STAR OPERATIONS AND PULLBACKS

Marco Fontana

Mi Hee Park

AMS Meeting, Tallahassee, March 12-13, 2004

Forty Years of Commutative Ring Theory at Florida State University Robert Gilmer and Joe Mott:

domain arising from a pullback of "a general type" by introducing domains. In particular, I will characterize the star operations of a In this talk I will study the star operations on a pullback of integral surjective homomorphisms of integral domains. new techniques for "projecting" and "lifting" star operations under

I will apply part of the theory developed here to give a complete posithe star operations on the "D + M" constructions. tive answer to a problem posed by D. F. Anderson in 1992 concerning

NOTATION

Let D be an integral domain with quotient field L.

f(D) be the set of all nonzero finitely generated $D ext{-submodules}$ of L.F(D) the set of all nonzero fractional ideals of D, Let F(D) denote the set of all nonzero D-submodules of L,

Obviously, $f(D) \subseteq F(D) \subseteq \overline{F}(D)$.

In this talk I will mainly consider the following situations:

- **(b)** T represents an integral domain, M an ideal of T, k the factor of D inside T with respect to φ , hence R is an integral domain (subring of T). Let K denote the field of quotients of R. ring T/M, D an integral domain subring of k and $\varphi: T \to T/M =: k$ the canonical projection. Set $R := \varphi^{-1}(D) =: T \times_k D$ the pullback
- (\mathfrak{b}^+) Let L be the field of quotients of D. In the situation (\mathfrak{b}), we $M \neq (0)$ and $D \subsetneq k$, then M is a divisorial ideal of R, actually, the pullback of L inside T with respect to φ . Then S is an integral which is a prime ideal in R, is a maximal ideal in S. Moreover, if domain with field of quotients equal to K. In this situation, M, M = (R:T).assume, moreover, that $L\subseteq k$, and denote by $S:=\varphi^{-1}(L)=:T\times_k L$

 $K:=\operatorname{qf}(R)=\operatorname{qf}(T)$

$$R := \varphi^{-1}(D) \qquad \xrightarrow{\varphi|_{R}} \qquad D$$

$$S := \varphi^{-1}(L) \qquad \xrightarrow{\varphi|_{S}} \qquad L := \operatorname{qf}(D)$$

$$T \qquad \xrightarrow{\varphi} \qquad k := T/M$$

$$K := \operatorname{qf}(R) = \operatorname{qf}(T)$$

(b⁺)

operation on D for all $0 \neq x \in L$ and $E, F \in F(D)$: Recall that a mapping $\star : \overline{F}(D) \to \overline{F}(D)$, $E \mapsto E^{\star}$, is called a semistar

$$(\star_1) \quad (xE)^* = xE^*;$$

$$(\star_2)$$
 $E \subseteq F \Rightarrow E^* \subseteq F^*$;

$$(*_3)$$
 $E \subseteq E^*$ and $E^* = (E^*)^* =: E^{**}$.

each $0 \neq x \in L$ and $E \in F(D)$: satisfies the properties $(\star_2), (\star_3)$ for all $E, F \in F(D)$; moreover, for A star operation on D is a map $\star:F(D) o F(D)$, $E\mapsto E^{\star}$, that

$$(\star \star_1) (xD)^* = xD; (xE)^* = xE^*.$$

want to define a map the set of all the star operations on an integral domain A, then we star operations on D and T. More precisely, if we denote by **Star**(A)operation on R, which we will denote by \diamond , associated to the given D [respectively, T]. Our first goal is to define in a natural way a star Let \star_D [respectively, \star_T] be a star operation on the integral domain

$$\Phi: \mathbf{Star}(D) \times \mathbf{Star}(T) \to \mathbf{Star}(R), (\star_D, \star_T) \mapsto \diamond$$
.

For each nonzero fractional ideal I of R, set

$$I^{\diamond} := \cap \left\{ x^{-1} \varphi^{-1} \left(\left(\frac{xI + M}{M} \right)^{\star D} \right) \mid x \in I^{-1}, \ x \neq 0 \right\} \cap (IT)^{\star T},$$

where if $\frac{xI+M}{M}$ is the zero ideal of D (i.e., if $xI\subseteq M$), then we set $\varphi^{-1}\left(\left(\frac{xI+M}{M}\right)^{\star_D}\right):=M$.

(b), then \diamond defines a star operation on the integral domain R (= **Proposition 1** Keeping the notation and hypotheses introduced in

"Iifting a star operation" with respect to a surjective ring homomorphim between two integral domains. The previous construction of the star operation \diamond gives the idea for

a prime ideal of R, D := R/M and $\varphi : R \to D$ the canonical projection Corollary 2 Let R be an integral domain with field of quotients K, MAssume that \star is a star operation on D. For each $I \in F(R)$, set:

$$I^{\star \varphi} := \bigcap \left\{ x^{-1} \varphi^{-1} \left(\left(\frac{xI + M}{M} \right)^{\star} \right) \mid x \in I^{-1}, \ x \neq 0 \right\}$$

$$= \bigcap \left\{ x \varphi^{-1} \left(\left(\frac{x^{-1}I + M}{M} \right)^{\star} \right) \mid x \in K, \ I \subseteq xR \right\},$$

Then \star^{φ} is a star operation on R.

 $*_{\iota}:F(T) o F(T)$ by setting: field of quotients K and let st be a semistar operation on R. Define Let $\iota:R\hookrightarrow T$ be an embedding of integral domains with the same

$$E^{*\iota}:=E^*$$
, for each $E\in \overline{F}(T)$ $(\subseteq \overline{F}(R))$.

Then it is easy to see that:

operation on T, even if * is a star operation on R. (a) If ι is not the identity map, then $*_{\iota}$ is a semistar, possibly non-star,

 $*_{\iota}$ is not defined as a star operation on T. fractional ideal E of T is not necessarily a fractional ideal of R, hence Note that, when * is a star operation on R and $(R:_KT)=(0)$, a

(b) When $T := R^*$, then $*_{\iota}$ defines a star operation on R^* .

Define $\star^{\iota}:F(R)\to ar{F}(R)$ by setting Conversely, let \star be a semistar operation on the overring T of R. $E^{\star^{\iota}} := (ET)^{\star}$ for each $E \in F(R)$.

Then it is easy to see that

- (c) \star^{ι} is a semistar operation on R.
- (d) For each semistar operation \star on T, we have $(\star^{\iota})_{\iota} = \star$.
- (e) For each semistar operation * on R, we have $(*_{\iota})^{\iota} \geq *$ (since $E^{(*_{\iota})^{\iota}} = (ET)^{*_{\iota}} = (ET)^{*} \supseteq E^{*} \text{ for each } E \in \overline{F}(R)).$

lowing: Using the notation introduced above, we immediately have the fol-

Proposition 1, if we use the definition given in Corollary 2, we have Corollary 3 With the notation and hypotheses introduced in (b) and $\diamond = (\star_D)^{\varphi} \wedge (\star_T)^{\iota}.$

respect to a surjective homomorphism of integral domains. We next examine the problem of "projecting a star operation" with

integral domain R. For each nonzero fractional ideal F of D, set the field of quotients of D. Let * be a given star operation on the **Proposition 4** Let R, K, M, D, φ be as in Corollary 2 and let L be

$$F^{*\varphi} := \cap \left\{ y^{-1}\varphi \left(\left(\varphi^{-1} \left(yF \right) \right)^* \right) \mid y \in F^{-1} = (D:_L F), \ y \neq 0 \right\}.$$

Then $*_{\varphi}$ is a star operation on D.

 $*_{\varphi}$ given above is simplified as follows: In case of a pullback of type (b^+) the definition of the star operation

Proposition 5 Let T, K, M, k, D, φ , L, S and R be as in (\mathfrak{p}^+) . nonzero fractional ideal F of D, we have Let st be a given star operation on the integral domain R. For each

$$F^{*\varphi} = \varphi\left(\left(\varphi^{-1}(F)\right)^*\right) = \frac{\left(\varphi^{-1}(F)\right)^*}{M}.$$

(which is defined in Proposition 4). Then $\star = *_{\varphi} (= (\star^{\varphi})_{\varphi})$. 2) and let $*_{\varphi}$ (= $(*^{\varphi})_{\varphi}$) be the star operation on D associated to *the star operation on R associated to \star (which is defined in Corollary **Proposition 6** Let T, K, M, k, D, φ , L, S and R be as in (b^+) . Let \star be a given star operation on the integral domain D, let $*:=\star^{arphi}$ be

each nonzero fractional ideal F of D, we have Remark 7 With the notation and hypotheses of Proposition 6, for $F^* = \varphi \left(\varphi^{-1}(F)^{*\varphi} \right).$

that $F^* = F^{*\varphi} = \varphi^{-1}(F)^{*\varphi}/M$. As a matter of fact, by the previous proof and Proposition 5, we have

Corollary 8 Let T, K, M, k, D, φ , L, S and R be as in (p^+) .

- (a) The map $(-)_{\varphi}$: Star $(R) \to$ Star(D), $* \mapsto *_{\varphi}$, is order-preserving and surjective.
- (b) The map $(-)^{\varphi}$: Star $(D) \to$ Star(R), $\star \mapsto \star^{\varphi}$, is order-preserving and injective.
- <u>C</u> Let \star be a star operation on D. Then for each nonzero ideal I of R with $M \subset I \subseteq R$, $I^{\star \varphi} = \varphi^{-1} \left((\varphi(I))^{\star} \right) .$

The next result shows how the composition map $(-)^{\varphi} \circ (-)_{\varphi} : \mathbf{Star}(R) \to \mathbf{Star}(R)$

compares with the identity map.

that $D \subsetneq k$. Then for each star operation * on R, **Theorem 9** Let T, K, M, k, D, φ , L, S and R be as in (p^+) . Assume $* \leq ((*)_{\varphi})^{\varphi}$.

We will show that in general $* \leq ((*)_{\varphi})^{\varphi}$. However, in some relevant cases, the inequality is, in fact, an equality:

Corollary 10 Let T, K, M, k, D, φ , L, S and R be as in Theorem 9.

$$v_R = ((v_R)_{\varphi})^{\varphi}; \qquad (v_D)^{\varphi} = v_R; \qquad (v_R)_{\varphi} = v_D.$$

nentwise description of the "pullback" star operation operation Our next goal is to apply the previous results for giving a compo-Proposition 1.

Proposition 11 Let T, K, M, k, D, φ , L, S and R be as in (\mathfrak{p}^+). Assume that $M \neq (0)$ and $D \subsetneq k$. Let

 $\Phi: \mathbf{Star}(D) \times \mathbf{Star}(T) \to \mathbf{Star}(R), \ \ (\star_D, \star_T) \mapsto \diamond := (\star_D)^{\varphi} \wedge (\star_T)^{\iota},$

properties hold: be the map considered in Proposition 1 and Corollary 3. The following

(a)
$$\diamond \varphi = \star_D$$
.

(b)
$$\diamond_{\iota} = (v_R)_{\iota} \wedge \star_T (\in \mathbf{Star}(T))$$

(c)
$$\diamond = (\diamond_{\varphi})^{\varphi} \wedge (\diamond_{\iota})^{\iota}$$
.

11, we show that, in general, $\diamond_{\iota} \neq \star_{T}$ (even if L = k). **Example 12** With the same notation and hypotheses of Proposition

 $\star_T = v_T$). Then $M^{\diamond_\iota} = M^{\diamond} = M^{(v_D)^{\varphi}} \cap M^{(v_T)^{\iota}} = M^{v_R} \cap M^{(v_T)^{\iota}} = M$, dimensional local UFD, thus $M^{v_T}=T$. Set $\diamond:=(v_D)^{\varphi}\wedge (v_T)^{\iota}$ (thus because $M^{vR} = M$ and $M^{(vT)^{\iota}} = (MT)^{vT} = M^{vT} = T$. Let $T:=L[X,Y]_{(X,Y)}$ and let M:=(X,Y)T. Note that T is a 2-Let D be any integral domain (not a field) with quotient field L.

of Proposition 11, the map Φ is not one-to-one in general. Remark 13 (a) Note that, with the same notation and hypotheses

(b) and (c), since This fact immediately follows from Example 12 and Proposition 11

$$(\star_D)^{\varphi} \wedge (\star_T)^{\iota} = \diamond = (\diamond_{\varphi})^{\varphi} \wedge (\diamond_{\iota})^{\iota}.$$

(b) In the same setting as above, the map Φ is not onto in general.

An example, even in case L = k, is given next.

and K := L(X). Let φ and R be as in (\mathbf{p}^+) . Then $v_R \notin \text{Im}(\Phi)$. quotient field L. Set $T := L[X^2, X^3]$, $M := (X^2, X^3)T = XL[X] \cap T$ **Example 14** Let D be a 1-dimensional discrete valuation domain with

 $T^{v_R \wedge (v_T)^{\iota}} = T^{v_R} \cap T^{(v_T)^{\iota}} = T^{v_R} \cap T^{v_T} = T^{v_R} \cap T = T \subsetneq T^{v_R}.$ $(R:_{\check{K}}(R:_KT))=(R:_KM)\supseteq L[X]\supsetneq T.$ Therefore, $T^{(v_D)^{\varphi}\wedge(v_T)^{\iota}}=$ fractional overring T of R is not a divisorial ideal of R, since $T^{vR} =$ that $v_R \notin \text{Im}(\Phi)$, it suffices to prove that $(v_D)^{\varphi} \wedge (v_T)^{\iota} \neq v_R$. The Note that, for each $\diamond \in \text{Im}(\Phi)$, $\diamond \leq (v_D)^{\varphi} \wedge (v_T)^{\iota} \leq v_R$. In order to show

set Theorem 15 With the notation and hypotheses of Proposition 11,

$$Star(T; v_R) := \{ \star_T \in Star(T) \mid \star_T \leq (v_R)_{\iota} \}.$$

Then

(a)
$$Star(T; v_R) = \{ \star_T \in Star(T) \mid (v_R \wedge (\star_T)^{\iota})_{\iota} = \star_T \}$$

= $\{ \star_{\iota} \mid * \in Star(R) \} \cap Star(T)$
= $\{ \star_{\iota} \mid * \in Star(R) \text{ and } T^* = T \}$.

(b) The restriction $\Phi' := \Phi|_{\mathbf{Star}(D) \times \mathbf{Star}(T; v_R)}$ is one-to-one.

(c)
$$Im(\Phi') = Star(R; (b^+)) := \{ * \in Star(R) \mid T^* = T \text{ and } * = (*_{\varphi})^{\varphi} \wedge (*_{\iota})^{\iota} \}.$$

problem posed by D. F. Anderson in 1992 [A-1992]. We next apply some of the theory developed above for answering م

Example 16 ("D + M"-constructions).

T/M, and let D be a subring of k with field of quotients L ($\subseteq k$). Set ideal of T and k is a subring of T canonically isomorphic to the field R:=D+M. Note that R is a faithfully flat D-module Let T be an integral domain of the type k+M, where M is a maximal

fractional ideal F of D, set defined a star operation on D in the following way: for each nonzero Given a star operation * on R, D.F. Anderson [A-1988, page 835]

$$F^{*D} := (FR)^* \cap L.$$

From [A-1988, Proposition 5.4 (b)] it is known that:

For each nonzero fractional ideal F of D,

(a)
$$F^{*D} + M = (F + M)^*$$
;

(b)
$$F^{*D} = (F + M)^* \cap L = (F + M)^* \cap k$$
.

a right inverse β : Star $(D) \rightarrow$ Star(D+M), which is an (injective) whether lpha may be surjective or, more precisely, whether lpha may have considering just the star operations defined by families of overrings. order-preserving map. He gave an answer in a particular situation, which is order-preserving but not injective. He poses the question tion gives rise to a map α : $\mathbf{Star}(D+M) \to \mathbf{Star}(D)$, $* \mapsto *_D$, David F. Anderson in [A-1992] observed that the previous construc-

tions The theory developed above gives a complete answer to these ques-

"projection", $*_{\varphi}$, considered above in a general pullback setting We start by comparing the operation st_D defined in [A-1988] with the

coincides with the map $(-)_{\varphi}$: $Star(R) \rightarrow Star(D)$). operation defined in Proposition 4, then $*_D = *_{\varphi}$ (i.e. the map α **Claim.** If $\varphi: R \to D$ is the canonical projection and if $*_{\varphi}$ is the star

In particular, by [A-1992, Proposition 2 (a), (c)], we deduce that

(1)
$$(d_R)_{\varphi} = d_D$$
, $(t_R)_{\varphi} = t_D$, $(v_R)_{\varphi} = v_D$, and

(2)
$$(*_f)_{\varphi} = (*_{\varphi})_f$$
.

of R = D + M (special case of (\mathbf{p}^+)), we know that the map By applying Proposition 6 and Corollary 8 (a) to the particular case

$$(-)_{\varphi}: \mathbf{Star}(D+M) \to \mathbf{Star}(D), \quad *\mapsto *_{\varphi} = *_{D}$$
,

is surjective and order-preserving and it has the injective order-preserving

$$(-)^{\varphi}: \mathbf{Star}(D) \to \mathbf{Star}(D+M), \quad \star \mapsto \star^{\varphi}$$
,

as a right inverse.

D.F. Anderson. This fact gives a complete positive answer to the problem posed by

Comm. Algebra 16 (1988), 805-847. [A-1988] David F. Anderson, A general theory of class groups.

structions. Rend. Circ. Mat. Palermo 41 II Serie (1992), 221–230. [A-1992] David F. Anderson, Star operations and the D+M con-