:

&

Corollary 4.3. Let D be an integral domain and let Y be a nonempty subset of
SpecðDÞ. If �P is a spectral semistar operation on DP , defined by a subset
DP � SpecðDPÞ, for each P 2 Y, and if ^ :¼ ^Y;f�

_
Pg :¼ ^f�

_
P jP 2 Yg is the semi-

star operation on D defined as above, then ^ is a spectral semistar operation on
D defined by the subset D :¼ SfD

_
P jP 2 Yg � SpecðDÞ (i.e., ^ ¼ ZD).

Proof. This statement is a straightforward consequence of the previous
Lemma 4.2. &

Lemma 4.4. Let D be an integral domain with quotient field K. Let Y be a given
nonempty subset of SpecðDÞ and let f�P jP 2 Yg be a family of semistar opera-
tions, where �P is a semistar operation on the localization DP of D at P. Assume that
�P is a semistar operation of finite type and that the family fDP jP 2 Yg has the
finite character (i.e., for each non zero element x 2 K, xDP ¼ DP for almost all
the DP’s). Then the semistar operation ^ :¼ ^Y;f�Pg :¼ ^f�

_
P jP 2 Yg is a finite type

semistar operation on D.

Proof. Let E 2 FðDÞ, recall that E^ :¼ TfðEDPÞ�P jP 2 Yg. We want to show that
if x 2 E^ then there exists F � E, with F 2 fðDÞ, such that x 2 F^. By the finite char-
acter condition, we may assume that xDP ¼ DP , for all P 2 YnfP1;P2; . . . ;Prg. Since
x 2 TfðEDPÞ�P jP 2 Yg, by the finiteness condition on the �P’s, we can find Fi � E,
with Fi 2 fðDÞ, such that xDPi

� ðFiDPi
Þ�Pi � ðEDPi

Þ�Pi , for 1 � i � r, and
ðFiDPÞ�P ¼ ðDPÞ�P , for each P 2 YnfP1;P2; . . . ;Prg and each 1 � i � r.
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If we set F :¼ F1 þ F2 þ � � � þ Fr , then we have that F � E, with F 2 fðDÞ, such
that FDP ¼ DP ¼ xDP , for each P 2 YnfP1;P2; . . . ;Prg, and ðFDPi

Þ�Pi � ðFiDPi
Þ�Pi �

xDPi
, for 1 � i � r. We conclude that x 2 F^ ¼ TfðFDPÞ�P jP 2 Yg. &

Corollary 4.5. Let D be an integral domain, let Y be a nonempty subset of SpecðDÞ
and let f�P jP 2 Yg be a family of semistar operations, where �P is a semistar
operation on the localization DP of D at P 2 Y. We can associate to the semistar
operation ^Y :¼ ^Y;f�Pg :¼ ^f�

_
P jP 2 Yg (defined on D) two semistar operations

(both defined on D): f̂Y^Y and ^ff�
_
P�
_
P jP 2 Yg ¼: ^Y;fe�Pg :¼^eY. Assume that the

family fDP j P 2 Yg has the finite character, then:

f̂Y^Y ¼ ^eY:
Proof. By the previous Lemma 4.4, ^eY is a finite type semistar operation onD, sincef�
_
P�
_
P is a finite type semistar operation onD, becausef�P�P is a finite type semistar operation

on DP , for each P 2 Y, and the family fDP jP 2 Yg has the finite character.
Note that f�P�P is a spectral semistar operation on DP , defined by the subset

DP :¼ Specð�PÞf ðDPÞ. In this situation, we know from Corollary 4.3 and Lemma
4.2 that ^eY is a spectral semistar operation on D defined by the set D :¼SfD

_
P jP 2 Yg ð� SpecðDÞÞ, i.e., ^eY ¼ ZD. Therefore, we deduce that f̂eY^eY ¼ ^eY, since^eY is a finite type stable semistar operation (Fontana and Huckaba, 2000, Corollary

3.9(2)). On the other hand, ^eY � ^Y (becausef�
_
P�
_
P � �

_
P , for each P 2 Y), thus we have

also that ^eY ¼ f̂eY^eY � f̂Y^Y. Moreover, for each Q 2 D, QDP � ðQDPÞð�PÞf \DP 6¼ DP ,
for some P 2 Y. Since ^Yð Þf � ð�

_
PÞf , then Q � Qð^YÞf \D 6¼ D. From this fact, we

deduce that f̂Y^Y � ZD ¼ ^eY and so we conclude that f̂Y^Y ¼ ^eY: &

Theorem 4.6. Let D be an integral domain, let Y be a nonempty subset of SpecðDÞ
and let f�P jP 2 Yg be a family of spectral semistar operations, where �P is a semistar
operation on the localizationDP ofDatP 2 Y, defined bya subsetDP � SpecðDPÞ. Set
D
_
P :¼ fQ 2 SpecðDÞ jQDP 2 DPg and set^ :¼ ^Y;f�Pg :¼ ^Y. Assume that the family

of spectral semistar operations f�P jP 2 Yg satisfies the following condition:

(#) For each pair of prime ideals P, P0 2 Y, with P0 6¼ P, then

D
_
P \ P# � D

_
P:

Set D :¼ fQ 2 SpecðDÞ jQDP 2 DP; for some P 2 Yg. Then, the spectral semistar
operation Z :¼ ZD on D verifies the following properties:

(a) For each P 2 Y, ZP ¼ �P (where, as usual, ZP :¼ _ZZDP).
(b) ðZD ¼ÞZ ¼ ^ð¼ ^YÞ (hence, in particular,^P ¼ ZP ¼ �P , for each P 2 Y).

Proof. (a) Fix P 2 Y and, to avoid the trivial case, assume that P 6¼ ð0Þ. Set
Y0 :¼ fP0 2 Y jP0 \ P does not contain a nonzero prime idealg; and

Y1 :¼ fP00 2 Y jP00 \ P contains a nonzero prime idealg:
Note that if P0 2 Y0, then DPDP0 coincides necessarily with K, the quotient field of D;
note also that P belongs to Y1.
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Assume that P00 2 Y1. We know that there is a bijective correspondence between
prime ideal of DPDP00 and the set fH 2 SpecðDÞ jH � P00 \ Pg, hence DPDP00 ¼TfDH jH � P00 \ P and H 2 SpecðDÞg � K. Therefore, by assumption, for each
P00 2Y1, the set D

_
P00 \P# �D

_
P and so, for each G2F ðDPÞ, ðGDP00 Þ�P00 � ðGDPÞ�P ¼

G�P . Henceforth, for each nontrivial G 2F ðDPÞ, we have K � \ fðGDP00 Þ�P00 jP00 2
Y1g ¼ ðGDPÞ�P ¼ G�P ; therefore:

GZP ¼ GZ ¼ GZD

¼
\ \

fGDQ jQDH 2 DHg jH 2 Y
n o

¼
\ \

fGDQ jQ 2 D; Q � Hg jH 2 Y
n o

¼
\

fðGDHÞ�H jH 2 Yg

¼
\

fðGDP0 Þ�P0 jP0 2 Y0g
� �

\
\

fðGDP00 Þ�P00 jP00 2 Y1g
� �

¼ K \
\

fðGDP00 Þ�P00 jP00 2 Y1g
� �

¼ G�P :

(b) If E 2 FðDÞ, then

EZD ¼
\ \

fEDQ jQDP 2 DPg jP 2 Y
n o

¼
\ \

fðEDPÞDQ jQDP 2 DPg jP 2 Y
n o

¼
\

fðEDPÞ�P jP 2 Yg
¼ E^:

Next example shows that condition (#) does not hold in general. Later (Example
4.13), we will give an example for which condition (#) holds.

Example 4.7. Let D be an integral domain and let Y be a nonempty subset of
SpecðDÞ and let f�P jP 2 Yg be a family of semistar operations, where �P is a semi-
star operation on the localization DP of D at P 2 Y. Let DP :¼ Qðð�PÞfÞ ¼
Specð�PÞf ðDPÞ be the set of all the quasi-ð�PÞf -prime ideals of DP , for each P 2 Y.
The family of spectral semistar operations ff�P�P jP 2 Yg does not verify condition ð#Þ.

For instance, let D be a domain with two incomparable prime ideals P1 and P2

containing a common nonzero prime ideal Q. Let �P1
:¼ d ð¼dDP1

Þ be the identical
semistar operation on DP1

, and let �P2
:¼ e ð¼ eDP2

Þ be the trivial semistar operation
on DP2

. We have that �P1
and �P2

are both finite type stable semistar operations (i.e.,
�P1

¼ f�P1
�P1

and �P2
¼ f�P2

�P2
), with D

_
P1

¼ fP 2 SpecðDÞ jP � P1g and D
_
P2

¼ fð0Þg. The
idealQ produces a counterexample to condition (#). IndeedQ 2 D

_
P1
\ P

#
2 andQ 62 D

_
P2
.

Moreover, set Y :¼ fP1;P2;Qg and Y0 :¼ fP1;P2g. Let �P1
and �P2

be as above
and let �Q :¼ e ð¼ eDQ

Þ (thus �Q ¼ f�Q�Q is also a finite type stable semistar operation).
Note that DP1

¼ fPDP1
2 SpecðDP1

Þ jP � P1g, DP2
¼ fð0Þ 2 SpecðDP2

Þg and DQ ¼
fð0Þ 2 SpecðDQÞg. In this situation, D :¼ D

_
P1
[ D

_
P2
[ D

_
Q ¼ fP 2 SpecðDÞ jP � P1g.
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Therefore, it is easy to see that ^Y ¼ ^Y0 and it coincides with the finite type spectral
semistar operation Z :¼ ZD, but ð^YÞQ ¼ ZQ ¼ dQ � eQ ¼ �Q:

Theorem 4.8. Let D be an integral domain, let Y be a nonempty subset of SpecðDÞ
and let f�P jP 2 Yg be a family of spectral semistar operations, where �P is a semi-
star operation on the localization DP of D at P 2 Y, defined by a subset
DP � SpecðDPÞ. Set ^ :¼ ^Y;f�Pg. Assume that f�P jP 2 Yg satisfies the condition
(#) and that �P is an e.a.b. [respectively, a.b.] semistar operation on DP . Then the
spectral semistar operation ^ (Theorem 4.6ðbÞ) is also an e.a.b. [respectively,
a.b.] semistar operation on D.

Proof. Note that from the previous Theorem 4.6, we have that ^P ¼ �P , for each
P 2 Y. Let F , G, H 2 fðDÞ and suppose that ðFGÞ^ � ðFHÞ^. Then, for each P 2 Y,
we have ðFDPGDPÞ�P ¼ ðFGDPÞ�P ¼ ððFGÞ^DPÞ�P � ððFHÞ^DPÞ�P ¼ ðFDPHDPÞ�P .
Therefore, for each P 2 Y, from the e.a.b. hypothesis on �P we have
ðGDPÞ�P � ðHDPÞ�P . We conclude immediately, since we have that G^ ¼TfðGDPÞ�P jP 2 Yg � TfðHDPÞ�P jP 2 Yg ¼ H^. A similar argument shows the
a.b. case. &

We apply next the previous theory to the case of the finite type stable (semi)star
operation w :¼ ~vv canonically associated to the (semi)star operation v.

Corollary 4.9. Let D be an integral domain. For each P 2 SpecðDÞ, let wDP
:¼ fvDP

vDP

be the finite type spectral (semi)star operation on DP , defined by the set SpectDP ðDPÞ
of all the t-prime ideals of DP . If

�̂̂
w
:¼ ^fw

_
DP

jP 2 SpecðDÞg

then �̂̂
w
is a spectral (semi)star operation on D defined by the following set of prime

ideals of D:

� :¼
[

ffQ 2 SpecðDÞ jQDP 2 SpectDP ðDPÞg jP 2 SpecðDÞg;

i.e., �̂̂
w
¼ Z�.

Proof. This statement is a particular case of Corollary 4.3. &

At this point, it is natural to investigate the relationship between the spectral
(semi)star operation �̂̂

w
(considered in the previous Corollary 4.9) and the finite type

spectral (semi)star operation, wD :¼ fvDvD, on D defined by the set SpectDðDÞ of all the
t-prime ideals of D. We will see that, in general, they are different.

Lemma 4.10. Let D be an integral domain. For any prime ideal P of D, we denote
by tP the semistar operation ðtDÞP of DP (defined by EtP :¼ EtD ¼ SfFvD ¼
ðD : ðD : FÞÞ jF � E and F 2 fðDÞg, for each E 2 FðDPÞ). Let P be a prime ideal
of D, we have that P 2 SpectDðDÞ if and only if PDP 2 SpectP ðDPÞ. In addition,
for any prime ideal P, we have SpectDP ðDPÞ � SpectP ðDÞ.
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Proof. ()). Assume that, for some P 2 SpectDðDÞ, we have ðPDPÞtP � PDP . Then
there exists z 2 ðPDPÞtP ¼ ðPDPÞtD ¼ SfFvD jF � PDP and F 2 fðDÞg, but z 62 PDP .
Hence, for some F � PDP and F 2 fðDÞ, z 2 FvDnPDP . Since F is finitely generated
and F � PDP then, for some b 2 DnP, we have that bF � PDP \D ¼ P. Therefore,
bz 2 bFvD ¼ ðbFÞvD � PtD ¼ P, thus z 2 b�1P � PDP , which is a contradiction.

((). Assume that ðPDPÞtP ¼ PDP . Note that PDP ¼ ðPDPÞtP ¼ ðPDPÞtD � PtD .
Henceforth, P ¼ PDP \D � PtD \D ¼ PtD , hence P ¼ PtD .

For the final statement we proceed as follows. Let PDP 2 SpectDP ðDPÞ and let F
be a finitely generated ideal of D contained in P, then FvD � ðFDPÞvD �
ðFDPÞvDP � ðPDPÞtDP ¼ PDP . Therefore PtD � PDP and so PtD ¼ P. &

Remark 4.11. The same proof given above (Lemma 4.10) shows the following
general statement: Let P, Q be two prime ideals of an integral domain D, then
PDQ 2 SpectQðDQÞ, for each prime ideal Q, with P � Q, if and only if P 2 SpectDðDÞ.

Remark 4.12. We emphasize that, in general, the semistar operation tP does not
coincide with the (semi)star operation tDP

, i.e., tP is not the t-operation on DP . For
a prime tD-ideal P of D, the question of when the extended ideal PDP is a tDP

-ideal
was studied by Zafrullah (1988, 1990) (where the tD-primes P of D such that PDP is a
tDP

-ideal were called well behaved prime t-ideals).
For instance, if P is not a well behaved prime t-ideal of D, then necessarily

PDP ¼ ðPDPÞtP � ðPDPÞtDP .
Using the same argument of the proof of the last statement of Lemma 4.10, note

that, if PDQ is a tDQ
-ideal, (for some prime ideal Q containing P) then P is a t-ideal of

D. Therefore, using Remark 4.11, we have: if Q 2 SpecðDÞ satisfies Q � P and
PDQ 2 SpectDQ ðDQÞ, then P 2 SpectDðDÞ, and this happens if and only if for any
Q 2 SpecðDÞ, such that Q � P, we have PDQ 2 SpectQðDQÞ.

Example 4.13. The set of all the t-prime ideals of an integral domain D induces a
‘‘natural’’ example for which condition ð#Þ of Theorem 4.6 holds.

For each P 2 SpecðDÞ, we consider on DP the set OP :¼ SpectP ðDPÞ. Let oP be
the spectral semistar operation on DP , defined by OP , i.e., oP :¼ ZOP

. From Remark
4.11, we deduce immediately that O

_
P0 \ P# � O

_
P , for each pair P, P0 2 SpecðDÞ such

that P 6¼ P0. Therefore, the family of spectral semistar operations foP jP 2 SpecðDÞg
verifies condition (#).

Corollary 4.14. Let D be an integral domain. Let wD :¼ fvDvD be the finite type
spectral (semi)star operation on D, defined by the set SpectDðDÞ of all the t-prime
ideals of D. For each P 2 SpecðDÞ, set as usual wP :¼ ðwDÞP and let wDP

:¼ fvDP
vDP

[respectively, oP] be the spectral semistar operation on DP , defined by the set
SpectDP ðDPÞ [respectively, SpectP ðDPÞ]. Then:

wD ¼ ^fo
_
P jP 2 SpectDðDÞg ¼ ^fw

_
P jP 2 SpectDðDÞg

¼
ŵ
ð:¼ ^fw

_
P jP 2 SpecðDÞgÞ

� �̂̂
w
ð:¼ ^fw

_
P jP 2 SpecðDÞgÞ:
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Proof. From Theorem 4.6 (and Example 4.13), we have that ^fo
_
P jP 2 SpectDðDÞg

is the spectral semistar operation ZO, where O :¼ fQ 2 SpecðDÞ jQDP 2 SpectP ðDPÞ,
for some P 2 SpectDðDÞg. It is easy to see that O ¼ SpectDðDÞ, hence wD ¼
ZO ¼ ^fo

_
P jP 2 SpectDðDÞg. Moreover, again from Theorem 4.6, we have that

wP ¼ ðZOÞP ¼ oP , for each P 2 SpectDðDÞ, hence ^fw
_
P jP 2 SpectDðDÞg ¼

^fo
_
P jP 2 SpectDðDÞg ¼ wD. The last inequality in the statement is a consequence

of Corollary 4.9, since by Lemma 4.10 � � O and thus wD ¼ ZO � Z� ¼ �̂̂
w
. &
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