An amalgamated duplication of a ring

along an ideal

presented by

Marco Fontana
Universita degli Studi “Roma Tre”

joint work with
Marco D'Anna
Universita degli Studi di Catania



1. INTRODUCTION. By extending a notion introduced in the
integral domain case by W. Heinzer, J. Huckaba and I. Papick [HHP-
1998], we can say that a regular ideal I of a ring R is a multiplicative-
canonical ideal (or simply, an m—canonical ideal ) of R if each regular
fractional ideal J of R is I—reflexive, i.e.

J=U:{:J)) =Homg(Homg(J,I),1),
(where (I :J):={zxeT(R)|xJ CI},and T(R) denotes the total ring of fractions
of R).
Recall that, given a 1-dimensional Cohen-Macaulay ring R, R is a
Gorenstein ring if and only if R has an m—canonical ideal isomorphic
to R, i.e.

J=(R:(R:J)) = Jv,

for each regular fractional ideal J of R (cf. J. Herzog and E. Kunz
[HK-1971, Korollar 3.4] and E. Matlis [M-1973, Chapter XIII]).
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In higher dimension the problem of the relations between Cohen-
Macaulay and Gorenstein rings is more delicate.

Given a Cohen-Macaulay local ring (R, M, k) of dimension d, a cano-
nical module E is an R—module such that

dimy(Extz(k, E)) = 6; 4.

It is wellknown that if a Cohen-Macaulay local ring has a canonical

module this is uniquelly determined, up to isomorphisms. In general,
given a Cohen-Macaulay local ring R,

R is a Gorenstein ring < R has a canonical module isomorphic to R

(cf. W. Bruns and J. Herzog [BH-1993, Section 3.3]).



Let (R,M) be a Cohen-Macaulay local ring admitting a canonical
module FE, and let Rx E be the idealization of £ in R (M. Nagata
[IN-1962, page 2]) then I. Reiten [R-1972] proved that Rx E is a
Gorenstein ring.

Later, in 1975, R. Fossum, P. Griffith and I. Reiten in [FGR-1975]
proved a more precise statement:

If (R,M) is a Cohen-Macaulay local ring and E a R—module, then
Rx E is a Gorenstein ring if and only if the R—module E is a canonical
module of R.

But, it is easy to see that Rx E is not a reduced ring, even if R is an
integral domain.



In this talk, I will introduce a new general construction, called the
amalgamated duplication of a ring R along an R—module E, which is
an ideal in some overring of R (and so E is submodule of the total
ring of fractions T'(R) of R), and denoted by RX FE.

(When E?2 = 0, the new construction RXE coincides with the ideali-
zation Rx E.)

M. D'Anna [D'A-2005] has applied this construction to give an explicit
method for constructing a reduced Gorenstein local ring associated
in @ natural way to a Cohen-Macaulay local domain.



2. THE GENERAL CONSTRUCTION

Let R be a commutative ring with unit, T'(R) its total ring of fractions,
let £ be an R-submodule of T(R) such that E-E C E (note that the
last condition is equivalent to require that E is an ideal in some
overring S of R).

In the R-module direct sum R & E, we can introduce a multiplicative
structure by setting:

(r,e)(s,f) :=(rs,rf+se+ef), wherer,sec Rande,f € E .

We denote by R@E the direct sum R & E endowed also with the
multiplication defined above.

T he following properties are easy to check:



Lemma 1 (a) RDE is a ring.

(b) The map i: R — R®E, defined by r — (r,0), is an injective ring
homomorphism (and so RBE is an R—algebra).

(c) The map j : ROE — T(R) x T(R), defined by (r,e) — (r,r+¢), is
an injective ring homomorphism. O

Set
R = {(r,r) | r € R}
RXE := j(R®E) ={(r,r+¢e) |r€R, e€ E}.

Clearly, we have the following inclusions of subrings of T(R) x T'(R):

R® CRXNECRx (R+E) CT(R) xT(R) .



Remark 2 For an arbitrary R-module E, M. Nagata introduced in 1955 [N-1955]
the idealization of E in R, denoted here by Rx FE, which is the R—module R& E
endowed with a multiplicative structure defined by:

(r,e)(s, f) ;= (rs,rf +se), wherer,sc Rande,f € E .

The idealization Rx E, is called by Fossum [F-1973] the trivial extension of R by
FE, since it is a ring such that the following sequence of canonical homomorphisms:

O—>ELi>R><EIF‘—>R—>O, (tpg:e—(0,e); mwr:(r,e)—r),

is an exact sequence.

Note that 1g(F) =: E* is an ideal in RxE (isomorphic as an R-module to E), which
is nilpotent of index 2 (i.e. EX-E* = 0).

Therefore, even if R is reduced, the idealization Rx E is not a reduced ring (except
in the trivial case for E = (0), since Rx(0) = R).

Note that the idealization RxE coincides with the ring RBE (Lemma 1) if and only
if £ is an R-submodule of T'(R) that is nilpotent of index 2 (i.e. E-E = (0)).
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Proposition 3 Let R be a ring and E a R—submodule of T(R) such
that £ - E C E. Then:

(@) RX FE is a subdirect product of the ring R x (R+FE),
i.e. ifm; (i = 1,2) are the projections of Rx (R+FE) onto R and (R+FE), respectively,
and ifO; := Ker(m;|rxg), then (RXE) /D1 = R, (RXE)/Os = R+FE and O9:NO;= 0.

(b) The following properties are equivalent:
(i) R is a domain (or, equivalently, R+FE is a domain);
(ii) ©q is a prime ideal of RX E;
(ili) Do is a prime ideal of RXE;,

(iv) RX E is a reduced ring and 91 and Do are prime ideals of
RXE. O

Note that it can be shown that R is a domain if and only if £, and £, are the only
minimal prime ideals RX E.



Theorem 4 In the situation of previous Proposition 3,

let v:Rx(R+E) - Rx ((R+E)/E) andu: R — Rx ((R+E)/E) be
the natural ring homomorphisms  (defined respectively by

v((z,r+¢€)) .= (x, v+ FE) and u(r) ;= (r,r+ FE), for all z,r € R and e € FE),

then v 1(uw(R)) = RXE.

Therefore, if v/ (:= m1|pxg) : RXE — R is the canonical map defined
by (r,r+e)—r and v : RXE — Rx (R+FE) is the natural embedding,
then the following diagram:

RXE Y, R

Rx (R+E) - Rx ((R+E)/E)
iIs a pullback. O
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Example 5 Let k be a field and X an indeterminate over k. Set:
R:=k[X* X° X7 X7, S:=k[X? X3], E:=X°S=X%k+X*[X].
Then, it is easy to see that:

R+E = k[X?, X°]
and

RXE = {(f,9) e Rx (R+E)| f(0) =g(0)}.
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3. THE CONSTRUCTION RXE WHEN E IS AN IDEAL IN R

Proposition 6 Let I be an ideal of a ring R. Using the notation
of Proposition 3 and Theorem 4, we have that R+1 = R and the
following commutative diagram of canonical ring homomorphisms

/

RXI R

/| ‘|

Rx R — Rx (R/I)
is a pullback. The ideal 91 = (0)xI = Ker(v) = Ker(v') is a common
ideal of RXI and R x R,
the ideal Dy ‘= Ker(RXT % R x R ™2 R) coincides with T x (0) =
(I x(0))N(RXI) and (RXI)/9O; =R, fori=1,2.
If R is a domain then D1 and D9 are the only minimal primes of RX 1.0
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Corollary 7 In the situation of Proposition 6, let R’ (respectively, R*)
be the integral closure (respectively, the complete integral closure) of
R in T(R), we have:

(a) dim(RXI) =dim(R).
(b) R is Noetherian if and only if RX1I is Noetherian.

(c) The integral closure of R® and of RX I in T(R) x T(R) coincide
with R’ x R’.
(d) If I contains a nonzero regular element, then T(RXI) = T(R) X

T(R) and the complete integral closure of RX 1 in T(R)xT(R) coincide

with R* x R*, which is the complete integral closure of R x R in
T(R) x T(R). O
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We can now use the pullback presentation of R X I to describe
Spec(RIXIT).

Note that, if @ € Spec(RXI), then either @ 2 D7 or Q D ;.

» Casel. Q29D (=(0)x1I).
In this case, there exists a unique prime ideal (Q of R x R such that

Q=QN(RXI) and Q 2 (0) x I. Hence, it is not difficult to see that
Q = R x P for some prime P of R such that P ;j I.

(More precisely P is the trace of Q and of @ in R, under the diagonal
embedding.)

Moreover,
Q={(p+ip)|peh icl}=(RxP)N(RXI).
(RNI)Qg(RXR)Q:(RXR)RXPERP.

14



» Case 2. QDD (=(0) x1I).

In this case, here exists a unique prime ideal P of R such that Q =
v'=1(P) (or, equivalently, P = v/(Q); where v/ : RX I — R is the
canonical projection). Hence:

Q= {(p,p+i) |peP, icl}=(PxR)N(RXI) and

(RXI)/Q = R/P.

Furthermore, it is easy to see that:
o ITPDOI,
Q=(PxR)YN(RXI)) =(RxP)N(RNXI).

e fPJI,
Q=(PxR)N(RXI) #(Rx P)Nn(RXI).
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After studying the relation between Spec(R x R) and Spec(R X I),
under the continuous map (v/)%, associated the canonical embedding
v RXI — R x R, next goal is to investigate directly the relation be-
tween Spec(RXI) and Spec(R), under the canonical map associated
to the diagonal embedding § : R — RXI, (r — (r,7)).

For the sake of simplicity, we will identify R with its isomorphic image
R2 in RXI and we will denote the contraction to R of an ideal H of

RXI by HN R (instead of 6 1(H)).

Notation. In the following, the residue field at the prime ideal Q of
a ring A (i.e. the field Ag/QAg) will be denoted by k4(Q).
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Theorem 8 Let I be an ideal of a ring R and let RX I be as in

Proposition 6. Let P be a prime ideal of R and consider the following
ideals:

o P :=0"1P)=u YN (PxR)=uv1Px(P+I])=
={(p,p+1i) | peEP, icl}=: PXI.
o Py:=u Y RxP)={(p+ip) |peP icl}.
e P =PiNPe=u"Y(PxP)={(pp+i)|peP, ! cINP}=
{(p1,p2) | P1,P2 € P, p1 —p2 € I}.
e P¢:=PRXI)={(pp+i)|peP, i ePI}.

Obviously P¢ C P1NPas =P.

T hen, we have:
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(a) P71 and P are the only prime ideals of RX1I lying over P .
(b) If P D I, then Py =Py =P =+ P¢= PXI. Moreover,
kr(P) = kgxi(P) .
(c) If P 21 then Py # P3. Moreover P = +/P¢ and
kr(P) = krwr(P1) = krxr(P2) .

(d) If P is a maximal ideal of R then Py and Po are maximal ideals
of RXI .

(e ) If R is a local ring with maximal ideal M then RX I is a local
ring with maximal ideal M = v/ M®¢ = MXI. O
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As a consequence of Corollary 7 (c) and (d), and Proposition 3 (b),
we obtain the following.

Corollary 9 Let R be an integral domain with quotient field K and
let I be a nonzero ideal of R. We denote by R’ (respectively, R*) the

integral closure (respectively, the complete integral closure) of R in
K. Then:

(@) RXI is a reduced ring (with two distinct minimal primes 1 and
o such that RXI/9O; =R, i=1,2).

(b) T(RXI) = K x K and the integral closure (respectively, the
complete integral closure) of RXI in K x K is R’ x R' (respectively,
R* x R*). O
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Next goal is to give a complete description of the affine scheme
Spec(R X I), determining the localizations of R I in each of its
prime ideals.

Theorem 10 In the situation of Proposition 6, let X := Spec(RX1I),
Y = Spec(R x R) = Spec(R) I Spec(R) and Xg := Spec(R) and let
a.Y — X and B : X — Xg be the canonical surjective maps associated
to the integral embeddings RXI «— Rx R and R = R® «— RNXI.

(a) Since ©1 = {0} x I is a common ideal of R x R and RXI, then

oy o P Y \W(©1) — X\ Vx(91)
IS a scheme isomorphism, where

Y\ Vi (9D1) 2 ((Xo T X0) \ (Xo 1T Vi, (1)) = Xo \ Vi, (1)
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In particular, for each prime ideal P of R, such that P 2 I,

if we set Py ;=P x Rand P, := R x P, and

if P, :=P,N(RXI), for 1 <3<2, then
P1 and P» are distict prime ideal of RX I and they are the only prime
ideals of R contracting onto P.

Moreover, the following canonical ring homomorphisms are isomor-
phisms:

Rp — (RXI)p, — (Rx R)p , for1<i<2.
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(b) Let P € Spec(R) be such that P D I.
Then, in RX I, there exists a unique prime ideal P (= P1 = P3) =

vV P¢ = PX] such that PN R = P.
In this case, we have that the following diagram of canonical homo-

morphisms:
(RXI)p — Rp

| or|
Rp x Rp — Rp x (Rp/Ip)
is a pullback (where Ip = IRp, up(x) .= (x,z+ Ip) and vp((x,y)) =
(z,y+ Ip), for x,y € Rp ), i.e. (by Proposition 6)
(RXI)p & RpXIp. -
22



Example 11 If R is a local ring, with maximal ideal M and residue
field k£, then R X M is local and it can be obtained as a pullback of
the following diagram of canonical homomorphisms:

RX M — k

l |
BRxR 2 kxk

(where « is the diagonal embedding, B8 is the canonical surjection
(z,y) — (x + M,y + M)).

Moreover, if we assume that R is integrally closed in T'(R), then RX M
is seminormal in its integral closure inside T'(R) x T(R) (which, in this
situation, coincides with R x R).
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CASE “I1 ¢

Vx(91)N Vx(O3)

X = Spec(RNXI)

Pr={(p,p+i) |peP icl} Pr={(p+i,p) |peP icl}

Y := Spec(R x R)

IXI:§31+DZ



£ TR B O

P=PXI={(pp+i)|peP icl}=VPe

e VXO('[>
Xy := Spec(R)
Vx(91)N Vx(DO5)

X = Spec(RNXI)

Y ':=8pec| R x R)

IXI:§31+§32



4. THE RING RXFE WHEN E IS A CANONICAL IDEAL OF R

Next goal is to investigate the construction RX I, in case I is an

m—canonical ideal of an arbitrary ring R (not necessarily a domain)
[definition recalled later].

Note that, given an R—module H, for each R—module F', we can
consider the R—module:

F*H .= Homp(F, H) .
We have the following canonical homomorphism:

pp i B — (FHH)™H . a— pp(a),where pp(a)(f) = f(a),

for all f € F*H (= Hompg(F,H)), a € F. We say that the R—module
F is H—reflexive (respectively, H—torsionless) if pg is an isomorphism
(respectively, monomorphism) of R—modules.
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Given a regular ideal I of the ring R and a R—submodule F of T'(R), set:
(I:F):={z€T(R)|zF C1I}.
If FF =: J is a regular fractional ideal of R then (I : J) is also a regular fractional
ideal of R,and it is not hard to prove that there exists a canonical isomorphism:
(I:(I:J0)=({T:0)" = (J9)" =Homp(Homg(J,I1),1),

and so, in this situation, we can identify the map p; : J — (J*)* with the inclusion
JC:(I:J)), thus each regular fractional ideal J is I—torsionless.

We say that a regular ideal I of a ring R is an m—canonical ideal of R if each regular
fractional ideal J of R is I-reflexive, i.e. the map p;: J — (J*)* is an isomorphism
or, equivalently, J={ : (I :J)) (cf. [M-1973] and [HHP-1998]).

Recall that a regular fractional ideal J of a ring R is called a divisorial ideal of R if

(R:(R:J))=J.
Clearly an invertible ideal of R is a divisorial ideal.
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Let I be a regular ideal of a ring R and set:

F(R,I):={F | F is a regular I-torsionless R—submodule of R",
for some n > 1},

Fi1(R,I) :={F | F is a regular I-torsionless R—submodule of R}.

We say that
e the ring R is F(R,I)—reflexive if every F € F(R,I) is I-reflexive

(i.e. the canonical monomorphism pg : FF — Homg(HOMg(F,I),1I) is
an isomorphism of R—modules).

Similarly, we say that
e the ring R is F1(R,I)—reflexive if each F' in F1(R,I) is I—reflexive.
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On the other hand, when R is an integral domain and [ iS a nonzero
ideal of R, Bazzoni and Salce [BS-1996] introduced the following no-
tion:

» the integral domain R is said to be I—reflexive (respectively, [—
divisorial), if each I-torsionless Homg (I, I)—module of finite rank (re-
spectively, of rank 1) is I—reflexive.

Proposition 12 Let R be an integral domain and I a nonzero ideal
of R. Then R is F(R,I)—reflexive (respectively, F1(R,I)—reflexive) if
and only if R is I—reflexive (respectively, I—divisorial) and R= (I : I).

O
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Note that if R is F1(R,I)—reflexive (in particular, if R is F(R,I)—
reflexive), then I is an m—canonical ideal of R, since each regular
ideal J of R belongs to F1(R,I).

[We have already observed that each regular ideal J in R is I—-torsionless.
Moreover, if J' is a regular fractional ideal of R, then for some regular element
de R, dJ) =:Jis aregularideal in Rand J =dl'J=d1{I:{I:J)) =
={T:d{I:0)=U:{T:d7')=UT:{U:JT)).]

28



Theorem 13 Let R be a ring admitting an reqgular ideal I such that
R is F(R, I)—reflexive.

Set T := RXI and Ip:=Hompg(T,I),

then T is F(T, IT)—reflexive and I is isomorphic as T-module to T. O

AS a consequence we obtain:
Corollary 14 Let R be a ring admitting a regular ideal I such that R

is F(R,I)—reflexive.
Then every regular fractional ideal of T (= RXI) is divisorial. O

29



Corollary 15 Let R be a Noetherian local integral domain and let I
be an m—canonical ideal of R and set T' .= RX.

Then T is a local reduced Noetherian ring, dim(R) = dim(T) and
every regular fractional ideal of T' is divisorial.

Final Remark 16 Marco D'Anna in the context of Cohen-Macaulay
rings has proved the following:

Let R be a Cohen-Macaulay local ring and let I be a proper ideal of
R.

Then RX 1 is Gorenstein if and only if R has a canonical module wgr
such that I = wg.
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Example 17 Let k be a field and let R := k[[X4, X%, X1 X13] and let [ := (X0, X12 X17).

Then it can be shown that the numerical semigroup
S:=4{0,4,6,8,10 — ---}
canonically associated to R has a canonical semigroup
C={zx€Z|9—-—x¢S5}={0,2,4,6,7,8,10 — ---}
which gives rise to a proper canonical ideal in S by considering:
10+ C ={10,12,14,16,17,18,20 — --- }.

Since this canonical ideal in S is generated by {10,12,17}, then we deduce that I
is a canonical ideal of R (since the value semigroup v(I) = 104 C, Jager [J-1977]).
In this case, the ring:

RMI = {(f.9) | f.g€klX*X° X" X] and f—ge€ I}

is a 1-dimensional local reduced Gorenstein ring, dominating R.
(Note that one can reach the same conclusion by showing that the subsemigroup
U of N x N associated to RX T is symmetric.)
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