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Let D be an integral domain with quotient field K.
Let F (D) (respectively, f(D)) be the set of all nonzero fractionary ideals (respec-
tively, finitely generated fractionary ideals) of D.

A mapping ? : F (D) → F (D) , I 7→ I? , is called a star operation of D if, for all
z ∈ K , z 6= 0 , and for all I, J ∈ F (D) , the following properties hold:

(??1) (zD)? = zD , (zI)? = zI? ;

(?2) I ⊆ J ⇒ I? ⊆ J? ;

(?3) I ⊆ I? and I?? := (I?)? = I? .

W. Krull introduced the concept of a star operation in his first Beiträge paper
[K-1936]
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In 1994, Okabe and Matsuda introduced the more “flexible” notion of semistar
operation ? of an integral domain D , as a natural generalization of the notion of
star operation, allowing D 6= D? .

Let F (D) represent the set of all nonzero D–submodules of K
(thus, f(D) ⊆ F (D) ⊆ F (D)).

A mapping ? : F (D) → F (D) , E 7→ E? is called a semistar operation of D if, for
all z ∈ K , z 6= 0 and for all E, F ∈ F (D) , the following properties hold:

(?1) (zE)? = zE? ;

(?2) E ⊆ F ⇒ E? ⊆ F ? ;

(?3) E ⊆ E? and E?? := (E?)? = E? .

When D? = D, the map ?, restricted to F (D), defines a star operation of D.
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Let ? be a [semi]star operation on D. If F is in f(D), we say that

F is ?–e.a.b.

(FG)? ⊆ (FH)? ⇒ G? ⊆ H?, with G, H ∈ f(D),

F is ?–a.b.

(FG)? ⊆ (FH)? ⇒ G? ⊆ H?, with G, H ∈ F (D)

[respectively, with G, H ∈ F (D)].

The operation ? is said to be e.a.b. (respectively, a.b.) if each

F ∈ f(D) is ?–e.a.b. (respectively, ?–a.b.).

An a.b. operation is obviously an e.a.b. operation.
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If W is a given family of valuation overrings overrings of D and if
D = ∩{W | W ∈ W} then the star operation ∧W defined as follows:
for each E ∈ F (D),

E∧W := ∩{EW | W ∈ W}
is an a.b. star operation on D.

In particular, if V is the set of all the valuation overrings of D, then
bD := ∧V is called the b–star operation on an in integrally closed
domain D.

If we do not assume that, given a family of valuation overrings over-
rings W of D, ∩{W | W ∈ W} coincides with D then ∧W defined as
follows: for each E ∈ F (D),

E∧W := ∩{EW | W ∈ W}
is an a.b. semistar operation on D (with D∧W = ∩{W | W ∈ W}).
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W. Krull in his first Beiträge paper [K-1936] only considered the
concept of “arithmetisch brauchbar (a.b.) ?–operation”[the origi-
nal Krull’s notation was ′–Operation], and he did not considered the
concept of “endlich arithmetisch brauchbar (e.a.b.) ?–operation”.
The e.a.b. concept stems from the original version of Gilmer’s book
(1968). The results of Section 26 show that this (presumably) weaker
concept is all that one needs to develop a complete theory of Kro-
necker function rings.
Robert Gilmer explained to me that � I believe I was influenced to
recognize this because during the 1966 calendar year in our graduate
algebra seminar (Bill Heinzer, Jimmy Arnold, and Jim Brewer, among
others, were in that seminar) we had covered Bourbaki’s Chapitres 5
and 7 of Algèbre Commutative, and the development in Chapter 7 on
the v–operation indicated that e.a.b. would be sufficient.�
Apparently there are no examples in literature of e.a.b. not a.b.
star operations.
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When ? := dD the notion of dD–e.a.b. [respectively, dD–a.b.] for

finitely generated ideal coincides with the notion of quasi–cancellation

ideal [respectively, cancellation ideal] studied by D.D. Anderson and

D.F. Anderson [AA-1984].

As a matter of fact, a nonzero ideal I (non necessarily finitely gen-

erated) of an integral domain D is called a cancellation [respectively,

quasi–cancellation] ideal of D if (IJ : I) = J, for each nonzero ideal J

of D [respectively, if (IF : I) = F , for each nonzero finitely generated

ideal F of D].

Obviously, a cancellation ideal is a quasi–cancellation ideal, but in

general (for non finitely generated ideals) the converse does not hold

(e.g. a maximal ideal of a nondiscrete rank one valuation domain,

[AA-1984]).
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For a finitely generated ideal, the notion of cancellation ideal coincides with the no-
tion of quasi–cancellation ideal [AA-1984, Corollary 1]. More precisely, by [AA-1984,
Lemma 1 and Theorem 1],

Proposition 1 If I is a nonzero finitely generated ideal of D, then the following
conditions are equivalent:

(i) I is a quasi–cancellation ideal of D;

(ii) IG ⊆ IH, with G and H non-zero finitely generated ideals of D, implies that
G ⊆ H;

(iii) IG ⊆ IH, with G and H non-zero ideals of D, implies that G ⊆ H;

(iv) I is a cancellation ideal of D;

(v) for each prime [maximal] ideal Q of D, IDQ is an invertible ideal of DQ;

(vi) I is an invertible ideal of D.
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Remark. (1) The notion of quasi-cancellation ideal was introduced in [AA-1984],
since in Gilmer’s book [G-1972, Exercise 4, p.66] it was erroneously stated that
a nonzero ideal I of an integral domain D is a cancellation ideal if and only if
(IF : I) = F , for each finitely generated ideal F of D (see the above mentioned
counter-example).

(2) Kaplansky [Ka-1971] in an unpublished set of notes proved that a nonzero
finitely generated ideal I of a local integral domain D is a cancellation ideal if and
only if I is principal. Therefore Proposition 1 is an extension of Kaplansky’s result.

(3) Recall that Jaffard [J-1960] proved that :
I is a (quasi-)cancellation ideal, for each I ∈ f(D) ⇔ D is a Prüfer domain,
cf. also Jensen [Je-1963, Theorem 5]. In that paper Jensen [Je-1963, Theorem 6]
proved also that:
I is a cancellation ideal, for each I ∈ F (D) ⇔ D is an almost Dedekind domain.

Recall also that in [AA-1984, Theorem 7] it is proved that:
I is a quasi cancellation ideal, for each I ∈ F (D) ⇔ D is a completely integrally
closed Prüfer domain.
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(4) Note that, when D is a Prüfer domain, it is known [AA-1984, Theorem 2 and
Theorem 5] that:
(a) I ∈ F (D) is a quasi cancellation ideal ⇔ (I : I) = D.
(b) I ∈ F (D) is a cancellation ideal ⇔ IDM is principal for each M maximal ideal
of D.

D.D. Anderson and Roitman [AR-1997, Theorem] extended (b) outside of the
(Prüfer) domain case and proved that, given a non zero ideal I of an integral
domain (respectively, a ring) R:
I is a cancellation ideal of R ⇔ IRM is a (respectively, regular) principal ideal of
RM , for each M maximal ideal of R.

The previous statement was “extended” further on to submodules of the quotient
field of an integral domain D by Goeters and Olberding [GO-2000]:
let E ∈ F (D), E is called a cancellation module for D if for G, H ∈ F (D):

EG ⊆ EH ⇒ G ⊆ H.

Then [GO-2000, Theorem 2.3]:

E is a cancellation module for D ⇔
⇔ EDM is principal, for each M ∈ Max(D)
⇔ EDM is a cancellation module for DM , for each M ∈ Max(D).
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As in the classical star-operation setting, we associate to a semistar

operation ? of D a new semistar operation ?f as follows. If E ∈
F (D) we set:

E?f := ∪{F ? | F ⊆ E, F ∈ f(D)} .

We call ?f the semistar operation of finite type of D associated to

? .

If ? = ?f , we say that ? is a semistar operation of finite type of D .

Note that ?f ≤ ? and (?f)f = ?f , so ?f is a semistar operation of

finite type of D .
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As we have already remarked, it is obvious that:
a.b. [semi]star operation ⇒ e.a.b. [semi]star operation.

Moreover:

Lemma 2 If ? = ?f , then:

? is an e.a.b. [semi]star operation ⇔ ? is an a.b. [semi]star operation.

Proof. We consider the case of star operations. We need only to prove that if
? is an e.a.b. star operation then ? is an a.b. star operation. Let I ∈ f(D) and
J, L ∈ F (D). Assume that (IJ)? ⊆ (IL)?. By the assumption, we have (IJ)? =
∪{H? | H ∈ f(D)) , H ⊆ IJ} = ∪{(IF )? | F ∈ f(D) , F ⊆ J} and similarly (IL)? =
∪{(IG)? | G ∈ f(D) , G ⊆ L}. Therefore, for each F ∈ f(D) , F ⊆ J, we have
IF ⊆ ∪{(IG)? | G ∈ f(D) , G ⊆ L}. Thus we can find G1, G2, ..., Gr in f(D) with the
property that Gi ⊆ L for 1 ≤ i ≤ r, in such a way:

(IF )? ⊆ (IG1 ∪ IG2 ∪ ... ∪ IGr)
? ⊆ (I(G1 ∪G2 ∪ ... ∪Gr))

? .

Since ? is an e.a.b. star operation then F ? ⊆ (G1 ∪ G2 ∪ ... ∪ Gr)? ⊆ ∪{G? | G ∈
f(D) , G ⊆ L} = L?

f = L? and so J? = J?
f = ∪{F ? | F ∈ f(D) , F ⊆ J} ⊆ L?. 2
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Next result generalizes in the [semi]star setting Lemma 2 (i.e. part

of [AA-1984, Theorem]).

Proposition 3 Let D be an integral domain and let ? be a [semi]star

operation on D. If F is in f(D), then:

F is ?–e.a.b. if and only if F is ?f–a.b.

Proof. Since the notion of ?–e.a.b. coincides with the notion of ?
f
–e.a.b., it remains

to show that if F is ?–e.a.b. then F is ?
f
–a.b.. Let G, H ∈ F (D) and assume that

(FG)?
f ⊆ (FH)?

f , then arguing as in Lemma 2, for each G′ ∈ f(D), with G′ ⊆ G, we
can find a H ′

G′ ∈ f(D), with H ′
G′ ⊆ H, in such a way that (FG′)? ⊆ (FH ′

G′)?. Since
F is ?–e.a.b., then (G′)? ⊆ (H ′

G′)? and so G?
f = ∪{(G′)? | G′ ∈ f(D) , G′ ⊆ G} ⊆

∪{(H ′
G′)? | G′ ∈ f(D) , G′ ⊆ G} ⊆ ∪{(H ′)? | H ′ ∈ f(D) , H ′ ⊆ H} = H?

f . 2
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Some of the characterizations given in [AA-1984] for quasi–cancellation
and cancellation ideals, can be generalized in the [semi]star setting.
Lemma 4 Let F ∈ f(D) and let ? be a [semi]star operation on D.
F is ?–e.a.b. (respectively, ?–a.b.) if and only if ((FH)? : F ?) = H?,
for each H ∈ f(D) (respectively, for each H ∈ F (D) [H ∈ F (D) in the
semistar case]) .
(Note that ((FH)? : F ?) = ((FH)? : F ) = H?, so the previous equivalences can be
stated in a formally slightly different way.)

Proof. We consider only the a.b. case in the star setting (since ?–e.a.b. coincides
with ?

f
–a.b. and ((FH)? : F ?) = H?, coincides with ((FH)?

f : F ?
f) = H?

f , when
F, H ∈ f(D)) ). The “if” part: it is easy to see that, F is ?–a.b. if and only if
(FG)? = (FH)?, with G, H ∈ F (D), implies that G? = H?. Then,

(FG)? = (FH)? ⇒ ((FG)? : F ?) = ((FH)? : F ?) .

The conclusion now is a straightforward consequence of the assumption.

The “only if” part: given H ∈ F (D), clearly H? ⊆ ((FH)? : F ?). Conversely, note
that F ((FH)? : F ?) ⊆ (FH)?, and so we have (F ((FH)? : F ?))? ⊆ (FH)?. There-
fore, by the assumption, ((FH)? : F ?)? ⊆ H?. 2
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It is known that if ? is an e.a.b. star operation on an integral domain

D, then there exists an a.b. star operation ∗ on D such that ?|f(D)=

∗|f(D) [G-1972, Corollary 32.13].

This property holds also in the semistar setting.

More precisely, if we consider the Kronecker function ring (associated

to [semi]star operation ?), Kr(D, ?), then the a.b. [semi]star operation

∗ can be defined as follows: for each E ∈ F (D) [E ∈ F (D), in the

semistar setting],

E∗ := EKr(D, ?) ∩K .

This operation can described in various equivalent ways.
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It is possible to associate to any semistar operation ? of D an (e.)a.b.
semistar operation of finite type ?a of D , called the (e.)a.b. semistar
operation associated to ? , defined as follows for each F ∈ f(D) and
for each E ∈ F (D) :

F ?a := ∪{((FH)? : H?) | H ∈ f(D)} ,
E?a := ∪{F ?a | F ⊆ E , F ∈ f(D)} .

The previous construction, in the star setting, is essentially due to P.
Jaffard [J-1960] and F. Halter-Koch [HK-1997], [HK-1998] .
Obviously (?f)a = ?a. Note that:
– when ? = ?f , then ? is (e.)a.b. if and only if ? = ?a .
– D?a is integrally closed and contains the integral closure of D in
K .

When ? = v , then Dva coincides with the pseudo-integral closure of
D introduced by D.F. Anderson, Houston and Zafrullah [AHZ-1991].
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We now turn our attention to the valuation overrings. The notion that we recall
next is due to P. Jaffard [J-1960] (cf. also Halter-Koch [HK-1997]).

For a domain D and a semistar operation ? on D , we say that a valuation overring
V of D is a ?–valuation overring of D provided F ? ⊆ FV , for each F ∈ f(D) .
Note that, by definition the ?–valuation overrings coincide with the ?f–valuation
overrings.

Theorem 5 Let ? be a semistar operation of an integral domain D with quotient
field K . Then:

(1) The ?–valuation overrings also coincide with ?a–valuation overrings of D́.

(2) V is a ?–valuation overring of D if and only if V (X) is a valuation overring of
Kr(D, ?).
The map W 7→ W ∩K establishes a bijection between the set of all valuation
overrings of Kr(D, ?) and the set of all the ?–valuation overrings of D.

(3) E?a = EKr(D, ?) ∩K = ∩{EV | V is a ?–valuation overring of D} (=: E∧V(?) ),
for each E ∈ F (D) (where V(?) := {V | V is a ?–valuation overring of D}).

2
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Example 6 Example of an e.a.b. star operation that is not an a.b.

star operation.

Let k be a field, let X1, X2, Xn, ... be an infinite set of indeterminates

over k and let N := (X1, X2, Xn, ...)k[X1, X2, Xn, ...]. Clearly, N is a

maximal ideal in k[X1, X2, Xn, ...]. Set D := k[X1, X2, Xn, ...]N , let

M := ND be the maximal ideal of the local domain D and let K be

the quotient field of D.

Note that D is an UFD and consider W the set of all the rank one

valuation overrings of D. Let ∧W be the star a.b. operation on D

defined by W. It is wellknown that the t–operation tD on D is an a.b.

star operation, since tD|f(D)= ∧W|f(D) [G-1972, Proposition 44.13].
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We consider the following subset of fractionary ideals of D:

J := {xF tD, yM, zM2 | x, y, z ∈ K \ {0}, F ∈ f(D)} .

By using [G-1972, Proposition 32.4], it is not difficult to verify that

the set J defines on D a star operation ? as follows, for each E ∈
F (D):

E? := ∩{J | J ∈ J , J ⊇ E} .

Clearly ?|f(D)= tD|f(D) and so ? is an e.a.b. operation on D, since

tD is an a.b. (and hence an e.a.b.) star operation on D. Note that

(X1, X2)M ⊂ M2 and (M2)? = M2.

We claim that:

((X1, X2)M)? = ((X1, X2))
tD ∩M2 = M2 = ((X1, X2)M

2)? .



As a matter of fact, if (X1, X2)M ⊆ GtD for some G ∈ f(D), then we
have ((X1, X2)D)tDM tD ⊆ GtD, with ((X1, X2)D)tD = M tD = D, since
X1 and X2 are coprime in D and so (X1, X2)D is not contained in any
proper principal ideal of D . Therefore (X1, X2)M is not contained in
any nontrivial ideal of the type xF tD (= GtD) ∈ J .
A similar argument shows that (X1, X2)M is neither contained in any
ideal of the type yM, zM2 ∈ J , with y and z nonzero and non unit in
D, and thus the only nontrivial ideals of J containing (X1, X2)M are
M2 and M , hence ((X1, X2)M)? = M2.
Similarly, it can be shown that ((X1, X2)M

2)? = M2.

From the claim, if ? would be an a.b. star operation then we would
deduce that M? (= M) equal to (M2)? (= M2), which is not the
case.
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II. Math. Z. 41 (1936), 545–577; 665–679.

[OM-1994] A. Okabe and R. Matsuda, Semistar operations on integral domains,
Math. J. Toyama Univ. 17 (1994), 1–21.


