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CANCELLATION PROPERTIES IN IDEAL SYSTEMS:

AN e.a.b. NOT a.b. STAR OPERATION

MARCO FONTANA, K. ALAN LOPER AND RYÛKI MATSUDA

Abstract. We show that Krull’s a.b. cancellation condition is a properly
stronger condition than Gilmer’s e.a.b. cancellation condition for star oper-
ations.

1. Introduction

LetD be an integral domain with quotient fieldK. Let F (D) [respectively, f (D)]
be the set of all nonzero fractional ideals [respectively, nonzero finitely generated
fractional ideals] of D.

A star operation ∗ on D is a mapping ∗ : F (D) → F (D) , E 7→ E∗ such that
the following properties hold: (∗1) (zD)∗ = zD and (zE)∗ = zE∗, (∗2) E ⊆ F ⇒
E∗ ⊆ F ∗, (∗3) E ⊆ E∗ and E∗∗ := (E∗)∗ = E∗ , for all nonzero z ∈ K , and for
all E,F ∈ F (D) .

Examples of star operations include the v–operation, defined by Ev := (D : (D :
E)), for each E ∈ F (D) [2, page 396]; the t–operation, defined by Et :=

⋃
{F v | F ∈

f(D), F ⊆ E}, for eachE ∈ F (D) [2, page 406]; the w–operation (with the notation
proposed by Wang-McCasland) defined by Ew :=

⋂
{EDQ | Q ∈ Maxt(D)} (where

Maxt(D) is the (nonempy) set of all maximal t-ideals of D) for all E ∈ F (D) [4].
Let ∗ be a star operation on D. If F is in f (D), we say that F is ∗–eab

[respectively, ∗–ab], if the inclusion (FG)∗ ⊆ (FH)∗ implies that G∗ ⊆ H∗, with
G, H ∈ f(D), [respectively, with G, H ∈ F (D)].

The operation ∗ is said to be eab [respectively, ab ] if each F ∈ f (D) is ∗–eab
[respectively, ∗–ab]. An ab operation is obviously an eab operation. Recall also
that E ∈ F (D) is called a (fractional ) ∗-ideal of D if E = E∗.

In the classical (Krull’s) setting, the study of Kronecker function rings on an
integral domain generally focusses on the collection of “ arithmetisch brauchbar”

(for short, a.b. or, simply, ab, as above) ∗–operations [3]. Gilmer’s presentation of
Kronecker function rings [2, Section 32] makes use of the (presumably larger class
of) “ endlich arithmetisch brauchbar” (for short, e.a.b. or, simply, eab, as above)
∗–operations. In this paper, we show that the e.a.b. cancellation condition is
really strictly weaker than the a.b. cancellation condition. This goal is reached
by modifying an example given in the recent paper [1].
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2. The Example

In [1, Example 16], the authors consider the following example.
Let k be a field, X1, X2, ..., Xn, ... an infinite set of indeterminates over k and

N := (X1, X2, ..., Xn, ...)k[X1, X2, ..., Xn, ...]. Clearly, N is a maximal ideal in
k[X1, X2, ..., Xn, ...]. Set D := k[X1, X2, ..., Xn, ...]N , let M := ND be the maximal
ideal of the local domain D and K := k(X1, X2, ..., Xn, ...) the quotient field of D.
Note that D is a UFD and considerW the set of all the rank one essential valuation
overrings of D. Let ∧W be the star ab operation on D defined by W [2, page 398],
i.e., for each E ∈ F (D),

E∧W :=
⋂

{EW | W ∈ W}.

It is well known that the t–operation on D is an ab star operation, since F t = F∧W

for all F ∈ f(D) [2, Proposition 44.13] (more precisely, in this case, we have
v = t = w = ∧W).

Consider the following subset of fractional ideals of D:

J := {xF t, yM, zM2 | x, y, z ∈ K \ {0}, F ∈ f (D)} .

Since each nonzero principal fractional ideal of D is in J and, for each ideal J ∈
J and for each nonzero a ∈ K, the ideal aJ belongs to J , then, as above, [2,
Proposition 32.4] guarantees that the set J defines on D a star operation ∗, by
setting:

E∗ := ∩{J | J ∈ J , J ⊇ E} , for each E ∈ F (D) .

Since, for each F ∈ f(D), F t ∈ J , it was claimed in [1, Example 16] that ∗|f(D)=
t|f(D). This would imply that ∗ was an eab operation on D, since the operation t
– as observed above – is an ab star operation on D.

Unfortunately, it is not true that F ∗ = F t for all F ∈ f(D) and, in particular,
this equality does not hold if F ⊂ D and F t = D. For instance, if I := (X1, X2),
then clearly, in the Krull domain D, we have Iv = It = D. On the other hand,
I∗ ⊆ M∗ = M , since M ∈ J . More generally, and with a more careful analysis, we
claim that, if I := Iij := (Xi, Xj), with i 6= j ≥ 1, then I∗ = M .

Case 1. For everyG ∈ f(D), if I ⊆ Gt, then I ⊆ I∗ ⊆ M∗ = M ( D = It ⊆ Gt.
Note that the same conclusion holds for every proper ideal A ofD such that At = D,
i.e., for every G ∈ f(D) if A ⊆ Gt, then A ⊆ M∗ = M ( Gt.

Case 2. If I ⊆ yM , for some 0 6= y ∈ K, then in particular I ⊆ yD and so
D = It ⊆ yD, hence, y−1 ∈ D. There are two possibilities here: either y−1 ∈ M or
y−1 ∈ D \M . In the first case, i.e., if y−1 ∈ M , then 1 ∈ yM and so D ⊆ yM . In
the second case, i.e., if y−1 ∈ D \M , then y−1 is invertible in D, and so y, y−1 ∈ D.
Thus, yM = M .
Note that the same conclusion holds for every proper ideal A ofD such that At = D,
i.e., if A ⊆ yM , for some 0 6= y ∈ K and At = D, then either D ⊆ yM or M = yM .

Case 3. If I ⊆ zM2 ⊆ zM , for some 0 6= z ∈ K, then as above z−1 ∈ D. Two
cases are possible: either z−1 ∈ M or z−1 ∈ D \M . If z−1 ∈ D \M , then z−1 is
invertible in D and so z, z−1 ∈ D. Thus, zM2 = M2. However, this is impossible,
since I 6⊆ M2. If z−1 ∈ M , then M ⊆ zM2.
Note that a variation of the previous conclusion holds for every proper ideal A of
D such that At = D and A ⊆ M2 (for instance, for A = I3), i.e., if A ⊆ zM2,
for some 0 6= z ∈ K, At = D and A ⊆ M2, then either A ⊆ zM2 = M2 or
A ⊆ M2 ⊂ M ⊆ zM2.
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By the previous analysis, we conclude in particular that I∗ =
⋂
{J ∈ J | J ⊇

I} = M . Moreover, since I∗ = M , then we obtain (I2)∗ = (I · I)∗ = (I∗ · I∗)∗ =
(M2)∗ = M2. Furthermore, by the more general analysis for a proper ideal A of D
such that At = D, in case A = I3 we deduce in particular that (I3)∗ also coincides
with M2. Therefore,

(I3)∗ = M2 = (I2)∗ but (I2)∗ = M2 ( I∗ = M ,

and so ∗ is not an eab star operation on D.

Remark 1. Let J ′ := {xD, yM, zM2 | x, y, z ∈ K \ {0}} . It is easy to see that
[2, Proposition 32.4] guarantees that the set J ′ defines on D a star operation that
coincides with the star operation ∗ defined above by the set J , since F t = F v =⋂
{xD | x ∈ K, F ⊆ xD}, for each F ∈ f(D) [2, Theorem 34.1(1)].

We provide next a variation of the previous example in order to construct an
eab star operation that is not ab.

Example 2. (Example of an eab star operation that is not an ab star operation)
Let D, M and K be as above. Consider the following subset of fractional ideals of
D:

S := {xF b, yM | x, y ∈ K \ {0}, F ∈ f(D)} ,

where b is the standard ab operation on D defined by the set V of all valuation
overrings of D, i.e., for each E ∈ F (D),

Eb := E∧V :=
⋂

{EV | V ∈ V}.

Since each nonzero principal fractional ideal ofD is in S and, for each (fractional)
ideal J ∈ S and for each nonzero a ∈ K, the (fractional) ideal aJ belongs to S, as
above, [2, Proposition 32.4] guarantees that the set S defines on D a star operation
∗.

We claim that ∗ is an eab operation. Since the b-operation is an ab operation,
it is sufficient to prove that ∗|f(D)= b|f(D). Suppose then that F ∈ f (D). Since

F b ∈ S, it is clear that F ∗ ⊆ F b. Note also that it is well-known that each prime
ideal P of an integrally closed domain D is a b-ideal, since there always exists a
valuation overring of D centered on P [2, Theorem 19.6]. It follows that each ideal
of the form yM is a b-ideal and, hence, each ideal of S is a b-ideal. Since F b is the
intersection of all b-ideals which contain F , this implies that F b ⊆ F ∗ (the same
conclusion follows also from [2, Proposition 32.2(b)]). It follows that ∗|f(D)= b|f(D)

and, hence, ∗ is an eab operation.
Now, we claim that ∗ is not an ab operation on D.
To show this, we let I := (X1, X2) and we prove that (IM)∗ = I∗ = I. This will

show that ∗ is not ab, because we clearly cannot cancel I in the previous equation,
i.e., (IM)∗ = (ID)∗ but M∗ = M 6= D = D∗.

Therefore, we try to determine which (fractional) ideals in S contain IM . We
know that I is in S (since I ∈ f(D) and I is a prime ideal of D, thus, I = Ib) and
I contains IM . What we really want to prove is that any (fractional) ideal in S
which contains IM also contains I.

(1) First, suppose that IM ⊆ yM for some nonzero element y ∈ K. This causes
no problems if it also implies that D ⊆ yM , since then, in particular, we have
I ⊆ yM , which is what we want.
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Assume that y is a nonzero element of K and that D 6⊆ yM . There are four
possibilities here.

– (1, a) If y is not in D and y−1 is not in D, then yM ∩ D ⊆ yD ∩ D 6= D.
Hence, yD ∩ D is a proper divisorial ideal of D containing IM . This contradicts
the fact that (IM)v = D.

– (1, b) If y is not in D and y−1 is in D, then y−1 is in M (since D is local) and
so D ⊆ yM , which is a contradiction.

– (1, c) If y is in D and y is invertible in D, then yM = M , and so in this case
I ⊆ yM , which is what we want.

– (1, d) If y is in D and y is not invertible in D, then IM ⊆ yM ⊆ yD ⊆ M 6= D.
Again, this contradicts (IM)v = D.

(2) Now suppose that G ∈ f(D) is such that IM ⊆ G∗ = Gb. We extend
everything to the b-Kronecker function ring of D, which is the following subring of
the field of rational functions in one indeterminate, denoted by T , over K, i.e.:

Kr(D, b) :={f/g ∈ K(T ) | f, g ∈ D[T ], 0 6= g, c(f) ⊆ c(g)b}=
⋂

{V (T ) | V ∈ V},

where c(h) is the content of a polynomial h ∈ D[X ] and V (T ) := {f/g ∈ K(T ) |
f, g ∈ V [T ], 0 6= g and c(g) = V } is the trivial valuation extension of V to K(T )
[2, definitions at pages 218 and 401, Theorems 32.7 and 32.11, Proposition 33.1].
Then, we should have IKr(D, b)MKr(D, b) ⊆ GbKr(D, b) = GKr(D, b). Recall that
Kr(D, b) is a Bézout domain and so both IKr(D, b) and GKr(D, b) are principal
ideals. This means that we actually have MKr(D, b) ⊆ GKr(D, b)(IKr(D, b))−1,
the latter (fractional) ideal being principal.

There are two possibilities here.
– (2, a) Kr(D, b) ⊆ GKr(D, b)(IKr(D, b))−1. This would imply that IKr(D, b) ⊆

GKr(D, b). This would in turn imply that I = Ib ⊆ Gb = G∗, which was our goal.
– (2, b) Kr(D, b) 6⊆ GKr(D, b)(IKr(D, b))−1. Rename the principal (fractional)

ideal GKr(D, b)(IKr(D, b))−1 as H. We know that MKr(D, b) ⊆ H.
If H is an integral ideal of Kr(D, b), then obviously MKr(D, b) is contained in

a proper principal ideal of Kr(D, b). On the other hand, if H is not an integral
ideal, then H ∩Kr(D, b) is a proper integral ideal of Kr(D, b). Moreover, it is also
finitely generated [2, Proposition 25.4(1)] (hence, principal) in the Bézout domain
Kr(D, b).

Therefore, in either case MKr(D, b) is contained in a proper principal ideal of
Kr(D, b). This will lead to a contradiction. As a matter of fact, suppose that ϕ ∈
Kr(D, b) is a nonzero nonunit rational function and that MKr(D, b) ⊆ ϕKr(D, b).
This means that, for any natural number n ≥ 1, we have Xn ∈ ϕKr(D, b). On
the other hand, there are only a finite number of Xn that are part of the reduced
representation of ϕ. Without loss of generality, suppose that these finitely many
indices are 1, 2, ..., r, i.e., ϕ ∈ k(X1, X2, ..., Xr;T ) (⊂ K(T )). Since ϕ is a nonunit in
Kr(D, b), there must be a valuation overring V of D such that ϕ is a nonunit in the
valuation overring V (T ) of Kr(D, b). Contract V to the subfield k(X1, X2, ..., Xr)
of K. Call this valuation domain Vr. Then, extend Vr trivially to K. Call this
valuation domain W , i.e., W := Vr(Xr+1, Xr+2, ....). Clearly, W is a valuation
overring of D. Then we have a contradiction, because ϕ is still a nonunit in the
valuation overring W (T ) of Kr(D, b) and each Xn with n > r is a unit in W (T ).
This contradicts the fact that each Xn lies in the principal ideal ϕKr(D, b).
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Therefore, Possibility (2, b) does not occur. Therefore, we have to fall back on
Possibility (2, a) which implies that I ⊆ Gb = G∗, which was what we needed.

Acknowledgment. The first-named author was partially supported by a MIUR-
PRIN grant 2008-2011, No. 2008WYH9NY.

References

[1] M. Fontana and K. A. Loper, Cancellation properties in ideal systems: A classification of

e.a.b. semistar operations, J. Pure Appl. Algebra 213 (2009), 2095–2103.
[2] R. Gilmer, Multiplicative ideal theory. M. Dekker, New York, 1972.
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