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Abstract

Let R be an integral domain with quotient 5eld K . The Kaplansky transform of an ideal I of
R is given by �(I) = {z ∈ K | rad((R :R zR))⊇ I}. For 5nitely generated ideals, this agrees with
the Nagata transform. We attempt to characterize �-domains, that is, domains each of whose
overrings is a Kaplansky transform. We obtain a particularly satisfactory characterization when
we restrict to the class of Pr=ufer domains: a Pr=ufer domain R is an �-domain if and only if
for each nonzero branched prime ideal P of R the set P↓= {Q∈ Spec(R)|Q⊆P} is open in the
Zariski topology. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 13A15; 13F05; 13B22

1. Introduction and preliminary results

Let R be an integral domain with quotient 5eld K , and let I be an ideal of R. We
call the following overring of R the Nagata transform of I with respect to R:

TR(I) =
⋃
n≥0
(R : I n) = {x ∈ K | xIn ⊆R for some n ≥ 0}:

In [13] (see also [9]) Kaplansky introduced a more general notion of ideal transform,
which we call the Kaplansky ideal transform of I with respect to R:

�R(I) = {z ∈ K | for each a ∈ I there is an integer n(a) ≥ 1 such that zan(a) ∈ R}
= {z ∈ K | rad((R :R zR))⊇ I}:
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When there is no danger of ambiguity, we shall use T (I) instead of TR(I) and �(I)
instead of �R(I). The Kaplansky transform was studied by Hays [9] (where it was
called the S-transform).
It is straightforward to check that T (I)⊆�(I) and that we have equality when I is

5nitely generated.
Following Brewer and Gilmer [1], we say that the domain R is a T -domain (re-

spectively an FT -domain) if each overring of R is the Nagata transform of an ideal
(respectively, a 5nitely generated ideal) of R. In [1], Brewer and Gilmer obtained
a complete characterization of FT -domains but only partial results for T -domains,
for which they posed several questions. We begin by recalling some of their main
results.

Theorem 1.1 (Brewer and Gilmer [1, Theorem 1:5]). For an integral domain R; the
following statements are equivalent.

(1) R is an FT-domain.
(2) Each overring of R is the Nagata transform of a principal ideal of R.
(3) Each valuation overring of R is the Nagata transform of a ;nitely generated

ideal of R.
(4) R is a semilocal Pr<ufer domain with the following property: if {Pn}n≥0 is a

strictly descending in;nite sequence of prime ideals of R and if P is a prime
ideal of R; then Pn ⊆P for some n ≥ 0.

For the case of T -domains, one of the principal results of [1] is the following:

Theorem 1.2 (Brewer and Gilmer [1, Theorem 2:15]). Let R be an integral domain
with no idempotent proper prime ideals. Then the following statements are equivalent:

(1) R is a T-domain;
(2) each valuation overring of R is the Nagata transform of an ideal of R;
(3) R is an FT-domain.

Corollary 1.3. For a Noetherian domain R; the following conditions are equivalent:

(1) R is a T-domain;
(2) R is an FT-domain;
(3) R is a semilocal PID.

According to [1, Corollary 2:5], the conditions of Corollary 1.3 are also equivalent
for Krull domains, and Hedstrom [10] generalized this to domains of Krull type. We
observe that these conditions are also equivalent for a Mori domain. Indeed, conditions
(1) and (2) are equivalent, since, for each ideal I in a Mori domain, there is a 5nitely
generated ideal J ⊆ I such that Iv = Jv, whence T (I) = T (Iv) = T (Jv) = T (J ). For the
equivalence of (2) and (3), it suKces to recall that a Mori Pr=ufer domain must be
Dedekind.
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In general, a T -domain need not be integrally closed. For example, let (V;M) be
a one-dimensional valuation domain with M =M 2 and with quotient 5eld K , let ’ :
V → k =V=M be the canonical projection, let k0⊆ k be a minimal extension of 5elds,
and let R=’−1(k0). It is easy to see that the only proper overrings of R are V and K .
Moreover, K=TR(0) and V =(R : M)=

⋃
n≥0(R : M

n)=TR(M). Thus R is a T -domain,
and the integral closure MR of R coincides with V , since k0⊆ k is an algebraic extension.
In their paper, Brewer and Gilmer posed the following questions:

(Q.1) If R is a T -domain, does it follow that each overring of R is a T -domain?
(Q.2) If R is a T -domain, is the integral closure MR of R necessarily a Pr=ufer domain?
(Q.3) If R is a T -domain, is R necessarily semilocal?

Note that by Theorem 1.1, these questions all have positive answers in the case of
FT-domains.
In the spirit of [4], when considering the non-Noetherian case, it seems preferable to

replace the Nagata transform with the Kaplansky transform. Let us de5ne an �-domain
to be a domain each of whose overrings is a Kaplansky transform. It is then natural to
ask whether the questions above have positive answers when “T -domain” is replaced
by “�-domain”.
In this work, we show that the “�” versions of questions (Q.1) and (Q.2) above

have positive answers; as for (Q.3), we give an example (Section 4) of a non-semilocal
�-domain. We also attempt to obtain a satisfactory characterization of �-domains. It
is not diKcult to show that an integrally closed �-domain is a Pr=ufer domain, and we
show in Theorem 2.11 that a Pr=ufer domain R is a �-domain if and only if, for each
nonzero prime P of R, either the set P↓={Q ∈ Spec(R) |Q⊆P} is open in the Zariski
topology or P is unbranched (meaning, in the context of a Pr=ufer domain, that P is the
union of the (chain of) primes properly contained in P). We also obtain a reasonably
good description of semilocal (not necessarily integrally closed) �-domains.
In the remainder of the present section, we collect some of the ideas and results

which we shall need in the sequel.
The following lemma gives some of the properties of the Kaplansky transform.

Lemma 1.4. (1) If I is an ideal of R; then �(I)=
⋂

P+I RP=
⋂

f∈I Rf. Hence if I ⊆ J
are two ideals of R; then �(I)⊇�(J ); and if I ⊆ J ⊆ rad(I); then �(I) = �(J ).
(2) If {I�} is a family of ideals of R; then

⋂
� �(I�) = �(

∑
� I�).

(3) If I is an ideal of R and S is an overring of R with R⊆ S ⊆�R(I); then
�S(IS) = �R(I).
(4) For each ideal I of R; �R(I) =

⋂
P∈Spec(R) �RP (IRP) =

⋂
M∈Max(R) �RM (IRM ).

Proof. The 5rst statement in part (1) is proved in [9, Lemma 1:6 and Theorem 1:7],
and the second statement is an easy consequence of the 5rst one.
Statement (2) follows easily from (1). (Also see [4, Lemma 3:1(f)].)
Statement (3) is [4, Lemma 3:1(l)].
Statement (4) is proved in [9, Proposition 1:9].
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Recall that a QQR-domain is a domain R each of whose overrings is an intersection
of localizations at prime ideals of R [5, p. 339] (see also [7,8]). According to Lemma
1.4(1), an �-domain is automatically a QQR-domain.
We shall say that an overring S of R is an �-overring (respectively, a T -overring)

if S = �(I) (respectively, S = T (I)) for some ideal I of R.
We shall make frequent use of the following elementary result.

Proposition 1.5. A domain R is an �-domain if and only if R is a QQR-domain and
RP is an �-overring for each prime ideal P of R.

Proof. Suppose that R is a QQR-domain and that each RP is an �-overring. Let S be
an overring of R. Then S =

⋂
� RP� for some family {P�} of prime ideals of R, and

for each �, we have RP� = �(I�) for some ideal I� of R, whence by Lemma 1.4(2),
we have S = �(

∑
� I�). The converse follows easily from the de5nitions.

Since by [8, Corollary 1:7] a QQR-domain has Pr=ufer integral closure, we have the
following:

Corollary 1.6. If R is an �-domain; then its integral closure MR is a Pr<ufer domain.

Remark 1.7. It is shown in [8, Theorem 1:9] that the QQR-property is a local property.
Unfortunately, despite Proposition 1.5, this is not the case for the �-property. For
example, if R is any non-semilocal Dedekind domain, then, for each maximal ideal
M of R, RM is clearly an �-domain, but RM is not an �-overring of R. Indeed, if I
is a non-zero ideal of R, then there is a maximal ideal N 	= M of R with I * N .
By Lemma 1.4, this implies that RN ⊇�(I), whence �(I) 	= RM . We give a more
interesting example of this failure in Example 2.12 below.

We set some notation for the remainder of the paper. For a prime ideal P of a
domain R, the pseudo-radical of P is the ideal

P∗ =
⋂

{Q |Q is a prime ideal of R with Q % P};
and we say that P is a G(oldman)-ideal if P 	= P∗ (see [6] and [12, Section 1:3]).
(Here P∗=R if P is maximal.) Note that maximal ideals are G-ideals. We also call a
prime ideal P a g(enerization)-ideal if the set

P↓ = {Q ∈ Spec(R) |Q⊆P}
is an open subset of Spec(R) [15]. As usual, we denote by V(I) the closed subspace
{Q ∈ Spec(R) |Q⊇ I} and by D(I) the open subspace Spec(R)\V(I). Finally, we set

I(P) =
⋂

{Q ∈ Spec(R) |Q * P}=
⋂

{Q ∈ Spec(R) |RQ + RP}:

Proposition 1.8. Let P be a prime ideal of a domain R. Then the following conditions
are equivalent:
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(a) P is a g-ideal of R.
(b) P↓ =D(I) for some ;nitely generated ideal I of R.
(c) P↓ =D(f) for some element f ∈ R \ P.
(d) There is an element f ∈ R \ P such that RP = Rf.
(e) If {Q�} is a family of prime ideals of R such that

⋂
� Q� ⊆P; then Q� ⊆P for

some �.
(f ) I(P)* P.
(g) P↓ =D(I(P)).

Proof. The equivalences (a)–(e) are stated in “collective” form in [15, Proposition
6]. A proof can be obtained by following the arguments given in [16, V, Propositions
1; 2]. It is easy to see that (e) and (f) are equivalent, and it is clear that (g) implies
(a). On the other hand, in general we have that Spec(R) \ P↓=V(

⋂
Q∈Spec(R)\P↓ Q) =

V(
⋂

Q*P Q)=V(I(P)). Hence if P↓ is open, then Spec(R) \P↓=V(I(P)), that is,
P↓ =D(I(P)). Thus (a) implies (g).

The following result is clear from Proposition 1.8(a)⇔ (e).

Corollary 1.9. Every g-ideal is a G-ideal.

The converse of Corollary 1.9 does not hold in general since, while a maximal
ideal is necessarily a G-ideal, it need not be a g-ideal. For example, the maximal
ideals in the ring Z of integers are not g-ideals, since it is easy to see that con-
dition (e) of Proposition 1.8 does not hold. It is clear, however, that in a local
ring the maximal ideal is a g-ideal. In a valuation domain, the notions are
equivalent.

Proposition 1.10. In a valuation domain; a prime ideal is a G-ideal if and only if it
is a g-ideal.

Proof. By Corollary 1.9 and the discussion above, it suKces to show that if P is a
non-maximal prime G-ideal, then P is a g-ideal. However, it is easy to see that VP=Vf

for any f ∈ P∗ \ P, so this follows from Proposition 1.8(a)⇔ (d).

We shall call a domain R a G-ideal domain (respectively, a g-ideal domain) if every
prime ideal of R is a G-ideal (respectively, a g-ideal).

Remark 1.11. Rings in which each prime ideal is a g-ideal were introduced and stud-
ied under the name “g-ring” by Picavet in [15,16]. Among other things, he proved
that a g-ring is always semilocal [15, Proposition 7]. We note that a one-dimensional
non-semilocal Pr=ufer domain with nonzero pseudoradical (i.e., (0)∗ 	= (0)) is a G-ideal
domain which is not a g-ideal domain. For example, we can take the integral closure of
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a one-dimensional valuation domain in a non-5nite algebraic extension of its quotient
5eld.

Proposition 1.12. Let R be a semilocal Pr<ufer domain. Then the following statements
are equivalent:
(1) R is a g-ideal domain.
(2) R is a G-ideal domain.
(3) If {Pn}n≥0 is a strictly decreasing in;nite sequence of prime ideals of R; and if

P is any prime ideal of R; then P⊇Pn for some n ≥ 0.
(4) If {Q�} is a family of prime ideals of R and if P is a prime ideal of R with⋂

� Q� ⊆P; then Q� ⊆P for some �.

Proof. Implication (1) implies (2) holds in general. Suppose that R is not a g-ideal
domain. Then there is a prime non-g-ideal P in R. Since R is semilocal, there is a
chain {Q�} of prime ideals such that Q� * P for each � and Q=

⋂
� Q� ⊆P. It follows

that the prime ideal Q is not a G-ideal. Hence (2) implies (1). The equivalence of (1)
and (4) follows from Proposition 1.8(a)⇔ (e). It is clear that (4) implies (3). Finally,
that (3) implies (1) is a consequence of [2, Theorem 1:5(e)⇒ (a)].

Corollary 1.13. For a valuation domain V; the following statements are equivalent:

(1) V is a g-ideal domain.
(2) V is a G-ideal domain.
(3) For each nonmaximal ideal P of V; there is a prime ideal P∗ right above P.
(4) For each prime ideal P of V; the descending chain condition on prime ideals holds

in the ring V=P.

2. Integrally closed �-domains

As a consequence of the results obtained in the preceding section, we show in
Proposition 2.2 that questions (Q.1) and (Q.2) have positive answers for �-domains.
We then undertake a study of Pr=ufer �-domains. Recall that by Corollary 1.6 an
integrally closed �-domain is automatically a Pr=ufer domain.

Proposition 2.1. If P is a prime g-ideal of a domain R; then RP is an �-overring of
R. It follows that a QQR-domain which is also a g-ideal domain is an �-domain.

Proof. Let P be a prime g-ideal. By Proposition 1.8, we have RP = Rf for some
element f ∈ R \ P. However, Rf = �(fR) by Lemma 1.4(1). The second statement
follows from Proposition 1.5.

Proposition 2.2. If R is an �-domain; then each overring of R is an �-domain. In
particular; the integral closure of an �-domain is an �-domain.
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Proof. Let S be an overring of R and T an overring of S. Since R is an �-domain, we
have T = �R(I) for some ideal I of R. It follows that T = �S(IS) by Lemma 1.4(3).

Lemma 2.3. Let P be a nonmaximal prime ideal in a domain R. Then I(P) is
contained in the Jacobson radical of R.

Proof. Let M be a maximal ideal of R. Then M * P, whence M ⊇I(P).

Before stating our next result, we need some notation. For an R-submodule E of K ,
we set

�−(E):=
⋂
z∈E

rad (R :R zR):

By [4, Corollaries 3:15, 3:16], we have the following two facts:

(1) I(P) = �−(RP) for each prime P and
(2) �(I) = �(�−(�(I))) for each ideal I .

Lemma 2.4. Let R be a domain; let P ∈ Spec(R); and assume that RP = �(I) for
some ideal I of R. Then RP = �(I(P)).

Proof. By the facts mentioned above, we have

�(I(P)) = �(�−(RP)) = �(�−(�(I))) = �(I) = RP:

Recall that a prime ideal P of a domain R is said to be unbranched if P is the only
P-primary ideal of R [5, p. 189]. In a Pr=ufer domain, this is equivalent to P being the
union of the (chain of) primes contained in P [5, Theorem 23:3(e)].

Lemma 2.5. Let (V;M) be a valuation domain; and suppose that V =�(I) for some
proper ideal I of V . Then I =M; and M is unbranched.

Proof. We have V =�(I)=
⋂

Q+I VQ=
⋂

Q$I VQ. It follows that M =
⋃

Q$I Q. Hence
I =M , and M is unbranched.

Lemma 2.6. Let P be a nonzero prime ideal of a Pr<ufer domain R; and assume that
RP = �(I) for some ideal I of R with I ⊆P. Then P is unbranched; and IRP = PRP .
In particular; a nonzero prime non-g-ideal in a Pr<ufer �-domain is unbranched.

Proof. By Lemma 1.4(1), �RP (IRP)=RP . Hence by Lemma 2.5, either IRP =RP (i.e.,
I * P) or IRP=PRP and PRP is unbranched in RP . Since I ⊆P, we are in the second
case, and it follows that P is unbranched in R [5, Theorem 23:3(e)(6)].
The “in particular” statement now follows from Proposition 1.8(a)⇔ (f ) and Lemma

2.4.
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Lemma 2.7. Let R be a Pr<ufer domain; and let P be a prime ideal of R.

(1) If P is contained in a prime g-ideal of R; then P↓ \ {P} is open.
If; in addition, each nonzero prime non-g-ideal of R is unbranched; then:
(2) if P is a non-g-ideal; then P↓ \ {P} is open; and
(3) if P is nonmaximal; then P is a G-ideal ⇔ P is a g-ideal.

Proof. (1) Let N be a prime g-ideal with P⊆N . Then P↓ \ {P}=N ↓ ∩D(P), where
N ↓ is open (since N is a g-ideal).
(2) We may assume P 	= 0. It suKces to show that if Q ∈ P↓ \ {P}, then there

is an open subset U of Spec(R) with Q ∈ U ⊆P↓ \ {P}. If Q is a g-ideal, we
may take U = Q↓. Otherwise, Q is unbranched, and Q $ P. Choose x ∈ P \ Q,
and shrink P to a prime P1 minimal over x. Since R is a Pr=ufer domain, we have
Q⊆P1. Since P1 is branched, it is a g-ideal. Hence U =P↓

1 \{P1} is open by (1), and
Q ∈ U ⊆P↓ \ {P}.
(3) Let P be a prime G-ideal, and let M be a maximal ideal with P $ M . As in

the proof of (2), we may 5nd a prime g-ideal P0 with P $ P0⊆M . Since P $ P∗, it
is then easy to see that P↓ = P↓

0 ∩D(P∗). Hence P↓ is open, and P is a g-ideal. The
converse is true in general by Corollary 1.9.

Lemma 2.8. Let R be a Pr<ufer domain in which every non-zero prime non-g-ideal is
unbranched. Then a prime P of R is a non-g-ideal ⇔ P↓ \ {P}=D(I(P)).

Proof. By Proposition 1.8(a)⇒ (g), it suKces to show that if P is not a g-ideal, then
P↓\{P}=D(I(P)). By Lemma 2.7, P↓\{P} is open. Since P↓ is not open, it must be
the case that P↓\{P} is the interior of P↓. On the other hand, V(I(P))=Spec(R) \ P↓,
from which it follows that D(I(P)) is the interior of P↓.

Corollary 2.9. Let R be a Pr<ufer �-domain. Then Max(R) is a closed subspace of
Spec(R). Moreover; if P ∈ Spec(R) contains the Jacobson radical of R; then P ∈
Max(R).

Proof. We may assume that R is not a 5eld, in which case Max(R) is the complement
in Spec(R) of

⋃
M∈Max(R)(M

↓ \ {M}). The 5rst conclusion follows since Lemma 2.7
implies that each M↓ \ {M} is open. The second statement follows from the 5rst and
the fact that Max(R) =V(J), where J is the Jacobson radical of R.

Proposition 2.10. Let R be a Pr<ufer domain; let P ∈ Spec(R); and let J denote the
Jacobson radical of R. The following statements are equivalent:

(1) I(P) = P∗.
(2) P⊆J.
(3) P is comparable to all elements of Spec(R).
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Proof. (1) ⇔ (3): We have I(P) =
⋂

Q*P Q. Since R is a Pr=ufer domain, it is easy
to see that this intersection is equal to P∗ precisely when P is comparable to every
prime of R.
(3) ⇔ (2): It is trivial that (3) ⇒ (2). Suppose that Q is a prime of R, and let M

be a maximal ideal with Q⊆M . Since R is a Pr=ufer domain, the primes within M are
linearly ordered. Hence, since P⊆J⊆M , we have that P and Q are comparable.

Theorem 2.11. The following are equivalent for a Pr<ufer domain R:

(1) R is an �-domain.
(2) Each nonzero prime non-g-ideal is unbranched.
(3) If P is a prime ideal of R; then either D(I(P)) = P↓ or D(I(P)) = P↓ \ {P}

with P unbranched.

Proof. (1) ⇒ (2): This follows from Lemma 2.6.
(2) ⇒ (3): This follows from Proposition 1.8(a)⇒ (g) and Lemma 2.8.
(3) ⇒ (1): It suKces to show that RP is an �-overring for each prime P of R. Let

P be a prime; we shall show that RP =�(I(P)). If D(I(P)) = P↓, then �(I(P)) =⋂
Q+I(P) RQ =

⋂
Q ⊆ P RQ = RP . If, on the other hand, D(I(P)) = P↓ \ {P} with P

unbranched, then �(I(P)) =
⋂

Q+I(P) RQ =
⋂

Q$P RQ = RP (since P =
⋃

Q$P Q).

As promised in Remark 1.7, we now give an example of a semilocal Pr=ufer domain
R with the property that each localization is an �-domain but such that R is not an
�-domain.

Example 2.12. Suppose that R is a Pr=ufer domain with spectrum as follows: R contains
two maximal ideals M and N and a prime ideal P⊆M ∩N such that htM=P=1, and
two chains of primes (0) = P0 $ P1 $ P2 $ · · · and N = Q0 % Q1 % Q2 % · · ·
with

⋃∞
i=0 Pi = P =

⋂∞
j=0 Qj. (The existence of such a Pr=ufer domain follows from a

construction of Lewis – see [14, Theorem 4:2].) It is easy to see that M is a non-g-ideal.
Since M is branched, R is not an �-domain by Theorem 2.11. However, both RM and
RN are �-domains, since every prime ideal of RM is a g-ideal, and PRN is the only
non-zero prime non-g-ideal of RN , which is unbranched by construction.

Recall that T -domains and FT -domains were characterized among valuation domains
in [1]:

Proposition 2.13 (Brewer and Gilmer [1, Theorem 2:10]). Let V be a valuation
domain.

(1) V is an FT -domain if and only if V=P satis;es the descending chain condition
for prime ideals for each nonzero prime ideal of V .

(2) V is a T -domain if and only if each prime ideal P of V such that P = P∗ is
idempotent.
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Remark 2.14. By Corollary 1.13 and Proposition 2.13, a valuation domain V is an
FT -domain if and only if each nonzero prime ideal of V is a g-ideal, and V is
a T -domain if and only if each prime ideal of V which is not a g-ideal is
idempotent.

Corollary 2.15. If a valuation domain V is an �-domain; then V is also a T -domain.

Proof. This follows from Theorem 2.11, Remark 2.14, and the fact that an unbranched
prime in a valuation domain is idempotent [5, Theorem 17:3].

The converse of Corollary 2.15 is false, as the following example shows.

Example 2.16. Let W be a valuation domain with quotient 5eld F such that (0)=(0)∗

and Q 	= Q∗ for each non-zero prime Q of W . Then W is an FT -domain (and hence
also a T -domain and an �-domain). Now let (V1; M1) be a one-dimensional valuation
domain with residue 5eld F and satisfying M1=M 2

1 . Clearly, V1 is also an FT -domain.
Let ’ : V1 → F denote the canonical projection. Finally, set V = ’−1(W ), and let
P = ’−1(0) denote the height one prime ideal of V . By construction, P is the only
prime ideal of V which is not a g-ideal. Since VP=V1 and PVP=M1, we have P=P2.
Hence V is a T -domain by Proposition 2.13(2). However, since P is branched, V is
not an �-domain by Theorem 2.11.

Proposition 2.17. If R is a Pr<ufer �-domain and P is a prime ideal of R; then R=P
is an �-domain.

Proof. Let N=P be a nonzero prime non-g-ideal of R=P. We shall show that N=P is
unbranched. We 5rst observe that N is a prime non-g-ideal in R. Hence N is unbranched
by Theorem 2.11. Thus N is the union of a chain {Q�} of prime ideals of R. Since R
is a Pr=ufer domain and N % P, it is clear that in5nitely many of the Q� must contain
P. It is then easy to see that N=P is the union of these Q�=P, and N=P is unbranched.
Again by Theorem 2.11, R=P is an �-domain.

Lemma 2.18. Let R be an Pr<ufer �-domain; let P and N be incomparable primes of
R; and let J =

⋂
Q∈N↓\P↓ Q. Then

(1) J is prime; and
(2) J * P.

Proof. Since R is a Pr=ufer domain, J is the intersection of a chain of primes and is
therefore itself prime. Since R is an �-domain, RP=�(I(P)). For each Q ∈ N ↓\P↓, we
have Q * P, so that Q⊇I(P). Hence J ⊇I(P). Suppose that J ⊆P. Then I(P)⊆P,
and P is not a g-ideal by Proposition 1.8(a) ⇔ (f ). Moreover, I(P)RP = PRP by
Lemma 2.6. However, since J is prime and I(P)⊆ J ⊆P, this implies that J = P.
Since J ⊆N , this is a contradiction.
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Proposition 2.19. Let R be a semilocal Pr<ufer �-domain. Then every maximal ideal
of R is a g-ideal.

Proof. By Proposition 1.10, we may assume that R is not a valuation domain. Let M
be a maximal ideal of R, and for each maximal ideal N 	= M , let JN =

⋂
Q∈N↓\M↓ Q.

Then JN is prime and JN * M by Lemma 2.18. However, it is clear that I(M) =⋂
N∈Max(R)\{M} JN , and, since R is semilocal, this implies that I(M)* M . Thus M is

a g-ideal.

Remark 2.20. Recall that, if R is any commutative ring with 1, then Spec(R) is
quasi-compact. Thus if each maximal ideal is a g-ideal, then {M↓}M∈Max(R) is an open
cover of Spec(R), and R must be quasilocal. Thus Proposition 2.19 could be restated:
If R is a Pr=ufer �-domain, then R is semilocal if and only if every maximal ideal of
R is a g-ideal.

Lemma 2.21. Let R be a semilocal Pr<ufer domain. Then R is a T -domain; if and
only if; for each non-zero prime P of R we have RP = T (I) for some ideal I of R.

Proof. One direction is obvious. Assume that each RP has the form T (I), and let S be
an overring of R. Then S is semilocal, and S =

⋂n
i=1 RPi for some 5nite set of primes

{Pi} of R. If RPi =T (Ii), then S=
⋂n

i=1 RPi =
⋂n

i=1 T (Ii)=T (
∑n

i=1 Ii), the last equality
following from [5, Exercise 9, p. 333].

Theorem 2.22. Let R be a semilocal Pr<ufer �-domain. Then R is a T -domain.

Proof. By the lemma, it suKces to show that RP is a T -overring of R for each non-
zero prime P of R. If P is a prime g-ideal, then by Proposition 1.8, we have RP =
Rf = �(fR) = T (fR) for some f ∈ R \ P. Let P be a prime non-g-ideal of R. Then
RP = �(I(P)) and I(P)⊆P by Proposition 1.8 and Lemma 2.4. For each maximal
ideal N of R with N + P, let JN =

⋂
Q∈N↓\P↓ Q. We claim that for any a 	∈ P, we

have RadRN (a)⊇ JNRN . Otherwise, we have a ∈ q & JN for some prime q of R. But
then we have a ∈ q⊆P by construction of JN .
By Lemma 2.18, we may pick xN ∈ JN \P. Let A=

∏
N xN ·I(P). We shall show that

RP = T (A). By Theorem 2.11, P↓ \ {P}=D(I(P)). We claim that D(I(P)) =D(A).
The inclusion D(I(P))⊇D(A) is clear. Let Q be prime with I(P)* Q. Then since
that P↓ \ {P} = D(I(P)), we have Q & P, whence

∏
N xN 	∈ Q. Thus A * Q, and

we have D(I(P)) =D(A), as claimed. It follows that T (A)⊆�(A) = RP . Now pick
s ∈ R \ P; we shall show that s−1 ∈ T (A). We proceed locally. If M is maximal with
P⊆M , then I(P)RM ⊆PRM ⊆ sRM , whence s−1A⊆ s−1I(P)⊆RM . Suppose that N
is maximal with P * N . By the claim above, we have JNRN ⊆RadRN (xN ), whence
JNRN =RadRN (xN ) (since xN ∈ JN ). Also by the claim, RadRN (s)⊇ JNRN since s 	∈ P.
Hence sRN contains a power of xN . It follows that s−1Ak ⊆RN for some positive integer
k. Since R is semilocal, we have s−1 ∈ T (A), as desired.
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3. The general case

In this section, we attempt to characterize general �-domains, obtaining a satisfactory
description in the semilocal case. Since by Proposition 1.5 an �-domain is necessarily a
QQR-domain, it is convenient to begin with a characterization of local QQR-domains
which are not integrally closed. This characterization, though cast somewhat diSerently,
is essentially contained in [8].

Proposition 3.1. Let (R;M) be a local domain which is not integrally closed. Set
k = R=M .

(1) If R is a QQR-domain and MR is local; then MR is a valuation domain with maximal
ideal M;M is unbranched; the extension k ⊆ MR=M is a minimal extension of ;elds;
and we have the following pullback diagram:

R −−−−−−−→ k� �
MR −−−−−−−→ MR=M:

Conversely; if MR is a valuation domain with unbranched maximal ideal M such
that k ⊆ MR=M is a minimal extension of ;elds; then R is a QQR-domain.

(2) If R is a QQR-domain and MR is not local; then MR is a Pr<ufer domain with exactly
two maximal ideals N1 and N2; both unbranched; M =N1N2; R=Ni= k for i=1; 2;
and we have the following pullback diagram:

R −−−−−−−−−−−−−−−−→k� �
MR −−−−−−−−−→ MR=N1 × MR=N2 ∼= k × k:

(The downward map on the right is the diagonal map.) Conversely; if MR has two
unbranched maximal ideals N1 and N2; such that M = N1N2 and R=Ni = k for
i = 1; 2; then R is a QQR-domain.

Proof. (1) Suppose that R is a QQR-domain with MR local. Then [8, Theorem 3:3]
implies that MR is a valuation domain with unbranched maximal ideal and that MR is the
unique minimal overring of R. To see that M is the maximal ideal of MR, 5rst note that
by [8, Lemma 2.3], M is the conductor of R in MR. Let Q be a nonmaximal prime ideal
of MR. Since MR is a valuation domain, either Q⊆M or M ⊆Q. However, since R⊆ MR
is an integral extension, Q ∩ R is a nonmaximal ideal of R. Hence Q⊆M . Therefore,
since M contains the union of the nonmaximal prime ideals of MR, it must be the case
that M is the maximal ideal of MR. It follows that the diagram is a pullback. Since there
are no rings between R and MR; k ⊆ MR=M is a minimal extension of 5elds. The converse
statement follows from [8, Theorem 3:3] and similar considerations.
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(2) Now suppose that R is a QQR-domain with MR not local. Then [8, Corollary 2:2
and Theorem 3:3] imply that MR is a Pr=ufer domain with two unbranched maximal ideals
(say) N1 and N2. Moreover, M =N1N2 by [8, Proposition 2:5]. Hence the following is
a pullback diagram:

R −−−−−−−−−−−−−−−−→ k� �
MR −−−−−−−−−→ MR=M ∼= MR =N1 × MR=N2:

Since MR is the unique minimal overring of R [8, Theorem 3:3], we must have MR=Ni
∼= k

for i= 1; 2. For the converse, note that the given conditions imply that the diagram is
a pullback, from which it follows that there are no domains properly between R and
MR. Now apply [8, Theorem 3:3].

Now let R be a (not necessarily local) QQR-domain with integral closure MR. If
M is a maximal ideal of R such that RM is not integrally closed, then, according
to Proposition 3.1, either RM has a unique maximal ideal equal to MRM or RM has
exactly two maximal ideals whose product is MRM . It is convenient to distinguish these
maximal ideals:

De+nition 3.2. Let R be a QQR-domain. We say that a maximal ideal M of R is of
type 0, 1, or 2, according as RM is integrally closed, RM is not integrally closed and
MR contains exactly one maximal ideal contracting to M , or RM is not integrally closed
and MR contains two distinct maximal ideals which contract to M .

Remark 3.3. Let R be a QQR-domain. We examine Max(R) more closely. Let M ∈
Max(R). If M has type 0, then, since MR is a Pr=ufer domain, and since RM is integrally
closed, we have that RM is a valuation domain. Hence the primes contained in M form
a chain. If M has type 1, then by Proposition 3.1(1), RM is a pseudo-valuation domain
and again the primes contained in M form a chain (see [11]). Now let M have type
2. We claim that there are two chains C1 and C2 of prime ideals such that M is the
union of each chain and such that P1 and P2 are incomparable whenever P1 ∈ C1 and
P2 ∈ C2. By Proposition 3.1, MR contains exactly two maximal ideals N1 and N2 which
contract to M , and both N1 and N2 are unbranched. Hence each Ni is the union of a
chain of primes. In fact, if x ∈ N1 \ N2, then N1 is the union of a chain of primes
which contain x and are therefore not contained in N2. Similarly, N2 is the union
of a chain of primes not contained in N1. Contracting these chains to R veri5es the
claim.

Lemma 3.4. Let R be a QQR-domain; let P ∈ Spec(R)\Max(R); and let Q ∈ Spec( MR)
satisfy Q∩R=P. Then RP = MRQ. It follows that the contraction map from Spec( MR) \
Max( MR) to Spec(R) \Max(R) is a one-to-one correspondence.
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Proof. Let M be a maximal ideal of R with P⊆M . Then Q MRR\M ∩ RM = PRM . If
M has type 0, then we actually have RM = MRR\M . Otherwise, note that MRM is the
conductor of RM in MRM = MRR\M , and since P does not contain the conductor, we have
(RM )PRM = ( MRR\M )Q MRR\M

. In any case, it follows that RP = MRQ.

Let R be a QQR-domain, and let P ∈ Spec(R). We claim that P is unbranched in R,
if and only in, each of the (at most two) primes of MR contracting to P is unbranched.
To see this, 5rst recall that “branchedness” is a local property. Hence the claim
is true for non-maximal P by Lemma 3.4. For maximal P, this follows from
Proposition 3.1 and [8, Lemmas 3:1, 3:2]. In particular, the maximal ideals of type
1 or 2 in a QQR-domain must be unbranched.
Our next result extends Proposition 3.1 to the semilocal case.

Proposition 3.5. Let R be a semilocal QQR-domain. Then MR is a semilocal Pr<ufer
domain. Let {Mi}r

i=1; {Mi}s
i=r+1; and {Mi}t

i=s+1 denote the sets of type 0; type 1;
and type 2 maximal ideals; respectively. Set ki = R=Mi for i = 1; : : : ; t. Finally; let
Ni (Ni1; Ni2) contract to Mi for i = 1; : : : ; s ( for i = s + 1; : : : ; t). Then ki ⊆ MR=Ni is a
minimal extension of ;elds for i = r + 1; : : : ; s; MR=Ni1

∼= MR=Ni2
∼= ki for i = s+ 1; : : : ; t;

and we have the following pullback diagram:

R −−−−−−−−−−−−−−−−−−−−−−→ R
/ (

t∏
i=r+1

Mi

)
∼=

t∏
i=r+1

ki�
�

MR → MR
/ (

s∏
i=r+1

Ni ×
t∏

i=s+1

Ni1Ni2

)
∼=

s∏
i=r+1

MR=Ni ×
t∏

i=s+1

(ki × ki):

(The downward map on the right is inclusion in components r+1 to s; and diagonal
in components s+ 1 to t:)
Conversely; let MR be a semilocal Pr<ufer domain with maximal ideals

{Ni}r
i=1; {Ni}s

i=r+1; and {Ni1; Ni2}t
i=s+1; and assume that each of the maximal ide-

als in the latter two sets in unbranched. Further assume that for each i= s+ 1; : : : ; t
there is a ;eld ki with MR=Ni1

∼= MR=Ni2
∼= ki. Finally; for each i = r + 1; : : : ; s; let

ki ⊆ MR=Ni be a minimal extension of ;elds. Let R be the pullback of the following
diagram:

t∏
i=r+1

ki�
MR →

s∏
i=r+1

MR=Ni ×
t∏

i=s+1

(ki × ki):

Then R is a semilocal QQR-domain.
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Proof. By [8, Theorem 1:9], the QQR-property a local property. Hence the result
follows from Proposition 3.1 and the technique of localizing pullback diagrams.

Lemma 3.6. Let R be an QQR-domain whose integral closure MR is a (necessarily
Pr<ufer) �-domain. Then R has a non-zero conductor C in MR, and we have

C=
⋂

{M ∈ Max(R) |M has type 1 or type 2}

=
⋂

{N ∈ Max( MR) |N ∩ R has type 1 or type 2}:

Hence the following diagram is a pullback:

R → R=C
↓ ↓
MR → MR=C:

Proof. We may assume that R is not integrally closed, that is, that there is at least
one maximal ideal of type 1 or 2. As observed above, such a maximal ideal must
be unbranched. It follows that MR contains a nonzero, nonmaximal ideal. Hence by
Corollary 2.9, the Jacobson radical of MR is nonzero. Let x ∈ ⋂ {N ∈ Max ( MR) |N ∩
R has type 1 or type 2}, and let M be a maximal ideal of R. If M has type 0 and
N ∩ R = M , then x ∈ MR⊆ MRN = RM . If M has type 1 and N ∩ R = M , then x ∈
N ⊆N MRN = MRM . Finally, if M has type 2 and N1 ∩ R = N2 ∩ R = M , then x ∈
N1N2⊆N1N2 MR MR\(N1∪N2) =MRM . Hence x ∈ R. It now suKces to show that if y ∈ C,
then y ∈ ⋂ {M ∈ Max (R) |M has type 1 or type 2}. However, for y ∈ C and M of
type 1, we have y MR⊆R, so that y MRM ⊆RM . Hence by Proposition 3.1, y ∈ MRM , and
it follows that y ∈ M . The argument for type 2 maximal ideals is similar. Thus C is
non-zero and may be represented as indicated.

Remark 3.7. Note that by Proposition 3.5, the conclusion of Lemma 3.6 holds for an
arbitrary semilocal QQR-domain (without assuming that MR is an �-domain).

Proposition 3.8. Let R be a QQR-domain whose integral closure MR is an �-domain.
Then the contraction map from Spec( MR) \Max( MR) to Spec(R) \ Max(R) is a homeo-
morphism.

Proof. We may assume that R 	= MR, and we may as well assume that R (and MR)
has non-maximal ideals. We have already observed in Lemma 3.4 that the map is a
one-to-one correspondence. By Corollary 2.9, the Jacobson radical of MR is non-zero.
Hence by Lemma 3.6, R and MR share the non-zero ideal C. Moreover, it is not diKcult
to see that, for Q ∈ Spec( MR) \Max( MR) and an ideal J of MR, we have Q + J ⇔ Q +
JC ⇔ Q ∩ R+ JC. The result follows.
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Lemma 3.9. Let R be a QQR-domain whose integral closure MR is an �-domain; let
P ∈ Spec(R); and let Q ∈ Spec( MR) satisfy Q ∩ R= P.

(1) If P is non-maximal or P is a type 0 maximal ideal; then
(a) I R(P) =I MR(Q); and
(b) P is a g-ideal ⇔ Q is a g-ideal.

(2) If P is a type 1 or type 2 maximal ideal; and P is a g-ideal; then Q is a g-ideal.

Proof. (1): We 5rst claim that IR(P)⊆I MR(Q). Let q be prime in MR with q * Q.
Then (by going up in the integral extension R⊆ MR) we have q∩R* P, and the claim
follows easily. It is also easy to see that IR(P)⊇IMR(Q) ∩ R. However, observe that
IMR(Q)⊆J⊆C, where C is the conductor as described in Lemma 3.6. Statement (a)
now follows, and (b) follows from (a).
(2): If P is a type 1 maximal ideal of R, then an argument similar to the one

given above shows that IR(P)⊆IMR(Q), and it follows easily that if Q⊇IMR(Q), then
P⊇IR(P), that is, if Q is not a g-ideal, then P is not a g-ideal.
Finally, let P be type of 2, and assume that Q is not a g-ideal. Let Q′ denote the

other maximal ideal of MR contracting to P. Let JQ′=
⋂

q∈(Q′)↓ \Q↓ q. Now Q⊇IMR(Q)=
JQ′ ∩ (⋂ {q ∈ Spec( MR) | q * Q ∪Q′}). By Lemma 2.18, Q + JQ′ . Hence Q⊇⋂ {q ∈
Spec( MR) | q * Q∪Q′}, from which it follows that P⊇I(P). This completes the proof.

Theorem 3.10. Let R be a domain. Then the following statements are equivalent:

(1) R is an �-domain.
(2) R is a QQR-domain; each type 1 maximal and each type 2 maximal ideal of R

is a g-ideal; and each prime non-g-ideal of R is unbranched.

Proof. (1) ⇒ (2): Of course, R is a QQR-domain. Let P be a prime non-g-ideal of
R; we wish to show that P is unbranched. We may assume that P is a not a type 1
or type 2 maximal ideal of R. Let Q ∈ Spec(R) satisfy Q ∩ R = P. By Lemma 3.9,
Q is a non-g-ideal of MR. Since MR is an �-domain, Q is unbranched, whence P is also
unbranched. Now let M be a type 1 maximal ideal, and assume by way of contradiction
that IR(M)⊆M . Let N ∈ Max( MR) satisfy N ∩ R=M . Also, let p ∈ M↓ \ {M}, and
let q ∈ Spec( MR) satisfy q ∩ R= p. By Theorem 2.11, D MR(IMR(N )) = N ↓ or N ↓ \ {N}.
In either case, we have q + IMR(N ), whence q + CI MR(N ) and hence p + IR(M).
Thus M↓ \ {M}=DR(IR(M)), and we have �R(IR(M)) =

⋂{Rp |p ∈ Spec(R); p+
IR(M)}=

⋂{Rp |p ∈ M↓ \ {M}}=⋂{ MRq | q ∈ N ↓ \ {N}⊇ MRN % RM . This contradicts
Lemma 2.4. Hence M must be a g-ideal. A similar (but slightly more complicated)
argument shows that each type 2 maximal ideal is a g-ideal.
(2) ⇒ (1): The hypothesis and Lemma 3.9 guarantee that each prime non-g-ideal

of MR is unbranched. Hence MR is an �-domain. To show that R is an �-domain, we
need only show that RP is an �-overring of R for each prime non-g-ideal P of R.
If P is a nonmaximal prime non-g-ideal of R and Q ∈ Spec( MR) satis5es Q ∩ R = P,
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then making use of Lemma 3.9, we have �R(IR(P)) =
⋂ {Rp |p ∈ Spec(R); p +

I(P)}=⋂ { MRq | q ∈ Spec( MR); q + IMR(Q)}=� MR(IMR(Q))= MRQ =RP . (The penultimate
equality follows from the fact that MR is a �-domain.) A similar argument works for
type 0 maximal ideals. Localizations at type 1 or 2 maximal ideals are automatically
�-overrings, since such maximal ideals are g-ideals by hypothesis.

Recall that a prime ideal P of a domain R is said to be divided (in the sense of Dobbs
[2]) if P=PRP . It is well known that a divided prime of a domain R is comparable to
every ideal of R. We show in Theorem 3.12 below that, if a domain R has a divided
prime P, then the question as to whether R is an �-domain depends only on R=P, RP ,
and, possibly, whether P is unbranched.

Lemma 3.11. Let R be a domain with quotient ;eld K; and let P be a divided prime
of R. Set k(P) = RP=PRP (which is canonically isomorphic to the quotient ;eld of
R=P). Now let S be an overring of R with S $ RP . Then the following diagrams are
pullbacks:

R → R=P
↓ ↓
S → S=P
↓ ↓
RP

’→ k(P):

Moreover; if I is an ideal of R; then S=�R(I) if and only if P $ I and S=P=�R=P(I=P).

Proof. Note that P is necessarily a prime ideal of S since P is divided. It is clear
that the diagrams are pullbacks. Now suppose that S = �R(I). We claim that I %
P. Otherwise, I ⊆P, and hence S = �R(I) =

⋂
Q+I RQ ⊇RP (since Q + I implies

that Q⊆P), a contradiction. Similarly, observe that if I % P, then �(I)⊆RP . The
conclusion now follows easily from the fact that for x ∈ RP and a ∈ I , we have
xan ∈ R ⇔ ’(x)’(a)n ∈ R=P.

Theorem 3.12. Let P be a nonmaximal divided prime ideal of a domain R. Then R
is an �-domain if and only if

(1) RP is a valuation �-domain;
(2) R=P is an �-domain; and
(3) if P is a non-g-ideal; then P is unbranched.

Proof. Assume that R is an �-domain. Then Proposition 2.2 implies that RP is an
�-domain, and, since P is non-maximal, RP is a valuation domain by [8, Theorem
1:5]. This proves (1). Statement (2) follows from Lemma 3.11, and (3) follows from
Theorem 3.10.
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For the converse, let S be an overring of R; we wish to show that S is an �-overring.
We 5rst claim that S is comparable to RP . To verify this, suppose that S * RP , and
pick s ∈ S \ RP . Since RP is a valuation domain and P is divided, we have 1=s ∈
PRP = P. It follows that if Q is a maximal ideal of S, then 1=s 	∈ Q ∩ R. Thus, again
since P is divided, we have Q ∩ R $ P, and hence RP ⊆RQ∩R ⊆ SQ. Thus RP ⊆ S,
proving the claim. If S $ RP , then S is an �-overring of R by Lemma 3.11. Suppose
that S = RP . If P is a g-ideal of R, then S = RP is an �-overring by Proposition
1.8. If P is not a g-ideal, then P is unbranched, and we have S = RP = �(P). Fi-
nally, suppose that S % RP . Since RP is a valuation domain, S = RQ for some prime
Q $ P. If Q is a g-ideal of R, then S is an �-overring of R. If Q is not a g-ideal
of R, then it is easy to see that QRP is not a g-ideal of RP; since RP is a valuation
�-domain, this implies that QRP is unbranched in RP , whence Q is unbranched in
R. Since (as is easily shown) Q is divided, we have RQ = �(Q). This completes the
proof.

Theorem 3.13. Let R be a semilocal domain. Then R is an �-domain ⇔ R is a
QQR-domain and MR is an �-domain.

Proof. If R is an �-domain, then R is a QQR-domain and MR is a (Pr=ufer) �-domain
(even without the semilocal hypothesis). Suppose that R is a QQR-domain and that
MR is an �-domain. By Theorem 3.10, we need only show that each non-maximal
prime non-g-ideal of R is unbranched and that each maximal ideal (of type 1 or 2)
is a g-ideal. The 5rst statement follows easily from Lemma 3.9. Let M be a type
1 maximal ideal of R, and let N be the maximal ideal of MR with N ∩ R = M . It is
not hard to show that IR(M) = IMR(N ) ∩ R. However, by Lemma 2.18, IMR(N ) is a
5nite intersection of primes, and, since N is a g-ideal by Proposition 2.19, none of
these primes is contained in N . It follows that IR(M) is also a 5nite intersection
of primes, none of which is contained in M (by going up in the integral extension
R⊆ MR). Hence M is a g-ideal. If M has type 2, the argument is similar. Let N1 and
N2 denote the maximal ideals of MR which contract to M . For N ′ maximal in MR with
N ′ 	∈ {N1; N2}, set JN ′ =

⋂ {Q ∈ Spec( MR) |Q⊆N ′; Q * N1 ∪ N2}. Then JN ′ is prime,
and JN ′ * N1 ∪N2 (since N1 and N2 are g-ideals). It follows that JN ′ ∩ R* M . Now
since IR(M)=

⋂
N ′ �∈{N1 ;N2} (JN ′ ∩R), we have IR(M)* M . Hence M is a g-ideal, as

claimed.

4. A non-semilocal example

In this section, we use a construction due to Fischer [3] to produce an example of
a non-semilocal Pr=ufer �-domain. Note that in such an example, at least one maximal
ideal must be a non-g-ideal (Remark 2.20). Hence a “simplest” example would have
all but one of the maximal ideals being g-ideals. Of course, the maximal non-g-ideal
must be unbranched.
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Example 4.1. Let X denote the partially ordered set pictured below:

Now endow X with the closure of points topology: For each x ∈ X , let x↑ = {y ∈
X |y ≥ x}, and take the sets x↑ as a closed subbase for a topology on X . Thus the
subbasic closed sets are the (sets containing the) points M;P0; P1; P2; : : : and the sets
Q↑

i = {Qi; Qi+1; : : :}∪ {M}∪ {Pi; Pi+1; : : :}. By [3, Lemma 2.7 and Theorem 2:1], there
is a BTezout domain R whose spectrum is homeomorphic to the one just described. It is
then easy to verify that the only prime non-g-ideal is M , and since M is unbranched
by construction, R is a Pr=ufer �-domain by Theorem 2.11. Hence R is the desired
example.

We close with a question: Is an �-domain necessarily a T -domain? Note that this
question has a positive answer if we assume that the domain is semilocal and integrally
closed [Theorem 2.22]. We have not been able to determine whether the example above
is a T -domain.
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