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§1. The Genesis

Let A be a commutative ring with identity and let R be a ring
without identity which is an A-module.

Following the construction described by D.D. Anderson in 2006 (A
Tribute to the Work of Robert Gilmer), we can define a multiplicative
structure in the A–module A⊕R, by setting
(a, x)(a′, x ′) := (aa′, ax ′ + a′x + xx ′) for all a, a′ ∈ A and x , x ′ ∈ R.

We denote by A⊕̇R the direct sum A⊕R endowed also with the
multiplication defined above.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 2 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

§1. The Genesis

Let A be a commutative ring with identity and let R be a ring
without identity which is an A-module.

Following the construction described by D.D. Anderson in 2006 (A
Tribute to the Work of Robert Gilmer), we can define a multiplicative
structure in the A–module A⊕R, by setting
(a, x)(a′, x ′) := (aa′, ax ′ + a′x + xx ′) for all a, a′ ∈ A and x , x ′ ∈ R.

We denote by A⊕̇R the direct sum A⊕R endowed also with the
multiplication defined above.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 2 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

§1. The Genesis

Let A be a commutative ring with identity and let R be a ring
without identity which is an A-module.

Following the construction described by D.D. Anderson in 2006 (A
Tribute to the Work of Robert Gilmer), we can define a multiplicative
structure in the A–module A⊕R, by setting
(a, x)(a′, x ′) := (aa′, ax ′ + a′x + xx ′) for all a, a′ ∈ A and x , x ′ ∈ R.

We denote by A⊕̇R the direct sum A⊕R endowed also with the
multiplication defined above.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 2 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

Lemma 1

With the notation introduced above, we have:

(1) A⊕̇R is a ring with identity (1, 0), which has an A–algebra structure
induced by the canonical ring embedding ιA : A ↪→ A⊕̇R, defined by
a 7→ (a, 0) for all a ∈ A.

(2) If we identify R with its canonical image (0)×R under the canonical
(A–module) embedding ιR : R ↪→ A⊕̇R, defined by x 7→ (0, x) for all
x ∈ R, then R becomes an ideal in A⊕̇R.

(3) If we identify A with A× (0) (respectively, R with (0)×R) inside
A⊕̇R, then the ring A⊕̇R is an A–module generated by (1, 0) and
R, i.e., A(1, 0) +R = A⊕̇R. Moreover, if pA : A⊕̇R � A is the
canonical projection (defined by (a, x) 7→ a for all a ∈ A and x ∈ R),
then

0 → R
ιR−→ A⊕̇R

p
A−→ A → 0

is a splitting exact sequence of A–modules.
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The previous construction takes its roots in the classical construction,
introduced by Dorroh in 1932, for embedding a ring R (with or without
identity, possibly without regular elements) in a ring with identity.

• Following Dorroh’s ideas, we can consider in any case R as a Z-module
and we can construct the ring

Dh(R) := Z⊕̇R (Dh, in Dorroh’s honour).

• Note that Dh(R) is a commutative ring with identity 1Dh(R) := (1, 0),
Dh(R) = Z·1Dh(R) +R and Dh(R)/R is naturally isomorphic to Z.

• On the bad side, note that if the ring R = R has an identity 1R , then
the canonical embedding of R into Dh(R) (defined by x 7→ (0, x) for all
x ∈ R) does not preserve the identity, since (0, 1R) 6= 1Dh(R).

• Moreover, in any case (whenever R is a ring with or without identity) the
canonical embedding R ↪→ Dh(R) might not preserve the characteristic.
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In order to overcome this difficulty, in 1935 Dorroh gave a variation of the
previous construction, which can be described now as a particular case of
the general construction introduced above.

More precisely, if R has positive characteristic n (whenever R is a ring
with or without identity), then R can be considered as a Z/nZ-module, so

Dhn(R) := (Z/nZ) ⊕̇R

is a ring with identity 1Dhn(R) := (1, 0), having characteristic n.

Moreover, as above,

Dhn(R) = (Z/nZ) ·1Dhn(R) +R

and
Dhn(R)/R ∼= Z/nZ.
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§2. The amalgamation of an algebra along an ideal

A natural situation in which we can apply the previous general
construction (Lemma 1) is the following.

• Let f : A → B be a ring homomorphism and let J be an ideal of B.
Note that f induces on J a natural structure of A–module by setting

a·j := f (a)j for all a ∈ A and j ∈ J.

Then, we can consider the ring A⊕̇J.

The following properties follow from Lemma 1.
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Lemma 2

With the notation introduced above, we have:

(1) A⊕̇J is a ring.

(2) The map f
1

: A⊕̇J → A× B, defined by (a, j) 7→ (a, f (a) + j) for all
a ∈ A and j ∈ J, is an injective ring homomorphism.

(3) The map ιA : A → A⊕̇J (respectively, ιJ : J → A⊕̇J), defined by
a 7→ (a, 0) for all a ∈ A (respectively, by j 7→ (0, j) for all j ∈ J), is an
injective ring homomorphism (respectively, an injective A–module
homomorphism).

(4) Let pA : A⊕̇J → A be the canonical projection (defined by (a, j) 7→ a
for all a ∈ A and j ∈ J), then the following is a split exact sequence
of A–modules:

0 → J
ιJ−→ A⊕̇J

pA−→ A → 0 .
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• We set

A1f J := f 1(A⊕̇J) = {(a, f (a) + j) | a ∈ A, j ∈ J} ⊆ A× B .

Clearly, A ∼= Γ(f ) := {(a, f (a)) | a ∈ A} ⊆ A1f J (⊆ A× B).

The motivation for replacing A⊕̇J with its canonical image A1f J inside
A× B is related to the fact that the multiplicative structure defined in
A⊕̇J, which looks somewhat “artificial”, becomes the restriction to A1f J
of the natural multiplication defined componentwise in the direct product
A× B.

• The ring A1f J will be called the amalgamation of the A−algebra B
along J, with respect to f : A → B.

In very different contexts, particular cases of such construction were also
considered by A.L.S. Corner (1969) and T.S. Shores (1974).
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§3. Nagata’s idealization.

• Let A be a commutative ring and M a A–module. Recall that, in 1955,
Nagata introduced the ring extension of A called the idealization of M in
A, denoted here by A nM, as the A–module A⊕M endowed with a
multiplicative structure defined by:

(a, x)(a′, x ′) := (aa′, ax ′ + a′x) , for all a, a′ ∈ A and x , x ′ ∈M.

If we identify M and A with their canonical images in A nM, then M
becomes an ideal in A nM which is nilpotent of index 2 (i.e., M2 = 0)
and the following

0 →M→ AnM→ A → 0

is a spitting exact sequence of A–modules. (Note that the idealization
AnM is also called by Fossum the trivial extension of A by M.)
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• We can apply the construction of Lemma 1 by taking R := M, where
M is a A–module, and considering M as a (commutative) ring without
identity, endowed with a trivial multiplication (defined by x ·y := 0 for all
x , y ∈M).
In this way, we have that the Nagata’s idealization is a particular case of
the construction considered in Lemma 1, since AnM = A⊕̇M.

• On the other hand, let B := AnM, ι : A ↪→ B be the canonical ring
embedding and consider M as an ideal of B. It is straighforward to see
that AnM is canonically isomorphic to the amalgamation A1ιM.

Although this, the Nagata idealization and the constructions of the type
A1f J can be very different from an algebraic point of view.

In fact, for example, if M is a nonzero A–module, the ring AnM is
always non-reduced (the element (0, x) is nilpotent for all x ∈M),
but the amalgamation A1f J can even be an integral domain, as we will
see in a moment.
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§4 The constructions A + XB[X] and A + XB[[X]]

Let A ⊂ B be an extension of commutative rings and
X := {X1,X2, ...,Xn} a finite set of indeterminates over B.

• In the polynomial ring B[X], we can consider the following subring

A + XB[X] := {h ∈ B[X] | h(0) ∈ A} ,

where 0 is the n−tuple whose components are 0.

This is a particular case of the general construction introduced above.

• In fact, if σ′ : A ↪→ B[X] =: B ′ is the natural embedding and
J ′ := XB[X], then it is easy to check that

A + XB[X] is isomorphic to A1σ′J ′ .

• More generally, if J is an ideal of B and if consider the ideal
J ′ := XJ[X] of B ′ (= B[X]) then

A + XJ[X] is isomorphic to A1σ′J ′ .
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• Similarly, in the power series ring B[[X]], we can consider the following
subring

A + XB[[X]] := {h ∈ B[[X]] | h(0) ∈ A} ,

where 0 is the n−tuple whose components are 0.

This is also a particular case of the general construction introduced above.

• In fact, if σ′′ : A ↪→ B[[X]] =: B ′′ is the natural embedding and
J ′′ := XB[[X]], then it is easy to check that

A + XB[[X]] is isomorphic to A1σ′′J ′′ .

• More generally, if J is an ideal of B and if consider the ideal
J ′′ := XJ[[X]] of B ′′ (= B[[X]]) then

A + XJ[[X]] is isomorphic to A1σ′′J ′′ .

******
For a survey on the use of examples built with the previous constructions,
see T. Lucas (2000).
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§5 The D + M construction

Let M be a maximal ideal of a ring (usually, an integral domain) T and let
D be a subring of T such that M ∩ D = (0). The ring
D + M (:= {x + m | x ∈ D, m ∈ M}) is canonically isomorphic to D 1ιM,
where ι : D ↪→ T is the natural embedding.

• More generally, let {Mλ | λ ∈ Λ} be a subset of the set of the maximal
ideals of T such that Mλ ∩ D = (0) for some λ ∈ Λ, and set
J :=

⋂
λ∈Λ Mλ, then

D + J := {x + j | x ∈ D, j ∈ J} is canonically isomorphic to D 1ιJ.

• In particular, if D := K is a field contained in T and J := Jac(T ) is the
Jacobson ideal of (the K–algebra) T , then
K + Jac(T ) is canonically isomorphic to K 1ιJac(T ),
where ι : K ↪→ T is the natural embedding.
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• More generally, let {Mλ | λ ∈ Λ} be a subset of the set of the maximal
ideals of T such that Mλ ∩ D = (0) for some λ ∈ Λ, and set
J :=

⋂
λ∈Λ Mλ, then

D + J := {x + j | x ∈ D, j ∈ J} is canonically isomorphic to D 1ιJ.

• In particular, if D := K is a field contained in T and J := Jac(T ) is the
Jacobson ideal of (the K–algebra) T , then
K + Jac(T ) is canonically isomorphic to K 1ιJac(T ),
where ι : K ↪→ T is the natural embedding.
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§6 Iteration of the construction A1 I

We start recalling an “ancestor” of the construction A1f J.

• If A is a ring and I is an ideal of A, we can consider the amalgamated
duplication of the ring A along its ideal I (= the simple amalgamation of
A along I ), i.e.,

A1 I := {(a, a + i) | a ∈ A, i ∈ I} (:= A1idAI ) .

For the sake of simplicity, set A′ := A1 I . It is immediately seen that
I ′ := {0}×I is an ideal of A′, and thus we can consider again the simple
amalgamation of A′ along I ′, i.e., the ring

A′′ := A′1 I ′ (= (A1 I )1({0}×I )).

It is easy to check that the ring A′′ may not be considered as a simple
amalgamation of A along one of its ideals.
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However, we can show that A′′ can be interpreted as an amalgamation of
algebras, giving in this way an answer to a problem posed by B. Olberding
in 2006 at Padova’s Conference in honour of L. Salce.

As a matter of fact, more generally, we have proved that if we iterate an
amalgamation of algebras we still obtain an amalgamation of algebras.
Instead of giving the details of this result, I will mention in a moment an
example for showing the interest in iterating the amalgamation of algebras.

Note that the previous question is very natural since, when we consider the
Nagata’s idealization A′ := A nM (where, as usual, A is a commutative
ring and M a A–module), we can iterate this construction with respect to
the A′-module M′ := {0}×M and it is not hard to see that the iterated
Nagata’s idealization A′ nM′ is canonically isomorphic to the (classical)
Nagata’s idealization A n(M×M).
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Example 1

We can apply the (iterated simple) amalgamation to curve singularities.
Let A be the ring of an algebroid curve with h branches (i.e., A is a
one-dimensional reduced ring of the form K [[X1,X2, . . . ,Xr ]]/

⋂h
i=1 Pi ,

where K is an algebraically closed field, X1,X2, . . . ,Xr are indeterminates
over K and Pi is an height r − 1 prime ideal of K [[X1,X2, . . . ,Xr ]], for
1 ≤ i ≤ r).
If I is a regular and proper ideal of A, then, with an argument similar to
that used by D’Anna (in the proof of Theorem 14, J. Algebra 2006, where
the case of a simple amalgamation of the ring of the given algebroid curve
is investigated), it can be shown that n-iterated amalgamation of A along
the ideal I , denoted by A 1n I is still a ring of an algebroid curve.
Moreover, in this case, A 1n I has exactly (n + 1)h branches.
More precisely, for each of the h branches of A, there are exactly n + 1
branches of A 1n I isomorphic to it under the canonical surjective map
Spec(A 1n I ) � Spec(A).
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Remark 3

One of the motivations for considering the “amalgamation construction” is
strictly related to a previous joint work with M. D’Anna (2007). One of
the main results of this paper is the following:

Let A be a Noetherian local integral domain and let I be a
m(ultiplicative)–canonical ideal of A and set R := A1 I := A1idA I . Then
R is a Noetherian local reduced ring, with dim(R) = dim(A), such that
every regular fractional ideal of R is divisorial.
More precisely, if A is a 1-dimensional Noetherian local integral domain
and I := ω is a canonical ideal of A, then R := A1 I is a 1-dimensional
reduced Gorenstein local ring.
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We say that a regular ideal I of a ring R is a multiplicative-canonical ideal of R (or
simply a m–canonical ideal) if each regular fractional ideal J of R is I–reflexive, i.e.,
J = (I : (I : J)).
Note that this definition is a natural extension of the concept introduced in the
integral domain case by W. Heinzer, J. Huckaba and I. Papick (1998) and of the
notion of canonical ideal given by J. Herzog and E. Kunz (1971) and by E. Matlis
(1973) for 1–dimensional Cohen-Macaulay rings.
In general, given a Cohen-Macaulay local ring (R, M, k) of dimension d , a canonical
module of R is an R–module ω such that the k–dimension of Exti

R(k, ω) is 1 for
i = d and 0 for i 6= d . If R is not local, a canonical module for R is an R–module ω
such that all the localizations ωM at the maximal ideals M of R are canonical
modules of RM .
When a canonical module ω exists and it is isomorphic to an ideal I of R, I is called
a canonical ideal of R.

In higher dimension, the notions of canonical ideal and m–canonical ideal do not

coincide. (HHP have shown that a Noetherian domain with dimension bigger than 1

does not admit a m–canonical ideal, while there exist (Noetherian) Cohen-Macaulay

domains of dimension bigger than 1 with canonical ideal (e.g., a Noetherian factorial

domain D of dimension ≥ 2; in this case, D is a Gorenstein domain).)
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§7 Amalgamation and pullbacks

• We recall that, if α : A → C , β : B → C are ring homomorphisms, the
subring D := α×

C
β := {(a, b) ∈ A× B | α(a) = β(b)} of A× B is called

the pullback (or fiber product) of α and β.

Proposition 4

Let f : A → B be a ring homomorphism and J be an ideal of B. Set
C := A× (B/J) and consider the canonical ring homomorphisms
u : A → C and v : A× B → C defined by

u(a) := (a, f (a)+J) and v((a, b)) := (a, b+J) for all a ∈ A and b ∈ B.

Then, the ring A1f J is canonically isomorphic to the pullback u ×
C

v.
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i.e., the following diagrams of canonical homomorphisms are pullbacks:

A1f J −−−−→ Ay y(idA, f̆ )

A× B
v−−−−→ A× (B/J)

A1f J −−−−→ Ay y(idA, f̆ )

A× B
v−−−−→ A× (B/J)

pr2

y ypr2

B −−−−→ B/J

where f̆ : A → B/J is defined by a 7→ f (a) + J for all a ∈ A.
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Note that, by the previous observation, the pullback of canonical
homomorphisms

A1f J
β′−−−−→ Ay yf̆

B
β−−−−→ B/J

(where β : b 7→ b+J , ∀b ∈ B, and f̆ : a 7→ f (a)+J , ∀a ∈ A) has the
property that the canonical surjective map β′ : A1f J � A is a retraction
(i.e., A ↪→ A1f J � A is the identity map of A).

This property characterizes the operation of amalgamation of algebras
along an ideal.
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More precisely:

Given the ring homomorphisms α : A → C and β : B → C , where β is
surjective, consider the pullback

D
β′−−−−→ A

α′
y yα

B
β−−−−→ C .

If β′ is a retraction, with γ′ : A → D such that β′ ◦ γ′ = idA, then
D is canonically isomorphic to the amalgamation A1ϕJ,
where ϕ := α′ ◦ γ′ : A → B and J := Ker(β).

Using the fact that the amalgamations of algebras along ideals are very
special pullbacks, we can immediately deduce some basic properties.
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We know now several basic properties of the rings of the type A1f J, for
instance:

• Characterizations of when A1f J is a reduced ring;

• Characterizations of when A1f J is an integral domain;

• Characterizations of when A1f J is a Noetherian ring;

• Description of the integral closure of A1f J in A× B;

• Description of Spec(A1f J) and properties of chains of prime ideals of
A1f J;

• Description of the localizations at prime ideals of A1f J;

• Upper and lower bounds for the Krull dimension of A1f J.
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§8. The Noetherianity of the ring A1f J

Proposition 5

The following conditions are equivalent.

(i) A1f J is a Noetherian ring.

(ii) A and B� := f (A) + J are Noetherian rings.

The previous proposition has a moderate interest, because the
Noetherianity of A1f J is not directly related to the data (i.e., A,B, f and
J), but to the ring B� = f (A) + J which, when f −1(J) = {0}, is
canonically isomorphic A1f J.

However, if f� : A → B� is the canonical map obtained by composing
A � f (A) with f (A) ↪→ f (A) + J = B�, it is easy to verify that
A1f J = A1f�J.

Therefore, in order to obtain more useful criteria for the Noetherianity of
A1f J, we specialize Proposition 5 in some relevant cases.
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Proposition 6

Assume that at least one of the following conditions holds:

(a) J is a finitely generated A–module (with the structure naturally
induced by f ).

(b) f is a finite homomorphism.

(c) B is Noetherian and f̆ : A → B/J, defined by a 7→ f (a) + J for all
a ∈ A, is a finite homomorphism.

Then A1f J is Noetherian if and only if A is Noetherian. In particular, if A
is a Noetherian ring and B is a Noetherian A–module (e.g., if f is a finite
homomorphism) then A1f J is a Noetherian ring for all ideal J of B.
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As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.

Marco Fontana (“Roma Tre”) Amalgamated algebras along an ideal 26 / 28



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C B §8 C

As a consequence of the previous proposition, we obtain a characterization
of Noetherianity of the rings of the form A + XB[X ] and A + XB[[X ]].

Note that S. Hizem and A. Benhissi in 2005 have already given a
characterization of the Noetherianity of the power series rings of the type
A + XB[[X ]].

The next corollary provides a simple proof of Hizem and Benhissi’s
Theorem and enlarges this characterization to the polynomial case (in
several indeterminates).

Corollary 7

Let A ⊆ B be a ring extension and X := {X1,X2, ...,Xn} a finite set of
indeterminates over B. Then the following conditions are equivalent.

(i) A + XB[X] is a Noetherian ring.

(ii) A + XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring and A ⊆ B is a finite ring extension.
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Remark 8

Let A ⊆ B be a ring extension, and let X be an indeterminate over B.
Note that the ideal J ′ := XB[X ] of B[X ] is never finitely generated as an
A–module (with the structure induced by the inclusion σ′ : A ↪→ B[X ]).

Therefore, the Noetherianity of the ring A1f J does not imply that J is
finitely generated as an A–module (with the structure induced by f ).

For instance R + XC[X ] (∼= R1σ′XC[X ] (where σ′ : R ↪→ C[X ] is the
natural embedding) is a Noetherian ring (Corollary 7), but XC[X ] is not
finitely generated as an R–vector space (nor, σ′ is a finite
homomorphism).

This fact shows that condition (a) (or, (b) ) of Proposition 6 is not
necessary for the Noetherianity of A1f J.
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Example 2

Let A ⊆ B be a ring extension, J an ideal of B and X := {X1,X2, . . . ,Xr}
a finite set of indeterminates over B.
We set B ′ := B[X], J ′ := XJ[X] and we denote by σ′ the canonical
embedding of A into B ′, then we already observed that the ring A 1σ′J ′

is naturally isomorphic to the ring A + XJ[X].

In this case, we can characterize the Noetherianity of the ring A + XJ[X],
without assuming a finiteness condition on the inclusion A ⊆ B (as in
Corollary 7 (iii)) or on the inclusion A + XJ[X] ⊆ B[X].
More precisely, the following conditions are equivalent.

(i) A + XJ[X] is a Noetherian ring.

(ii) A is a Noetherian ring, J is an idempotent ideal of B and it is finitely
generated as an A–module.

Note that, if A + XJ[X] is Noetherian and B is not Noetherian, then
A ⊆ B and A + XJ[X] ⊆ B[X] are necessarily not finite.
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