An amalgamated duplication of a ring along an ideal

presented by

Marco Fontana

Università degli Studi "Roma Tre"

joint work with Marco D'Anna

Università degli Studi di Catania

1. INTRODUCTION. By extending a notion introduced in the integral domain case by W. Heinzer, J. Huckaba and I. Papick [HHP-1998], we can say that a regular ideal I of a ring R is a multiplicative-canonical ideal (or simply, an m-canonical ideal) of R if each regular fractional ideal J of R is I-reflexive, i.e.

$$J=(I:(I:J))\cong \operatorname{Hom}_R(\operatorname{Hom}_R(J,I),I)\,,$$
 (where $(I:J):=\{x\in T(R)\mid xJ\subseteq I\}\,,$ and $T(R)$ denotes the total ring of fractions of R).

Recall that, given a 1-dimensional Cohen-Macaulay ring R, R is a Gorenstein ring if and only if R has an m-canonical ideal isomorphic to R, i.e.

$$J = (R : (R : J)) = J_v$$
,

for each regular fractional ideal J of R (cf. J. Herzog and E. Kunz [HK-1971, Korollar 3.4] and E. Matlis [M-1973, Chapter XIII]).

In higher dimension the problem of the relations between Cohen-Macaulay and Gorenstein rings is more delicate.

Given a Cohen-Macaulay local ring (R, M, k) of dimension d, a canonical module E is an R-module such that

$$\dim_k(\operatorname{Ext}^i_R(k,E)) = \delta_{i,d}$$
.

It is wellknown that if a Cohen-Macaulay local ring has a canonical module this is uniquely determined, up to isomorphisms. In general, given a Cohen-Macaulay local ring R,

R is a Gorenstein ring $\Leftrightarrow R$ has a canonical module isomorphic to R (cf. W. Bruns and J. Herzog [BH-1993, Section 3.3]).

Let (R, M) be a Cohen-Macaulay local ring admitting a canonical module E, and let $R \ltimes E$ be the idealization of E in R (M. Nagata [N-1962, page 2]) then I. Reiten [R-1972] proved that $R \ltimes E$ is a Gorenstein ring.

Later, in 1975, R. Fossum, P. Griffith and I. Reiten in [FGR-1975] proved a more precise statement:

If (R, M) is a Cohen-Macaulay local ring and E a R-module, then $R \ltimes E$ is a Gorenstein ring if and only if the R-module E is a canonical module of R.

But, it is easy to see that $R \ltimes E$ is *not* a reduced ring, even if R is an integral domain.

In this talk, I will introduce a new general construction, called the amalgamated duplication of a ring R along an R-module E, which is an ideal in some overring of R (and so E is submodule of the total ring of fractions T(R) of R), and denoted by $R \bowtie E$.

(When $E^2 = 0$, the new construction $R \bowtie E$ coincides with the idealization $R \bowtie E$.)

M. D'Anna [D'A-2005] has applied this construction to give an explicit method for constructing a *reduced* Gorenstein local ring associated in a natural way to a Cohen-Macaulay local domain.

2. THE GENERAL CONSTRUCTION

Let R be a commutative ring with unit, T(R) its total ring of fractions, let E be an R-submodule of T(R) such that $E \cdot E \subseteq E$ (note that the last condition is equivalent to require that E is an ideal in some overring S of R).

In the R-module direct sum $R \oplus E$, we can introduce a multiplicative structure by setting:

$$(r,e)(s,f) := (rs,rf+se+ef)$$
, where $r,s \in R$ and $e,f \in E$.

We denote by $R \oplus E$ the direct sum $R \oplus E$ endowed also with the multiplication defined above.

The following properties are easy to check:

Lemma 1 (a) $R \dot{\oplus} E$ is a ring.

- **(b)** The map $i: R \to R \dot{\oplus} E$, defined by $r \mapsto (r, 0)$, is an injective ring homomorphism (and so $R \dot{\oplus} E$ is an R-algebra).
- (c) The map $j: R \dot{\oplus} E \to T(R) \times T(R)$, defined by $(r, e) \mapsto (r, r + e)$, is an injective ring homomorphism.

Set

$$R^{\triangle} := \{(r, r) \mid r \in R\}$$

$$R \bowtie E := j(R \oplus E) = \{(r, r + e) \mid r \in R, e \in E\}.$$

Clearly, we have the following inclusions of subrings of $T(R) \times T(R)$:

$$R^{\triangle} \subseteq R \bowtie E \subseteq R \times (R+E) \subseteq T(R) \times T(R)$$
.

Remark 2 For an *arbitrary* R-module E, M. Nagata introduced in 1955 [N-1955] the idealization of E in R, denoted here by $R \ltimes E$, which is the R-module $R \oplus E$ endowed with a multiplicative structure defined by:

$$(r,e)(s,f) := (rs,rf+se)$$
, where $r,s \in R$ and $e,f \in E$.

The idealization $R \ltimes E$, is called by Fossum [F-1973] the trivial extension of R by E, since it is a ring such that the following sequence of canonical homomorphisms:

$$0 o E \xrightarrow{\iota_E} R \ltimes E \xrightarrow{\pi_R} R o 0 \,, \quad (\iota_E : e \mapsto (0,e) \,; \quad \pi_R : (r,e) \mapsto r \,),$$

is an exact sequence.

Note that $\iota_E(E) =: E^{\ltimes}$ is an ideal in $R \ltimes E$ (isomorphic as an R-module to E), which is nilpotent of index 2 (i.e. $E^{\ltimes} \cdot E^{\ltimes} = 0$).

Therefore, even if R is reduced, the idealization $R \ltimes E$ is *not* a reduced ring (except in the trivial case for E = (0), since $R \ltimes (0) = R$).

Note that the idealization $R \ltimes E$ coincides with the ring $R \oplus E$ (Lemma 1) if and only if E is an R-submodule of T(R) that is nilpotent of index 2 (i.e. $E \cdot E = (0)$).

Proposition 3 Let R be a ring and E a R-submodule of T(R) such that $E \cdot E \subseteq E$. Then:

- (a) $R \bowtie E$ is a subdirect product of the ring $R \times (R+E)$, i.e. if π_i (i=1,2) are the projections of $R \times (R+E)$ onto R and (R+E), respectively, and if $\mathfrak{D}_i := \operatorname{Ker}(\pi_i|_{R\bowtie E})$, then $(R\bowtie E)/\mathfrak{D}_1 \cong R$, $(R\bowtie E)/\mathfrak{D}_2 \cong R+E$ and $\mathfrak{D}_1 \cap \mathfrak{D}_2 = 0$.
- **(b)** The following properties are equivalent:
 - (i) R is a domain (or, equivalently, R+E is a domain);
 - (ii) \mathfrak{O}_1 is a prime ideal of $R \bowtie E$;
 - (iii) \mathfrak{O}_2 is a prime ideal of $R \bowtie E$;
- (iv) $R \bowtie E$ is a reduced ring and \mathfrak{O}_1 and \mathfrak{O}_2 are prime ideals of $R \bowtie E$.

Note that it can be shown that R is a domain if and only if \mathfrak{O}_1 and \mathfrak{O}_2 are the only minimal prime ideals $R \bowtie E$.

Theorem 4 In the situation of previous Proposition 3, let $v: R \times (R+E) \rightarrow R \times ((R+E)/E)$ and $u: R \hookrightarrow R \times ((R+E)/E)$ be the natural ring homomorphisms (defined respectively by v((x,r+e)) := (x,r+E) and u(r) := (r,r+E), for all $x,r \in R$ and $e \in E$), then $v^{-1}(u(R)) = R \bowtie E$.

Therefore, if v' (:= $\pi_1|_{R\bowtie E}$) : $R\bowtie E \to R$ is the canonical map defined by $(r, r+e) \mapsto r$ and u' : $R\bowtie E \hookrightarrow R\times (R+E)$ is the natural embedding, then the following diagram:

$$R \bowtie E \xrightarrow{v'} R$$

$$u' \downarrow \qquad \qquad u \downarrow$$

$$R \times (R+E) \xrightarrow{v} R \times ((R+E)/E)$$

is a pullback.

Example 5 Let k be a field and X an indeterminate over k. Set:

$$R := k[X^4, X^6, X^7, X^9], \quad S := k[X^2, X^3], \quad E := X^2S = X^2k + X^4k[X].$$
 Then, it is easy to see that:

$$R + E = k[X^2, X^5]$$

and

$$R \bowtie E = \{(f, g) \in R \times (R + E) \mid f(0) = g(0)\}.$$

3. THE CONSTRUCTION $R \bowtie E$ WHEN E IS AN IDEAL IN R

Proposition 6 Let I be an ideal of a ring R. Using the notation of Proposition 3 and Theorem 4, we have that R+I=R and the following commutative diagram of canonical ring homomorphisms

$$\begin{array}{ccc}
R \bowtie I & \xrightarrow{v'} & R \\
u' \downarrow & u \downarrow \\
R \times R & \xrightarrow{v} & R \times (R/I)
\end{array}$$

is a pullback. The ideal $\mathfrak{O}_1 = (0) \times I = \operatorname{Ker}(v) = \operatorname{Ker}(v')$ is a common ideal of $R \bowtie I$ and $R \times R$,

the ideal $\mathfrak{D}_2 := \operatorname{Ker}(R \bowtie I \xrightarrow{u'} R \times R \xrightarrow{\pi_2} R)$ coincides with $I \times (0) = (I \times (0)) \cap (R \bowtie I)$ and $(R \bowtie I)/\mathfrak{D}_i \cong R$, for i = 1, 2.

If R is a domain then \mathfrak{O}_1 and \mathfrak{O}_2 are the only minimal primes of $R\bowtie I.\square$

Corollary 7 In the situation of Proposition 6, let R' (respectively, R^*) be the integral closure (respectively, the complete integral closure) of R in T(R), we have:

- (a) $\dim(R \bowtie I) = \dim(R)$.
- **(b)** R is Noetherian if and only if $R \bowtie I$ is Noetherian.
- (c) The integral closure of R^{\triangle} and of $R \bowtie I$ in $T(R) \times T(R)$ coincide with $R' \times R'$.
- (d) If I contains a nonzero regular element, then $T(R \bowtie I) = T(R) \times T(R)$ and the complete integral closure of $R \bowtie I$ in $T(R) \times T(R)$ coincide with $R^* \times R^*$, which is the complete integral closure of $R \times R$ in $T(R) \times T(R)$.

We can now use the pullback presentation of $R \bowtie I$ to describe $Spec(R\bowtie I)$.

Note that, if $Q \in \operatorname{Spec}(R \bowtie I)$, then either $Q \not\supseteq \mathfrak{O}_1$ or $Q \supseteq \mathfrak{O}_1$.

► Case 1. $\mathcal{Q} \not\supseteq \mathfrak{O}_1$ (= (0) × I).

In this case, there exists a unique prime ideal Q of $R \times R$ such that $Q = Q \cap (R \bowtie I)$ and $Q \not\supseteq (0) \times I$. Hence, it is not difficult to see that $Q = R \times P$ for some prime P of R such that $P \not\supseteq I$.

(More precisely P is the trace of Q and of Q in R, under the diagonal embedding.)

Moreover,

$$Q = \{ (p+i,p) \mid p \in P, i \in I \} = (R \times P) \cap (R \bowtie I) .$$

$$(R \bowtie I)_{Q} \cong (R \times R)_{Q} = (R \times R)_{R \times P} \cong R_{P} .$$

▶ Case 2. $\mathcal{Q} \supseteq \mathfrak{O}_1$ (= (0) × I).

In this case, here exists a unique prime ideal P of R such that $\mathcal{Q} = v'^{-1}(P)$ (or, equivalently, $P = v'(\mathcal{Q})$; where $v' : R \bowtie I \rightarrow R$ is the canonical projection). Hence:

$$\mathcal{Q} = \{(p, p+i) \mid p \in P, \ i \in I\} = (P \times R) \cap (R \bowtie I)$$
 and
$$(R \bowtie I)/\mathcal{Q} \cong R/P.$$

Furthermore, it is easy to see that:

- if $P \supseteq I$, $\mathcal{Q} = (P \times R) \cap (R \bowtie I)) = (R \times P) \cap (R \bowtie I).$
- if $P \not\supseteq I$, $\mathcal{Q} = (P \times R) \cap (R \bowtie I) \neq (R \times P) \cap (R \bowtie I).$

After studying the relation between $\operatorname{Spec}(R \times R)$ and $\operatorname{Spec}(R \bowtie I)$, under the continuous map $(u')^a$, associated the canonical embedding $u': R \bowtie I \hookrightarrow R \times R$, next goal is to investigate directly the relation between $\operatorname{Spec}(R \bowtie I)$ and $\operatorname{Spec}(R)$, under the canonical map associated to the diagonal embedding $\delta: R \hookrightarrow R \bowtie I$, $(r \mapsto (r,r))$.

For the sake of simplicity, we will identify R with its isomorphic image R^{\triangle} in $R \bowtie I$ and we will denote the contraction to R of an ideal \mathcal{H} of $R \bowtie I$ by $\mathcal{H} \cap R$ (instead of $\delta^{-1}(\mathcal{H})$).

Notation. In the following, the residue field at the prime ideal Q of a ring A (i.e. the field A_Q/QA_Q) will be denoted by $k_A(Q)$.

Theorem 8 Let I be an ideal of a ring R and let $R \bowtie I$ be as in Proposition 6. Let P be a prime ideal of R and consider the following ideals:

- $\mathcal{P}_1 := v'^{-1}(P) = u'^{-1}(P \times R) = u'^{-1}(P \times (P+I)) = \{(p, p+i) \mid p \in P, i \in I\} =: P \bowtie I.$
- $\mathcal{P}_2 := u'^{-1}(R \times P) = \{(p+i, p) \mid p \in P, i \in I\}.$
- $\mathcal{P} := \mathcal{P}_1 \cap \mathcal{P}_2 = u'^{-1}(P \times P) = \{(p, p + i') \mid p \in P, i' \in I \cap P\} = \{(p_1, p_2) \mid p_1, p_2 \in P, p_1 p_2 \in I\}.$
 - $P^e := P(R \bowtie I) = \{(p, p + i'') \mid p \in P, i'' \in PI\}.$

Obviously $P^e \subseteq \mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{P}$.

Then, we have:

- (a) \mathcal{P}_1 and \mathcal{P}_2 are the only prime ideals of $R \bowtie I$ lying over P.
- (b) If $P\supseteq I$, then $\mathcal{P}_1=\mathcal{P}_2=\mathcal{P}=\sqrt{P^e}=P\bowtie I$. Moreover, $k_R(P)\cong k_{R\bowtie I}(\mathcal{P})$.
- (c) If $P \not\supseteq I$ then $\mathcal{P}_1 \neq \mathcal{P}_2$. Moreover $\mathcal{P} = \sqrt{P^e}$ and $k_R(P) \cong k_{R \bowtie I}(\mathcal{P}_1) \cong k_{R \bowtie I}(\mathcal{P}_2)$.
- (d) If P is a maximal ideal of R then \mathcal{P}_1 and \mathcal{P}_2 are maximal ideals of $R\bowtie I$.
- (e) If R is a local ring with maximal ideal M then $R \bowtie I$ is a local ring with maximal ideal $\mathcal{M} := \sqrt{M^e} = M \bowtie I$.

As a consequence of Corollary 7 (c) and (d), and Proposition 3 (b), we obtain the following.

Corollary 9 Let R be an integral domain with quotient field K and let I be a nonzero ideal of R. We denote by R' (respectively, R^*) the integral closure (respectively, the complete integral closure) of R in K. Then:

- (a) $R \bowtie I$ is a reduced ring (with two distinct minimal primes \mathfrak{D}_1 and \mathfrak{D}_2 such that $R \bowtie I/\mathfrak{D}_i \cong R$, i = 1, 2).
- **(b)** $T(R \bowtie I) = K \times K$ and the integral closure (respectively, the complete integral closure) of $R\bowtie I$ in $K\times K$ is $R'\times R'$ (respectively, $R^*\times R^*$).

Next goal is to give a complete description of the affine scheme $Spec(R \bowtie I)$, determining the localizations of $R \bowtie I$ in each of its prime ideals.

Theorem 10 In the situation of Proposition 6, let $X := \operatorname{Spec}(R \bowtie I)$, $Y := \operatorname{Spec}(R \times R) \cong \operatorname{Spec}(R) \coprod \operatorname{Spec}(R)$ and $X_0 := \operatorname{Spec}(R)$ and let $\alpha : Y \twoheadrightarrow X$ and $\beta : X \twoheadrightarrow X_0$ be the canonical surjective maps associated to the integral embeddings $R \bowtie I \hookrightarrow R \times R$ and $R \cong R^{\triangle} \hookrightarrow R \bowtie I$.

(a) Since $\mathfrak{D}_1 = \{0\} \times I$ is a common ideal of $R \times R$ and $R \bowtie I$, then $\alpha |_{Y \setminus V_Y(\mathfrak{D}_1)} : Y \setminus V_Y(\mathfrak{D}_1) \longrightarrow X \setminus V_X(\mathfrak{D}_1)$

is a scheme isomorphism, where

$$Y \setminus V_Y(\mathfrak{O}_1) \cong ((X_0 \coprod X_0) \setminus (X_0 \coprod V_{X_0}(I))) = X_0 \setminus V_{X_0}(I).$$

In particular, for each prime ideal P of R, such that $P \not\supseteq I$,

if we set $\overline{P_1} := P \times R$ and $\overline{P_2} := R \times P$, and

if
$$\mathcal{P}_i := \overline{P}_i \cap (R \bowtie I)$$
, for $1 \leq i \leq 2$, then

 \mathcal{P}_1 and \mathcal{P}_2 are distict prime ideal of $R \bowtie I$ and they are the only prime ideals of $R \bowtie I$ contracting onto P.

Moreover, the following canonical ring homomorphisms are isomorphisms:

$$R_P \to (R \bowtie I)_{\mathcal{P}_i} \longrightarrow (R \times R)_{\overline{P}_i}, \quad \text{for } 1 \leq i \leq 2.$$

(b) Let $P \in \operatorname{Spec}(R)$ be such that $P \supseteq I$.

Then, in $R \bowtie I$, there exists a unique prime ideal \mathcal{P} (= $\mathcal{P}_1 = \mathcal{P}_2$) = $\sqrt{P^e} = P \bowtie I$ such that $\mathcal{P} \cap R = P$.

In this case, we have that the following diagram of canonical homomorphisms:

$$\begin{array}{ccc}
(R \bowtie I)_{\mathcal{P}} & \longrightarrow & R_{P} \\
\downarrow & & u_{P} \downarrow \\
R_{P} \times R_{P} & \xrightarrow{v_{P}} & R_{P} \times (R_{P}/I_{P})
\end{array}$$

is a pullback (where $I_P = IR_P$, $u_P(x) := (x, x + I_P)$ and $v_P((x, y)) := (x, y + I_P)$, for $x, y \in R_P$), i.e. (by Proposition 6)

$$(R\bowtie I)_{\mathcal{P}}\cong R_P\bowtie I_P.$$

Example 11 If R is a local ring, with maximal ideal M and residue field k, then $R \bowtie M$ is local and it can be obtained as a pullback of the following diagram of canonical homomorphisms:

(where α is the diagonal embedding, β is the canonical surjection $(x,y)\mapsto (x+M,y+M)$).

Moreover, if we assume that R is integrally closed in T(R), then $R \bowtie M$ is seminormal in its integral closure inside $T(R) \times T(R)$ (which, in this situation, coincides with $R \times R$).

CASE " $I \not\subseteq$ "

$$\mathcal{P} = P \bowtie I = \{(p, p+i) \mid p \in P, \ i \in I\} = \sqrt{P^e}$$

4. THE RING $R \bowtie E$ WHEN E IS A CANONICAL IDEAL OF R

Next goal is to investigate the construction $R \bowtie I$, in case I is an m-canonical ideal of an arbitrary ring R (not necessarily a domain) [definition recalled later].

Note that, given an R-module H, for each R-module F, we can consider the R-module:

$$F^{*H} := \operatorname{Hom}_R(F, H)$$
.

We have the following canonical homomorphism:

$$\rho_F: F \to (F^{*_H})^{*_H}, \quad a \mapsto \rho_F(a), \text{ where } \rho_F(a)(f) := f(a),$$

for all $f \in F^{*_H}$ (= Hom_R(F, H)), $a \in F$. We say that the R-module F is H-reflexive (respectively, H-torsionless) if ρ_F is an isomorphism (respectively, monomorphism) of R-modules.

Given a regular ideal I of the ring R and a R-submodule F of T(R), set:

$$(I:F) := \{z \in T(R) \mid zF \subseteq I\}.$$

If F =: J is a regular fractional ideal of R then (I : J) is also a regular fractional ideal of R, and it is not hard to prove that there exists a canonical isomorphism:

$$(I:(I:J))\stackrel{\sim}{\to} (I:J)^{*_I}\stackrel{\sim}{\to} (J^{*_I})^{*_I}=\operatorname{\mathsf{Hom}}_R(\operatorname{\mathsf{Hom}}_R(J,I),I)\,,$$

and so, in this situation, we can identify the map $\rho_J: J \to (J^{*_I})^{*_I}$ with the inclusion $J \subseteq (I:(I:J))$, thus each regular fractional ideal J is I-torsionless.

We say that a regular ideal I of a ring R is an m-canonical ideal of R if each regular fractional ideal J of R is I-reflexive, i.e. the map $\rho_J: J \to (J^{*_I})^{*_I}$ is an isomorphism or, equivalently, J = (I:(I:J)) (cf. [M-1973] and [HHP-1998]).

Recall that a regular fractional ideal J of a ring R is called a divisorial ideal of R if (R:(R:J))=J.

Clearly an invertible ideal of R is a divisorial ideal.

Let I be a regular ideal of a ring R and set:

```
\mathcal{F}(R,I) := \{F \mid F \text{ is a regular } I\text{-torsionless } R\text{-submodule of } R^n, for some n \geq 1\}, \mathcal{F}_1(R,I) := \{F \mid F \text{ is a regular } I\text{-torsionless } R\text{-submodule of } R\}.
```

We say that

• the ring R is $\mathcal{F}(R,I)$ -reflexive if every $F \in \mathcal{F}(R,I)$ is I-reflexive (i.e. the canonical monomorphism $\rho_F : F \to \operatorname{Hom}_R(\operatorname{Hom}_R(F,I),I)$ is an isomorphism of R-modules).

Similarly, we say that

• the ring R is $\mathcal{F}_1(R,I)$ -reflexive if each F in $\mathcal{F}_1(R,I)$ is I-reflexive.

On the other hand, when R is an integral domain and I is a nonzero ideal of R, Bazzoni and Salce [BS-1996] introduced the following notion:

the integral domain R is said to be I-reflexive (respectively, I-divisorial), if each I-torsionless $Hom_R(I,I)$ -module of finite rank (respectively, of rank 1) is I-reflexive.

Proposition 12 Let R be an integral domain and I a nonzero ideal of R. Then R is $\mathcal{F}(R,I)$ -reflexive (respectively, $\mathcal{F}_1(R,I)$ -reflexive) if and only if R is I-reflexive (respectively, I-divisorial) and R = (I:I).

Note that if R is $\mathcal{F}_1(R,I)$ -reflexive (in particular, if R is $\mathcal{F}(R,I)$ -reflexive), then I is an m-canonical ideal of R, since each regular ideal J of R belongs to $\mathcal{F}_1(R,I)$.

[We have already observed that each regular ideal J in R is I-torsionless. Moreover, if J' is a regular fractional ideal of R, then for some regular element $d \in R$, dJ' =: J is a regular ideal in R and $J' = d^{-1}J = d^{-1}(I:(I:J)) = = (I:d(I:J)) = (I:(I:J')).$

Theorem 13 Let R be a ring admitting an regular ideal I such that R is $\mathcal{F}(R,I)$ -reflexive.

Set $T := R \bowtie I$ and $I_T := \operatorname{Hom}_R(T, I)$, then T is $\mathcal{F}(T, I_T)$ -reflexive and I_T is isomorphic as T-module to T. \square

As a consequence we obtain:

Corollary 14 Let R be a ring admitting a regular ideal I such that R is $\mathcal{F}(R,I)$ -reflexive.

Then every regular fractional ideal of $T (= R \bowtie I)$ is divisorial.

Corollary 15 Let R be a Noetherian local integral domain and let I be an m-canonical ideal of R and set $T := R \bowtie I$.

Then T is a local reduced Noetherian ring, dim(R) = dim(T) and every regular fractional ideal of T is divisorial.

Final Remark 16 Marco D'Anna in the context of Cohen-Macaulay rings has proved the following:

Let R be a Cohen-Macaulay local ring and let I be a proper ideal of R.

Then $R \bowtie I$ is Gorenstein if and only if R has a canonical module ω_R such that $I \cong \omega_R$.

Example 17 Let k be a field and let $R := k[X^4, X^6, X^{11}, X^{13}]$ and let $I := (X^{10}, X^{12}, X^{17})$.

Then it can be shown that the numerical semigroup

$$S := \{0, 4, 6, 8, 10 \rightarrow \cdots \}$$

canonically associated to R has a canonical semigroup

$$C := \{x \in \mathbb{Z} \mid 9 - x \notin S\} = \{0, 2, 4, 6, 7, 8, 10 \to \cdots\}$$

which gives rise to a proper canonical ideal in S by considering:

$$10 + C = \{10, 12, 14, 16, 17, 18, 20 \rightarrow \cdots \}$$
.

Since this canonical ideal in S is generated by $\{10,12,17\}$, then we deduce that I is a canonical ideal of R (since the value semigroup v(I) = 10 + C, Jäger [J-1977]). In this case, the ring:

$$R \bowtie I = \{(f,g) \mid f,g \in k[[X^4, X^6, X^{11}, X^{13}]] \text{ and } f - g \in I\}$$

is a 1-dimensional local reduced Gorenstein ring, dominating R. (Note that one can reach the same conclusion by showing that the subsemigroup U of $\mathbb{N} \times \mathbb{N}$ associated to $R \bowtie I$ is symmetric.)

REFERENCES

- ▶ [BDF-2000] V. Barucci, M. D'Anna and R. Fröberg, *Analytically unramified one-dimensional semilocal rings and their value semigroups*, J. Pure Appl. Algebra **147** (2000), 215–254.
- ► [BS-1996] S. Bazzoni and L. Salce, *Warfield domains*, J. Algebra **185** (1996), 836–868.
- ► [BH-1993] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
- ▶ [D'A-2005] M. D'Anna, A construction of Gorenstein rings, preprint 2005.
- ► [Fo-1980] M. Fontana, *Topologically defined classes of commutative rings*, Ann. Mat. Pura Appl. **123** (1980), 331–355.
- ► [F-1973] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings, Proc. Am. Math. Soc. **40** (1973), 395–400.

- ► [FGR-1975] R. Fossum, P. Griffith and I. Reiten, *Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory*, Lecture Notes in Mathematics **456**, Springer-Verlag, Berlin, 1975.
- ► [HHP-1998] W. Heinzer, J. Huckaba and I. Papick, *m-canonical ideals in integral domains*, Comm. Algebra **29** (1998), 3021–3043.
- ► [[HK-1971] J. Herzog and E. Kunz, Die kanonische Modul eines Cohen-Macaulay Rings, LNM **238**, Springer, 1971.
- ► [H-1988] J. Huckaba, Commutative rings with zero divisors, M. Dekker, New York, 1988.
- ► [J-1977] J. Jäger, Längeberechnungen und kanonische Ideale in eindimensionalen Ringen, Arch. Math. **29** (1977), 504-512.
- ► [M-1973] E. Matlis, 1-dimensional Cohen-Macaulay rings, LNM **327**, Springer 1973.

► [N-1955] M. Nagata, *The theory of multiplicity in general local rings*, Proc. Intern. Symp. Tokyo-Nikko 1955, Sci. Council of Japan, Tokyo 1956, 191–226.

- ▶ [N-1962] M. Nagata, Local Rings, Interscience, New York, 1962.
- ► [R-1972] I. Reiten, *The converse of a theorem of Sharp on Gorenstein modules*, Proc. Amer. Math. Soc. **32** (1972), 417–420.