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In this talk I will study the star operations on a pullback of integral
domains. In particular, I will characterize the star operations of a
domain arising from a pullback of “a general type” by introducing
new techniques for “projecting”’ and “lifting”’ star operations under
surjective homomorphisms of integral domains.

I will apply part of the theory developed here to give a complete posi-
tive answer to a problem posed by D. F. Anderson in 1992 concerning
the star operations on the “D + M" constructions.



NOTATION
Let D be an integral domain with quotient field L.

Let F(D) denote the set of all nonzero D-submodules of L,
F (D) the set of all nonzero fractional ideals of D,
f(D) be the set of all nonzero finitely generated D-submodules of L.

Obviously, f(D) C F(D) C F(D).



In this talk I will mainly consider the following situations:

(b) T represents an integral domain, M an ideal of T, k the factor
ring T/M, D an integral domain subring of k and ¢ . T — T/M =: k
the canonical projection. Set R := ¢~ 1(D) =: T x;. D the pullback
of D inside T with respect to ¢, hence R is an integral domain
(subring of T'). Let K denote the field of quotients of R.

(b1) Let L be the field of quotients of D. In the situation (b), we
assume, moreover, that L C k, and denote by S := ¢~ (L) =: T x . L
the pullback of L inside T' with respect to ¢. Then S is an integral
domain with field of quotients equal to K. In this situation, M,
which is a prime ideal in R, is a maximal ideal in S. Moreover, if

M # (0) and D C k, then M is a divisorial ideal of R, actually,
M= (R:T).
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Recall that a mapping « : F(D) — F(D), E — E*, is called a semistar
operation on D for all 042z € L and E,F € F(D):

(x1)  (zE)* = zE™;

(x0) ECF=FE*CF~*;

(x3) E C E* and E* = (E*)* =: E**.
A star operation on D is a map x: F(D) — F(D), FE — E*, that
satisfies the properties (x5),(x3) for all E. F € F(D); moreover, for

each Oz €L and E € F(D):

(xx1) (zD)* = 2D ; (xE)* =azFE*.



Let xp [respectively, xp] be a star operation on the integral domain
D [respectively, T']. Our first goal is to define in a natural way a star
operation on R, which we will denote by ¢, associated to the given
star operations on D and T. More precisely, if we denote by Star(A)
the set of all the star operations on an integral domain A, then we
want to define a map

& : Star(D) x Star(T) — Star(R), (xp,*7) =<

For each nonzero fractional ideal I of R, set
xl + M
M

where if Z5E s the zero ideal of D (i.e., if zI C M), then we set o1 AAEN._M:V%V ‘= M.

*D
19 =nlz Lot A v |zl z# 0, 0 IT)T,




Proposition 1 Keeping the notation and hypotheses introduced in
(b), then ¢ defines a star operation on the integral domain R (=
T X L uw

T he previous construction of the star operation ¢ gives the idea for
“lifting a star operation” with respect to a surjective ring homomor-
phim between two integral domains.

Corollary 2 Let R be an integral domain with field of quotients K, M
a prime ideal of R, D := R/M and ¢ : R — D the canonical projection.
Assume that % is a star operation on D. For each I € F(R), set:

<7 = Dﬁ&lpﬁlp AAﬁvHv |z eI 1, o+ OW
— aTsL lepbtxv v |z € K, Nm&& v

Then <% is a star operation on R.
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Let + : R — T be an embedding of integral domains with the same
field of quotients K and let x be a semistar operation on R. Define
%, . F(T) — F(T) by setting:

E* = E*  for each E € F(T) (C F(R)).
Then it is easy to see that:

(a) If. is not the identity map, then x, is a semistar, possibly non—star,
operation on T', even if x is a star operation on R.

Note that, when x is a star operation on R and (R :,r T) = (0), a
fractional ideal E of T is not necessarily a fractional ideal of R, hence
x, 1S NOot defined as a star operation on T

(b) When T := R*, then x, defines a star operation on R*.
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Conversely, let x be a semistar operation on the overring T' of R.
Define «': F(R) — F(R) by setting
E* := (ET)* for each E € F(R).
Then it is easy to see that
(c) x* is a semistar operation on R.

(d) For each semistar operation x on T, we have (%), = .

(e) For each semistar operation x on R, we have (x,)* > x (since
E&)" = (ET)* = (ET)* D E* for each E € F(R)).



Using the notation introduced above, we immediately have the fol-
lowing:

Corollary 3 With the notation and hypotheses introduced in (p) and
Proposition 1, if we use the definition given in Corollary 2, we have

O = (*p)¥ A (xp)".



We next examine the problem of “projecting a star operation” with
respect to a surjective homomorphism of integral domains.

Proposition 4 Let R, K, M, D, ¢ be as in Corollary 2 and let L be
the field of quotients of D. Let x be a given star operation on the
integral domain R. For each nonzero fractional ideal F of D, set

Fre=n{y o (0"t (yF)) ) | ye F-1=(D:[ F), y# 0} .

Then x, is a star operation on D.
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In case of a pullback of type (pbT1) the definition of the star operation
*, given above is simplified as follows:

Proposition 5 Let T, K, M, k, D, ¢, L, S and R be as in (pT).

et x be a given star operation on the integral domain R. For each
nonzero fractional ideal F' of D, we have

(=2 ()
=

e =e((e7Hn)) =
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Proposition 6 LetT, K, M, k, D, o, L, S and R be as in (bT). Let
*x be a given star operation on the integral domain D, let x .= x¥ be
the star operation on R associated to ~ (which is defined in Corollary
2) and let x, (= (x¥)y) be the star operation on D associated to x
(which is defined in Proposition 4). Then x = x, (= (¥¥)y).

Remark 7 With the notation and hypotheses of Proposition 6, for
each nonzero fractional ideal F' of D, we have

F* = (o7 1(F)*) .
As a matter of fact, by the previous proof and Proposition 5, we have
that F* = F*e = o~ L(F)*" /M.
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Corollary 8 Let T, K, M, k, D, ¢, L, S and R be as in (b1).

(@) Themap (—),: Star(R) — Star(D), x — o, IS order—preserving
and surjective.

(b) The map (—)¥: Star(D) — Star(R), »— %%, is order—preserving
and injective.

(c) Let x be a star operation on D. Then for each nonzero ideal I of
R with M C I C R,
I =7t (1)) .
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T he next result shows how the composition map
(—)Po (=), : Star(R) — Star(R)
compares with the identity map.

Theorem 9 LetT, K, M, k, D, o, L, S and R be asin (b1). Assume
that D C k. Then for each star operation = on R,

£ < ((6)p)7 .

We will show that in general x < ((x),)*. However, in some relevant
cases, the inequality is, in fact, an equality:

Corollary 10 LetT, K, M, k, D, ¢, L, S and R be as in Theorem 9.
T hen

vr = ((VR)e)?; (vp)? = vpR; (VvR)p = vp.



Our next goal is to apply the previous results for giving a compo-
nentwise description of the “pullback” star operation ¢ considered in
Proposition 1.

Proposition 11 Let T, K, M, k, D, ¢, L, S and R be as in (p™T).
Assume that M #= (0) and D C k. Let
® : Star(D) x Star(T) — Star(R), (xp,*p) +—= o := (*xp)? A ()",

be the map considered in Proposition 1 and Corollary 3. The following
properties hold:

(a) Op = *p.
(b) o, = (vg), Axp (€ Star(T)).

(C) o= (0p)¥ A (o))"



Example 12 With the same notation and hypotheses of Proposition
11, we show that, in general, ¢, # xp (even if L = k).

Let D be any integral domain (not a field) with quotient field L.
Let T := L[X,Y]xy) and let M := (X,Y)T. Note that T is a 2-
dimensional local UFD, thus M'T =T. Set ¢ := (vp)¥ A (vp)* (thus
*p = vp). Then M = M°* = Mp)* 0 M01)" = pMvrn M) = M,

because MYR = M and MW7) = (MT)'T = MT =T.
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Remark 13 (a) Note that, with the same notation and hypotheses
of Proposition 11, the map ® is not one-to-one in general.

This fact immediately follows from Example 12 and Proposition 11
(b) and (c), since
(xp)P A (1)t = 0= (0p)? A (01)".

(b) In the same setting as above, the map & is not onto in general.

An example, even in case L = k, is given next.
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Example 14 et D be a 1-dimensional discrete valuation domain with
quotient field L. Set T := L[X?2, X3], M = (X2, X3)T = XL[X]nT
and K := L(X). Let ¢ and R be as in (bT). Then vy ¢ Im(®P).

Note that, for each ¢ € Im(®), ¢ < (vp)?A(vp)" < vp. In order to show
that vp € Im(®d), it suffices to prove that (vp)¥ A (vp)* # vp. The
fractional overring T' of R is not a divisorial ideal of R, since TR
(R (R:xT)) = (R ¢y M) D L[X] 2 T. Therefore, T(vD)¥Alvr)*
TURNUT)" = TR N T(T)" = TVRNTYT = TYRNT =T C TR,
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Theorem 15 With the notation and hypotheses of Proposition 11,
set

MHQ—\AMJ“ @mv = ATANJ < m—”m—_\AMJv _ * < A@NYW.
T hen

(@) Star(T;vg) = {*yr € Star(T) | (vg A (xp)"), = 7 }
= {x | * € Star(R)} n Star(T)
= {x, | x € Star(R) and T* =T}.

(b) The restriction ®' := P|giar(p)xstar(T:vy) IS ONE-to-0ne.

(c) Im(d’) = Star(R;(pT)) = {x € Star(R) | T* = T and x =
(k) ¥ A (%)}
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We next apply some of the theory developed above for answering a
problem posed by D. F. Anderson in 1992 [A-1992].

Example 16 (“D + M’"—constructions).

Let 7" be an integral domain of the type £+ M, where M is a maximal
ideal of T' and k is a subring of T' canonically isomorphic to the field
T/M, and let D be a subring of k with field of quotients L (C k). Set
R:= D+ M. Note that R is a faithfully flat D—module.

Given a star operation x on R, D.F. Anderson [A-1988, page 835]
defined a star operation on D in the following way: for each nonzero
fractional ideal F' of D, set

F*D .= (FR)*N L.
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From [A-1988, Proposition 5.4 (b)] it is known that:

For each nonzero fractional ideal F' of D,
(d) FFD4+ M = (F + M)*;
(b) F*'D=(F+M)*NL=(F+M)*Nk.

David F. Anderson in [A-1992] observed that the previous construc-
tion gives rise to a map « : Star(D + M) — Star(D), * — xp,

which is order-preserving but not injective. He poses the question
whether a may be surjective or, more precisely, whether a may have
a right inverse 3 : Star(D) — Star(D 4+ M), which is an (injective)
order-preserving map. He gave an answer in a particular situation,
considering just the star operations defined by families of overrings.
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The theory developed above gives a complete answer to these ques-
tions.

We start by comparing the operation xp defined in [A-1988] with the
“projection”, *,, considered above in a general pullback setting.

Claim. If ¢ : R — D is the canonical projection and if x, is the star
operation defined in Proposition 4, then xp = %, (i.e. the map o
coincides with the map (—), : Star(R) — Star(D)).

In particular, by [A-1992, Proposition 2 (a), (c)], we deduce that
(1) (dr)e =dp, (tr)e=1tp, (vR)e=wvp, and

(2) (xp)p = (x0); .
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By applying Proposition 6 and Corollary 8 (a) to the particular case
of R= D + M (special case of (pT)), we know that the map
(—)p: Star(D + M) — Star(D), *+— %, =13x*p ,
IS surjective and order-preserving and it has the injective order-preserving
map
(—)¢: Star(D) — Star(D + M), *+— ¥
as a right inverse.

This fact gives a complete positive answer to the problem posed by
D.F. Anderson.
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