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Abstract. After the introduction in 1994, by Okabe and Matsuda, of the no-

tion of semistar operation, many authors have investigated di�erent aspects of

this general and powerful concept. A natural development of the recent work

in this area leads to investigate the concept of invertibility in the semistar set-

ting. In this paper, we will show the existence of a \theoretical obstruction"

for extending many results, proved for star-invertibility, to the semistar case.

For this reason, we will introduce two distinct notions of invertibility in the

semistar setting (called ?{invertibility and quasi{?{invertibility), we will dis-

cuss the motivations of these \two levels" of invertibility and we will extend,

accordingly,many classical results proved for the d{, v{, t{ and w{ invertibility.

Among the main properties proved here, we mention the following: (a) several
characterizations of ?{invertibility and quasi{?{invertibility and necessary and

suÆcient conditions for the equivalence of these two notions; (b) the relations
between the ?{invertibility (or quasi{?{invertibility) and the invertibility (or

quasi{invertibility) with respect to the semistar operation of �nite type (de-

noted by ?
f
) and to the stable semistar operation of �nite type (denoted by

e?), canonically associated to ?; (c) a characterization of the H(?){domains in

terms of semistar{invertibility (note that the H(?){domains generalize, in the

semistar setting, the H{domains introduced by Glaz and Vasconcelos); (d)
for a semistar operation of �nite type a nonzero �nitely generated (fractional)

ideal I is ?{invertible (or, equivalently, quasi{?{invertible, in the stable semis-

tar case) if and only if its extension to the Nagata semistar ring I Na(D;?) is

an invertible ideal of Na(D;?).

1. Introduction and background results

The notions of t{invertibility, v{invertibility and w{invertibility, that generalize

the classical concept of (d{)invertibility (these de�nitions will be recalled in Section

2), have been introduced in the recent years for a better understanding of the

multiplicative (ideal) structure of integral domains. In particular, t{invertibility

has a key role for extending the notion of class group from Krull domains to general

integral domains (cf. [8], [9], [10] and the survey paper [7]). An interesting chart of

a large set of various t{, v{, d{ invertibility based characterizations of several classes

of integral domains can be found at the end of [4]; some motivations for introducing

the w{invertibility and the �rst properties showing the \good" behaviour of this

notion can be found in [47] (cf. also [30]). The concept of star operation (or,

equivalently, ideal system, cf. the books by Ja�ard [33], Gilmer [24] and Halter-

Koch [27]) provides an abstract setting for approaching these di�erent aspects of

invertibility. A recent paper by Zafrullah [51] gives an excellent and updated survey

of this point of view.
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After the introduction in 1994, by Okabe and Matsuda [44], of the notion of

semistar operation, as a more general and natural setting for studying multiplica-

tive systems of ideals and modules, many authors have investigated the possible

extensions to the semistar setting of di�erent aspects of the classical theory of ideal

systems, based on the pioneering work by W. Krull, E. Noether, H. Pr�ufer and P.

Lorenzen from 1930's (cf. for instance [40], [39], [45], [37], [38], [13], [28], [17], [18],

[19], [12], [16], [15], [29], [41], [42], [43]).

A natural development of this work leads to investigate the concept of invertibi-

lity in the semistar setting. This is the purpose of the present paper, in which we

will show the existence of a \theoretical obstruction" for extending many results,

proved for star-invertibility, to the semistar case. For this reason, we will be forced

to introduce two distinct notions of invertibility in the semistar setting (called

?{invertibility and quasi{?{invertibility; the explicit de�nitions will be given in

Section 2), we will discuss the motivations of these \two levels" of invertibility and

we will extend, accordingly, many classical results proved for the d{, v{, t{ and w{

invertibility.

Among the main properties proved in this work, we mention the following: (a)

several characterizations of ?{invertibility and quasi{?{invertibility and necessary

and suÆcient conditions for the equivalence of these two notions; (b) the relations

between the ?{invertibility (or quasi{?{invertibility) and the invertibility (or quasi{

invertibility) with respect to the semistar operation of �nite type (denoted by ?
f
)

and to the stable semistar operation of �nite type (denoted by e?), canonically
associated to ? [in case, ? = v is the Artin's v{operation, then ?

f
= t and e? = w];

(c) a characterization of the H(?){domains in terms of semistar{invertibility (note

that the H(?){domains generalize in the semistar setting the H{domains introduced

by Glaz and Vasconcelos [26], more precisely, we will see in Section 2 that an H{

domain coincides with an H(v){domain); (d) for a semistar operation of �nite type

a nonzero �nitely generated (fractional) ideal I is ?{invertible (or, equivalently,

quasi{?{invertible, in the stable semistar case) if and only if its extension to the

Nagata semistar ring I Na(D; ?) is an invertible ideal of Na(D; ?) (the de�nition of

Na(D; ?) will be recalled at the end of this section).

� � � � �

Let D be an integral domain with quotient �eld K. Let F (D) denote the set of

all nonzero D{submodules of K and let F (D) be the set of all nonzero fractional

ideals of D, i.e. E 2 F (D) if E 2 F (D) and there exists a nonzero d 2 D with

dE � D. Let f(D) be the set of all nonzero �nitely generated D{submodules of

K. Then, obviously f(D) � F (D) � F (D).

A map ? : F (D) ! F (D); E 7! E?, is called a semistar operation on D if, for

all x 2 K, x 6= 0, and for all E;F 2 F (D), the following properties hold:

(?1) (xE)? = xE?;

(?2) E � F implies E? � F ?;

(?3) E � E? and E?? := (E?)
?
= E?.

cf. for instance [13]. Recall that [13, Theorem 1.2 and p. 174], for all E;F 2 F (D),

we have :

(EF )? = (E?F )? = (EF ?)
?
= (E?F ?)

?
;

(E + F )? = (E? + F )
?
= (E + F ?)

?
= (E? + F ?)

?
;

(E : F )? � (E? : F ?) = (E? : F ) = (E? : F )
?
;

(E \F )? � E? \ F ? = (E? \ F ?)
?
; if E \F 6= (0) ;

When D? = D, we say that ? is a (semi)star operation, since, restricted to F (D)

it is a star operation.
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For star operations it is very useful the notion of ?{ideal, that is, a nonzero ideal

I � D, such that I? = I. For semistar operations we need a more general notion,

that coincides with the notion of ?{ideal, when ? is a (semi)star operation. We say

that a nonzero (integral) ideal I of D is a quasi{?{ideal if I?\D = I. For example,

it is easy to see that, if I? 6= D?, then I? \D is a quasi{?{ideal that contains I

(in particular, a ?{ideal is a quasi{?{ideal). Note that I? 6= D? is equivalent to

I? \D 6= D.

A quasi{?{prime is a quasi{?{ideal which is also a prime ideal. We call a quasi{?{

maximal a maximal element in the set of all proper quasi{?{ideals of D. We denote

by QSpec?(D) (respectively, QMax?(D)) the set of all quasi{?{prime (respectively,

quasi{?{maximal).

If ? is a semistar operation on D, then we can consider a map ?
f
: F (D)! F (D)

de�ned for each E 2 F (D) as follows: E
?
f :=

S
fF ? jF 2 f (D) and F � Eg. It

is easy to see that ?
f
is a semistar operation on D, called the semistar operation of

�nite type associated to ?. Note that, for each F 2 f (D), F ? = F
?
f . A semistar

operation ? is called a semistar operation of �nite type if ? = ?
f
. It is easy to see

that (?
f
)
f
= ?

f
(that is, ?

f
is of �nite type).

If ?1 and ?2 are two semistar operations on D, we say that ?1 � ?2 if E
?1 � E?2 ,

for each E 2 F (D). In this situation, it is easy to see that (E?1)
?2 = E?2 = (E?2)

?1 .

Obviously, for each semistar operation ?, we have ?
f
� ?.

The following result, with a di�erent terminology, was proved in [13] (cf. also

[19, Lemma 2.3]).

Lemma 1.1. Let ? be a semistar operation on an integral domain D. Assume that

? is non trivial and ? = ?
f
. Then:

(1) Each proper quasi{?{ideal is contained in a quasi{?{maximal.

(2) Each quasi{?{maximal is a quasi{?{prime.

(3) Set �? := fP 2 Spec(D) jP 6= 0 and P ? \D 6= Dg, then QSpec?(D) � �?

and the set of maximal elements �?
max

of �?
is nonempty and coincides with

QMax?(D). 2

For the sake of simplicity, we will denote simply byM(?) the set QMax?(D) of

the quasi{?{maximal ideals of D.

If � � Spec(D), the map ?� : F (D) 7! F (D), E 7! E?� :=
T
fEDP jP 2 �g,

is a semistar operation. If ? = ?�, for some � � Spec(D), we say that ? is a

spectral semistar operation. In particular, if � = fPg, then ?fPg is the semistar

operation on D de�ned by E?fPg := EDP , for each E 2 F (D). We say that a

semistar operation is stable if (E \ F )? = E? \ F ?, for each E;F 2 F (D). A

spectral semistar operation is stable [13, Lemma 4.1].

If ? is a semistar operation on D, we denote by ~? the semistar operation ?M(?
f
)

induced by the set M(?
f
) of the quasi{?

f
{maximal ideals of D. The semistar

operation ~? is stable and of �nite type and ~? � ?
f
(cf. [13, p. 181], where the

semistar operation ~? is de�ned, in an equivalent way, by using localizing systems,

and also [3, Section 2] for an analogous construction in the star setting). Note

that when ? = v (where, as usual, v denotes the (semi)star operation de�ned by

Ev := (D : (D : E)), for each E 2 F (D)), then ~? coincides with the (semi)star

operation denoted by w by Wang Fanggui and R.L. McCasland (cf. [47], [48] and

[49]).

The following lemma is not diÆcult to prove (cf. [19, Corollary 3.5(2)] and, for

the analogous result in case of star operations, [3, Theorem 2.16]).

Lemma 1.2. Let ? be a semistar operation on an integral domain D. Then,

M(?
f
) =M(~?). 2
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In the next proposition, we recall how a semistar operation on an integral domain

D induces canonically a semistar operation on an overring T of D (cf. [44, Lemma

45], and, for the notation used here, [20]).

Proposition 1.3. Let D be an integral domain and T an overring of D. Let

� : D ,! T be the embedding of D in T , and let ?� : F (T ) ! F (T ) be de�ned by

E?� := E?
. Then:

(1) ?� is a semistar operation on T .

(2) If ? is of �nite type on D, then ?� is of �nite type on T .

(3) If T = D?
, then ?� is a (semi)star operation on D?

.

(4) If ? is stable, then ?� is stable. 2

If R is a ring andX an indeterminate over R, then the ring R(X) := ff=g j f; g 2

R[X] and c(g) = Rg (where c(g) is the content of the polynomial g) is called the

Nagata ring of R [24, Proposition 33.1].

The following result is proved in [19, Proposition 3.1] (cf. also [34, Proposition

2.1]).

Proposition 1.4. Let ? be a nontrivial semistar operation on an integral domain

D and set N (?) := ND(?) := fh 2 D[X] j h 6= 0 and (c(h))? = D?g. Then:

(1) N (?) is a saturated multiplicative subset of D[X] and N (?) = N (?
f
) =

D[X] r
S
fQ[X] j Q 2 M(?

f
)g.

(2) Max(D[X]N(?)) = fQ[X]N(?) j Q 2 M(?
f
)g and M(?

f
) coincides with the

canonical image in Spec(D) of Max
�
(D[X])N(?)

�
.

(3) D[X]N(?) =
T
fDQ(X) j Q 2M(?

f
)g. 2

We set Na(D; ?) := D[X]N(?) and we call it the Nagata ring of D with respect to

the semistar operation ?. Obviously, Na(D; ?) = Na(D; ?
f
) and, when ? = d (the

identity (semi)star operation) on D, then Na(D; d) = D(X).

2. Semistar Invertibility

Let ? be a semistar operation on an integral domain D. Let I 2 F (D), we say

that I is ?{invertible if
�
II�1

�?
= D?. In particular when ? = d [respectively,

v , t (:= v
f
) , w (:= ev) ] is the identity (semi)star operation [respectively, the

v{operation, the t{operation, the w{operation ] we reobtain the classical notion

of invertibility [respectively, v{invertibility, t{invertibility, w{invertibility ] of a

fractional ideal.

Lemma 2.1. Let ?; ?1; ?2 be semistar operations on an integral domain D. Let

Inv(D; ?) be the set of all ?{invertible fractional ideals of D and Inv(D) (instead of

Inv(D; d)) the set of all invertible fractional ideals of D. Then:

(0) D 2 Inv(D; ?).

(1) If ?1 � ?2, then Inv(D; ?1) � Inv(D; ?2). In particular, Inv(D) � Inv(D; ~?) �

Inv(D; ?
f
) � Inv(D; ?).

(2) I; J 2 Inv(D; ?) if and only if IJ 2 Inv(D; ?).

(3) If I 2 Inv(D; ?) then I�1 2 Inv(D; ?)..

(4) If I 2 Inv(D; ?) then Iv 2 Inv(D; ?).

Proof. (0) and (1) are obvious.

(2) Note that, if I; J 2 Inv(D; ?), thenD? =
�
II�1

�? �
JJ�1

�?
�
�
II�1JJ�1

�?
��

IJ(IJ)�1
�?
� D?. Thus, IJ 2 Inv(D; ?). Conversely, if IJ 2 Inv(D; ?), then

D? = ((IJ)(D : IJ))? = (I(J(D : IJ)))?. Since (J(D : IJ)) � (D : I), it follows

(I(D : I))? = D?. Similarly, (J(D : J))? = D?.

(3) D? =
�
II�1

�?
�
�
(I�1)�1I�1

�?
� D?.

(4) follows from (3). �
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Remark 2.2. (a) Note that D is the unit element of Inv(D; ?) with respect to

the standard multiplication of fractional ideals of D. Nevertheless, Inv(D; ?) is not

a group in general (under the standard multiplication), because for I 2 Inv(D; ?),

then I�1 2 Inv(D; ?), but II�1 6= D, if I 62 Inv(D). For instance, let k be a �eld,

X and Y two indeterminates over k, and let D := k[X;Y ](X;Y ). Then D is a local

Krull domain, with maximal idealM := (X;Y )D. Let ? = v, then clearlyMv = D,

since ht(M ) = 2, thus M is v{invertible but M is not invertible in D, since it is not

principal. Therefore (MM�1)v = D, but M = MM�1 ( D. We will discuss later

what happens if we consider the semistar (fractional) ideals semistar invertible with

the \semistar product".

(b) Let I 2 F (D). Assume that I 2 Inv(D; ?) and (D? : I) 2 F (D), then

we will see later that (D? : I) = (D : I)? (Lemma 2.10, Remark 2.13(d1) and

Proposition 2.16), more precisely that:�
I�1

�?
= (D : Iv)

?
= (D? : I)

?
= (D? : I) = (I?)

�1
:

However, in this situation, we may not conclude that (D? : I) (or, (D : I)?)

belongs to Inv(D; ?) (even if (D : I) 2 Inv(D; ?), by Lemma 2.1(3)). As a matter

of fact, more generally, if J 2 Inv(D; ?) and J? 2 F (D), then J? does not belong

necessarily to Inv(D; ?).

For instance, let K be a �eld and X;Y two indeterminates over K, set T :=

K[X;Y ] and D := K+Y K[X;Y ]. Let ?fTg be the semistar operation on D de�ned

by E?fTg := ET , for each E 2 F (D). Then J := Y D is obviously invertible (hence

?fTg{invertible) in D and J?fT g = JT = Y T = Y K[X;Y ] = (D : T ) is a nonzero

(maximal) ideal of D (and, at the same time, a (prime) ideal of T ), but J?fTg is not

?fTg{invertible in D, because (J?fTg (D : J?fTg ))
?fTg = (JT (D : JT ))T = (Y T (D :

Y T ))T = (Y TY �1(D : T ))T = (T (Y T ))T = Y T ( T = D?fTg .

(c) Note that the converses of (3) and (4) of Lemma 2.1 are not true in general.

For instance, take an integral domainD that is not an H{domain (recall that an H{

domain is an integral domainD such that, if I is an ideal of D with I�1 = D, then

there exists a �nitely generated J � I, such that J�1 = D [26, Section 3]). Then,

there exists an ideal I of D such that Iv = I�1 = D and It ( D. It follows that�
I�1Iv

�t
= D ( and so, I�1 and Iv are t{invertibles), but

�
II�1

�t
= It ( D, that

is, I is not t{invertible. On the other hand, note that, trivially, I is v{invertible.

An explicit example is given by a 1{dimensional non discrete valuation domain V

with maximal idealM . Clearly, V is not an H{domain [26, (3.2d)],M�1 = Mv = V

[24, Exercise 12 p.431] and M t =
S
fJvjJ � M;J �nitely generatedg =

S
fJ jJ �

M;J �nitely generatedg = M ( V . In this case, M�1 and Mv are obviously

t{invertibles, but M is not t{invertible.

If I 2 F (D), we say that I is ?{�nite if there exists J 2 f (D) such that J? = I?.

It is immediate to see that if ?1 � ?2 are semistar operations and I is ?1{�nite,

then I is ?2{�nite. In particular, if I is ?
f
{�nite, then it is ?{�nite.

We notice that, in the previous de�nition of ?{�nite, we do not require that

J � I. Next result shows that, with this \extra" assumption, ?{�nite is equivalent

to ?
f
{�nite.

Lemma 2.3. Let ? be a semistar operation on an integral domain D with quotient

�eld K. Let I 2 F (D). Then, the following are equivalent:

(i) I is ?
f
{�nite.

(ii) There exists J � I, J 2 f(D) such that J? = I?.

Proof. It is clear that (ii) implies (i), since J? = J
?
f , if J is �nitely generated. On

the other hand, suppose I ?
f
{�nite. Then, I

?
f = J

?
f

0 , with J0 = (a1; a2; : : : ; an)D,
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for some family fa1; a2; : : : ; ang � K. Since J0 � I
?
f , there exists a �nite family of

�nitely generated fractional ideals of D, J1; J2; : : : ; Jn � I, such that ai 2 J?
i
, for

i = 1; 2; : : :; n. It follows that I
?
f = J

?
f

0 �

�
J
?
f

1 + J
?
f

2 + : : :+ J
?
f

n

�?
f

= (J1 + J2 +

: : :+ Jn)
?
f � I

?
f . Set J := J1 + J2 + : : :+ Jn. Then, J is �nitely generated, J � I

and J
?
f = I

?
f , thus J? = I?. �

Remark 2.4. Extending the terminology introduced by Zafrullah in the star set-

ting [50] (cf. also [51, p. 433]), given a semistar operation on an integral domain

D, we can say that I 2 F (D) is strictly ?{�nite if I? = J?, for some J 2 f(D),

with J � I. With this terminology, Lemma 2.3 shows that ?
f
{�nite coincides with

strictly ?
f
{�nite. This result was already proved, in the star setting, by Zafrullah

[50, Theorem 1.1]. Note that Querr�e studied the strictly v{�nite ideals [46], using

often the terminology of quasi{�nite ideals.

For examples of ?{�nite ideals that are not ?
f
{�nite (when ? is the v{operation),

see [22, Section (4c)], where are described domains with all the ideals v{�nite (called

DVF{domains), that are not Mori domains (that is, such that not all the ideals are

t{�nite).

Lemma 2.5. Let ? be a semistar operation on an integral domain D and let I 2

F (D). Then I is ?
f
{invertible if, and only if, (I0I00)

?
= D?

, for some I0 � I; I00 �

I�1, and I0; I00 2 f(D). Moreover, I 0
?
= I? and I00

?
=
�
I�1

�?
.

Proof. The \ if" part is trivial. For the \only if": if
�
II�1

�?
f = D

?
f , then H? = D?

for some H � II�1, H 2 f(D). Therefore, H = (h1; h2 : : : ; hn)D, with hi =

x1;iy1;i + x2;iy2;i + : : :+ xki;iyki;i, with the x's in I and the y's in I�1. Let I0 be

the (fractional) ideal of D generated by the x's and let I00 be the (fractional) ideal

of D generated by the y's. Then, H � I0I00 � II�1 and so D? = (I0I00)
?
, and,

thus, also D? =
�
I0I�1

�?
= (II00)

?
. Moreover, I? = (ID?)

?
=
�
I
�
I0I�1

�?�?
=�

(II�1)?I0
�?

= (D?I0)
?
= I0

?
. In a similar way, we obtain also that I 00

?
=
�
I�1

�?
.

�

A classical result due to Krull [33, Th�eor�eme 8, Ch. I, x4] shows that, for a

star operation of �nite type, star{invertibility implies star{�niteness. The following

result gives a more complete picture of the situation in the general semistar setting.

Proposition 2.6. Let ? be a semistar operation on an integral domain D. Let

I 2 F (D). Then I is ?
f
{invertible if and only if I and I�1 are ?

f
{�nite (hence, in

particular, ?{�nite) and I is ?{invertible.

Proof. The \only if" part follows from Lemma 2.5 and from the fact that ?
f
� ?.

For the \if" part, note that by assumption I
?
f = J 0

?
f = J 0

?
and (I�1)

?
f =

J 00
?
f = J 00

?
, with J 0; J 00 2 f(D). Therefore:�

II�1
�?
f = (J 0J 00)

?
f = (J 0J 00)

?
=
�
J 0

?
J 00

?
�?

= (I?
�
I�1)?

�?
=
�
II�1

�?
= D? :

�

Next goal is to investigate when the ?{invertibility coincides with the ?
f
{inver-

tibility.

Let ? be a semistar operation on an integral domain D, we say that D is an

H(?){domain if, for each nonzero integral ideal I of D such that I? = D?, there

exists J 2 f(D) with J � I and J? = D?. It is easy to see that, for ? = v, the

H(v){domains coincide with the H{domains introduced by Glaz and Vasconcelos

(Remark 2.2(c)).
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Lemma 2.7. Let ? be a semistar operation on an integral domain D. Then D is

an H(?){domain if and only if each quasi{?
f
{maximal ideal of D is a quasi{?{ideal

of D.

Proof. Assume that D is an H(?){domain. Let Q = Q
?
f \D be a quasi{?

f
{maximal

ideal of D. Assume that Q? = D?. Then, for some J 2 f(D), with J � Q,

we have J? = D?, thus Q
?
f = D?, which leads to a contradiction. Therefore

Q
?
f \ D � Q? \ D ( D and, hence, there exists a quasi{?

f
{maximal ideal of D

containing Q? \D. This is possible only if Q
?
f \D = Q? \D.

Conversely, let I be a nonzero ideal of D with the property I? = D?. Then,

necessarily I 6� Q for each quasi{?
f
{maximal ideal of D (because, otherwise, by

assumption I � Q = Q
?
f \ D = Q? \ D, and so I? � Q? ( D?). Therefore

I
?
f = D?. �

Next result provides several characterizations of the H(?){domains; note that, in

the particular case that ? = v, the equivalence (i) , (iii) was already known [31,

Proposition 2.4] and the equivalence (i) , (iv) was considered in [47, Proposition

5.7].

Proposition 2.8. Let ? be a semistar operation on an integral domain D. The

following are equivalent:

(i) D is an H(?){domain;

(ii) for each I 2 F (D), I is ?{invertible if and only if I is ?
f
{invertible;

(iii) M(?
f
) =M(?);

(iv) M(e?) =M(?).

Proof. Obviously, (iii), (iv) by Lemma 1.2 and (iii), (i) by Lemma 2.7, recalling

that a quasi{?{ideal is also a quasi{?
f
{ideal.

(iii)) (ii). Let I be a ?{invertible ideal of D. Assume that I is not ?
f
-invertible.

Then, there exists a quasi{?
f
{maximal ideal M such that II�1 � M . But M is

also quasi-?-maximal, since M(?
f
) = M(?). Thus M? ( D?. It follows that

(II�1)? �M? ( D?, a contradiction. Hence I is ?
f
-invertible.

(ii) ) (i) Let I be a nonzero integral ideal I of D such that I? = D?. Then,

I � II�1 � D implies that
�
II�1

�?
= D?, that is I is ?{invertible. By assumption,

it follows that I is ?
f
{invertible, and so I is ?

f
{�nite (Proposition 2.6). By Lemma

2.3, we conclude that there exists J 2 f(D) with J � I and J? = I? = D?. �

Let ? be a semistar operation ofD. If we denote by � : D ,! D? the embedding of

D in D? and by ?� the (semi)star operation canonically induced on D? by ? (de�ned

as in Proposition 1.3), we note that, if I 2 Inv(D; ?), then I? 2 Inv(D?; ?�). As

a matter of fact, we have: D? =
�
II�1

�?
= (I?(D : I)?)

?
� (I?(D? : I?))

?
=

(I?(D? : I?))
?�
� (D?)

?
= D?.

Next example shows that the converse does not hold (in other words I? may be

in Inv(D?; ?�), with I 2 F (D)r Inv(D; ?)), even if ? is a semistar operation stable

and of �nite type.

Example 2.9. Let D be an almost Dedekind domain, that is not a Dedekind

domain (cf. for instance [23, Section 2 and the references]). Then, in D there exists

a prime (= maximal) ideal P , such that P is not invertible (otherwise, D would

be a Dedekind domain). Then, P�1 = D [14, Corollary 3.1.3], since D is a Pr�ufer

domain. Consider the semistar operation ? := ?fPg. Let �P : D ,! DP be the

canonical embedding, then P ? = PDP is ?�P {invertible, since DP is a DVR, but�
PP�1

�?
= (PD)? = P ? = PDP ( DP = D?, thus P is not ?{invertible.

Let � : D ,! D? be the canonical embedding, then, we say that I 2 F (D) is

quasi{?{invertible if I? 2 Inv(D?; ?�) (that is, if (I(D
? : I))

?
= D?). Note that
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I? 2 Inv(D?; ?�) implies that I? 2 F (D?). We denote by QInv(D; ?) the set of all

quasi{?{invertible D{submodules of K and, when ? = d, we set QInv(D), instead

of QInv(D; d). We have already noticed that Inv(D; ?) � QInv(D; ?) and that the

inclusion can be proper. Moreover, it is obvious that QInv(D) = Inv(D).

We have the following straightforward necessary and suÆcient condition for a

D{submodule of K to be quasi{?{invertible.

Lemma 2.10. Let ? be a semistar operation on an integral domain D and I 2

F (D). Then, I is quasi{?{invertible if and only if there exists H 2 F (D) such that

(IH)? = D?
. 2

Next we prove an analogue of Lemma 2.1 for quasi{ ?{invertible ideals.

Lemma 2.11. Let ?; ?1; ?2 be semistar operations on an integral domain D. Then:

(0) D? 2 QInv(D; ?).

(1) If ?1 � ?2, then QInv(D; ?1) � QInv(D; ?2). In particular, we have

QInv(D) � QInv(D; ~?) � QInv(D; ?
f
) � QInv(D; ?).

(2) I; J 2 QInv(D; ?) if and only if IJ 2 QInv(D; ?).

(3) If I 2 QInv(D; ?), then (D? : I) 2 QInv(D; ?).

(4) If I 2 QInv(D; ?), then Iv(D
?) := (D? : (D? : I)) 2 QInv(D; ?).

Proof. (0) and (1) are straightforward. To prove (2) we notice that I; J 2QInv(D; ?)

if and only if I?; J? 2 Inv(D?; ?�), where ?� is de�ned as above. It follows (from

Lemma 2.1(2)) that I; J 2 QInv(D; ?) if and only if I?J? 2 Inv(D?; ?�). It is easy

to see that this happens if and only if (IJ)? 2 Inv(D?; ?�), that is, if and only

if IJ 2 QInv(D; ?). (3) is clear and (4) is an immediate consequence of Lemma

2.1(4) and of the fact that (v(D?))
�
= vD? , where vD? is the v{operation of D?, �

is the canonical embedding of D in D? and v(D?) is the semistar operation on D,

de�ned by Ev(D?) := (D? : (D? : E)), for each E 2 F (D) (note that, obviously,

? � v(D?)). �

Corollary 2.12. Let ? be a semistar operation on an integral domain D, let v(D?)

be the semistar operation on D, de�ned in the proof of Lemma 2.11(4) and let I 2

F (D). If I is quasi{?{invertible, then I is quasi{v(D?){invertible and I? = Iv(D
?)
.

Proof. Let � be the canonical embedding of D in D?. As we noted in the proof of

Lemma 2.11 (4), (v(D?))
�
= vD? . Then, in order to show that I? is quasi{v(D?){

invertible, we prove that I? is vD?{invertible. But ?� is a (semi)star operation onD?

and I? is ?�{invertible, then (Lemma 2.1 (1)) I? is vD?{invertible, since ?� � vD?

[24, Theorem 34.1(4)]. Therefore I is quasi{v(D?){invertible and I? =
�
Iv(D

?)
�?

=

Iv(D
?), since (D? : I) =

�
D? : Iv(D

?)
�
(cf. also [51, p. 433] or [11, Lemma 2.1(3)],

and Remark 2.13(b1)). �

Remark 2.13. (a) Note that if I is a quasi{?{invertible ideal of D, then every

ideal J of D, with I � J � I? \D, is also quasi{?{invertible.

More precisely, let I; J 2 F (D) [respectively, I; J 2 F (D)], assume that J � I,

J? = I? and that I is ?{invertible [respectively, quasi{?{invertible] then J is ?{

invertible [respectively, quasi{?{invertible].

Conversely, let I; J 2 F (D), assume that J � I, J? = I? and that J is quasi{?{

invertible then I is quasi{?{invertible (but not necessarily ?{invertible, even if J is

?{invertible).

As a matter of fact, if I is ?{invertible, then D? = (I(D : I))? = (J(D : I))? �

(J(D : J))? � D?. The quasi{?{invertible case is similar. Conversely, if J is quasi{

?{invertible then D? = (J(D? : J))
?
= (I(D? : J))

?
, thus I is quasi{?{invertible

and (D? : J) = (D? : J)
?
= (D? : I)

?
= (D? : I) (cf. also (d1)).
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Example 2.9 shows the parenthetical part of the statement. Let D, P and ?

be as in Example 2.9. Note that P ? is principal in (the DVR) D? = DP , thus

P ? = PDP = tDP , for some nonzero t 2 PDP . Therefore, if J := tD, then

J? = P ?, i.e. P is ?{�nite. We already observed that P is quasi{?{invertible but

not ?{invertible, even if obviously J is (?{)invertible.

(b) Let I; H 0; H 00; J; L 2 F (D). The following properties are straightforward:

(b1) (IH0)
?
= D? = (IH00)

?
) H0? = H 00? = (D? : I)

?
= (D? : I) :

(b2) I 2 QInv(D; ?), IJ � IL ) J? � L? :

(b3) I 2 QInv(D; ?), J � I? ) 9 L 2 F (D); (IL)? = J? :

[Take L := (D? : I)J . ]

(b4) I; J 2 QInv(D; ?), (IL)? = J? ) L 2 QInv(D; ?) :

[Set H := I(D? : J), and note that (LH)? = D?. ]

(b5) I; J 2 QInv(D; ?) ) (D? : IJ) = (D? : IJ)
?
= ((D? : I) (D? : J))

?
:

(b6) I; J 2 QInv(D; ?) ) 9 L 2 QInv(D; ?); L � I?; L � J? :

[Take z 2 K, z 6= 0, such that zI � D?; zJ � D?; and set L := zIJ . ]

(b7) I; J 2 QInv(D; ?) ; I + J 2 QInv(D; ?) ) Iv(D
?)\ Jv(D

?) 2 QInv(D; ?) :

[Recall that ? � v(D?) and note that:

((D? : I)(D? : J)(I + J))
?
=
�
((D? : I) I)

?
(D? : J)+(D? : I)((D? : J) J)

?
�?

=((D? : J) + (D? : I))
?
=
��
D? : Jv(D

?)
�
+
�
D? : Iv(D

?)
��?

)

((D? : I) (D? : J) (I + J))
v(D?)

=
��
D? : Iv(D

?)
�
+
�
D? : Jv(D

?)
��v(D?)

)

(D? : ((D? : I) (D? : J) (I + J))) =
�
D? :

��
D? : Iv(D

?)
�
+
�
D? : Jv(D

?)
���

=
�
D? :

�
D? : Iv(D

?)
��
\
�
D? :

�
D? : Jv(D

?)
��

= Iv(D
?) \ Jv(D

?). ]

(b8) I; J 2 QInv(D; ?) ; Iv(D
?)\Jv(D

?) 2 QInv(D; ?) ) I+J 2 QInv(D; v(D?)):

[Since Iv(D
?) \ Jv(D

?) = (D? : ((D? : I) (D? : J) (I + J))) and hence�
D? :

�
Iv(D

?) \ Jv(D
?)
��

= ((D? : I) (D? : J) (I + J))
v(D?)

, then apply (b4)

to conclude that I + J 2 QInv(D; v(D?)). ]

(c) A statement analogous to Corollary 2.12 holds for ?{invertibles: Let ? be

semistar operation on an integral domain D, let v(D?) be the semistar operation

on D, de�ned in the proof of Lemma 2.11(4) and let I 2 F (D). If I is ?{invertible,

then I is v(D?){invertible and I? = Iv(D
?)
.

(d) Mutatis mutandis, the statements in (b) hold for ?{invertibles. More pre-

cisely: Let ? be a semistar operation on an integral domainD and let I; H0; H00; J;

L 2 F (D), then:

(d1) I 2 Inv(D; ?), (IH 0)? = D? = (IH00)? ) H 0? = H00? =
�
I�1

�?
:

(d2) I 2 Inv(D; ?), IJ � IL ) J? � L? :

(d3) I 2 Inv(D; ?), J � I? ) 9 L 2 F (D); (IL)? = J? :

(d4) I; J 2 Inv(D; ?), (IL)? = J? ) L 2 QInv(D; ?); (D? : L) =

(I(D : J))
?
.

Note that, under the present hypotheses, L 2 Inv(D; ?) if and only if

(D : L)? = (I(D : J))
?
.

(d5) I; J 2 Inv(D; ?) ) (D : IJ)
?
= ((D : I) (D : J))

?
:

(d6) I; J 2 Inv(D; ?) ) 9 L 2 Inv(D; ?); L � I; L � J :

(d7) I; J 2 Inv(D; ?) ; I + J 2 Inv(D; ?) ) Iv(D
?) \ Jv(D

?) 2 Inv(D; ?) :

(d8) I; J 2 Inv(D; ?) ; Iv(D
?)\Jv(D

?) 2 Inv(D; ?) ) I+J 2 Inv(D; v(D?)) :

Our next goal is to extend Proposition 2.6 to the case of quasi{?
f
{invertibles.

We need the following:

Lemma 2.14. Let ? be a semistar operation on an integral domain D with quotient

�eld K, let � : D ,! D?
the embedding of D in D?

, let ?� denote the (semi)star

operation canonically induced on D?
by ? and let I 2 F (D). Then, I is ?{�nite if

and only if I? is ?�{�nite.
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Proof. If I is ?{�nite, then there exists J 2 f(D) such that I? = J?. It is clear

that (JD?)
?� = I?, with JD? 2 f(D?). Thus, I? is ?�{�nite. Conversely, let

I? be ?�{�nite. Then, there exists J0 2 f(D?), J0 = (a1; a2; : : : ; an)D
?, with

fa1; a2; : : : ; ang � K, such that J?0 = J
?�
0 = I?� = I?. Set J = (a1; a2; : : : ; an)D 2

f(D). Then, J? = (a1D + a2D + : : :+ anD)? = (a1D
? + a2D

? + : : :+ anD
?)
?
=

J?0 = I?, and so I is ?{�nite. �

Proposition 2.15. Let ? be a semistar operation on an integral domain D and let

I 2 F (D). Then I is quasi{?
f
{invertible if and only if I and (D? : I) are ?

f
{�nite

(hence, ?{�nite) and I is quasi{?{invertible.

Proof. Let � : D ,! D? be the canonical embedding and let ?� be the (semi)star

operation on D? canonically induced by ?.

For the \if" part, use the same argument of the proof of the \if" part of Propo-

sition 2.6.

The \only if" part. Since I is quasi{?
f
{invertible, then (D? : I) is also quasi{

?
f
{invertible, thus we have that I?f and (D? : I)

?
f = (D? : I) are (?

f
)�{invertibles.

Then, I
?
f and (D? : I) are (?

f
)�{�nite (Corollary 2.6) and then I and (D? : I)

are ?
f
{�nite, by Lemma 2.14. Clearly I is quasi{?{invertible, since ?

f
� ? (Lemma

2.11 (1)). �

It is natural to ask under which conditions a quasi{?{invertible fractional ideal

is ?{invertible. Let I 2 F (D) be quasi{?{invertible. Then (I(D? : I))
?
= D?.

Suppose that I is also ?{invertible, that is, (I(D : I))? = D?. Then, (D : I)? =

((D : I) (I(D? : I))?)
?
= (((D : I)I)? (D? : I))

?
= (D? : I)

?
= (D? : I) = (D? :

I?) � (D : I)?. Therefore we have the following (cf. also Remark 2.2(b)):

Proposition 2.16. Let ? be a semistar operation on an integral domain D. Let I

be a quasi{?{invertible fractional ideal of D. Then, I is ?{invertible if and only if

(D : I)? = (D? : I) (i.e.
�
I�1

�?
= (I?)

�1
). 2

The following corollary is straightforward (in particular, part (2) follows imme-

diately from [13, proof of Remark 1.7]):

Corollary 2.17. Let ? be a semistar operation on an integral domain D, and let

I 2 F (D).

(1) If ? is a (semi)star operation then I is quasi{?{invertible if and only if I

is ?{invertible.

(2) If ? is stable and I 2 f(D) then I is quasi{?{invertible if and only if I is

?{invertible. 2

We notice that if ? is a semistar operation of �nite type, ?{invertibility depends

only on the set of quasi{?{maximal ideals of D. Indeed, it is clear that I 2 F (D)

is ?{invertible if and only if
�
II�1

�?
\D is not contained in any quasi{?{maximal

ideal. Then, from Lemma 1.2, we deduce immediately the following general result

(cf. [13, Proposition 4.25]):

Proposition 2.18. Let ? be a semistar operation on an integral domain D. Let

I 2 F (D). Then I is ?
f
{invertible if and only if I is ~?{invertible. 2

A classical example due to Heinzer can be used for describing the content of the

previous proposition.

Example 2.19. Let K be a �eld and X an indeterminate over K. Set D :=

K[[X3; X4; X5]] and M := (X3; X4; X5)D. It is easy to see that D is a one-

dimensional Noetherian local integral domain, with maximal ideal M . Let ? := v,

note that in this case v = ? = ?
f
= t and M(v) = fMg, since M = (D : K[[X]]).
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Therefore, w = ev = d. In this situation Inv(D; v) = Inv(D; t) = Inv(D;w)

= Inv(D) = fzD j z 2 K ; z 6= 0g. But v = t 6= w = d, because in general

(I \ J)t is di�erent from It \ J t in D, since D is not a Gorenstein domain [2,

Theorem 5, Corollary 5.1] and [35, Theorem 222].

A result \analogous" to Proposition 2.18 does not hold, in general, for quasi-

semistar-invertibility, as we show in the following:

Example 2.20. Let D be a pseudo{valuation domain, with maximal idealM , such

that V :=M�1 is a DVR (for instance, take two �elds k ( K and let V := K[[X]],

M := XK[[X]] and D := k +M ). Consider the semistar operation of �nite type

? := ?fV g, de�ned by E?fV g := EV , for each E 2 F (D). It is clear that M is

the only quasi{?{maximal ideal of D. Thus, ~? = ?fMg = d, the identity (semi)star

operation of D. We have (M (V : M ))? = (M (V : M ))V = V , since V is a DVR.

Hence, M is quasi{?{invertible. On the other side, M is not invertible (i.e., not

quasi{~?{invertible), since MM�1 = MV = M .

Under the assumption D? = D~? we have the following extension of Proposition

2.18 to the case of quasi{semistar{invertibility:

Proposition2.21. Let ? be a semistar operation on an integral domain D. Suppose

that D? = D~?
. Let I 2 F (D). Then I is quasi{?

f
{invertible if and only if I is

quasi{~?{invertible

Proof. If I is quasi{~?{invertible, then there exists J 2 F (D) with (IJ)~? = D~?. This

implies (IJ)
?
f = D

?
f , since ~? � ?

f
. Conversely, suppose that there exists J 2 F (D)

such that (IJ)
?
f = D

?
f . Then IJ � D

?
f = D? = D~?. Thus, (IJ)~? � D~?. If

(IJ)~? ( D~?, then (IJ)~? \D ( D is a quasi{~?{ideal of D. It follows that (IJ)~? \D

is contained in a quasi{~?{maximal P of D. From Lemma 1.2, P is also a quasi{?
f
{

maximal. Then, (IJ)
?
f \D � ((IJ)~? \D)

?
f � P

?
f ( D

?
f , a contradiction. Then,

I is quasi{~?{invertible. �

Remark 2.22. (a) If ? is a semistar operation on an integral domainD, we already

observed (Remark 2.2(a)) that Inv(D; ?) is not a group with respect to the standard

multiplication of fractional ideals. In the set of the ?{invertible ?{fractional ideals,

i.e. in the set Inv?(D) := fI 2 Inv(D; ?) j I = I?g, we can introduce a semistar

composition \�" in the following way I � J := (IJ)?. Note that (Inv?(D);�) is

still not a group, in general, because for instance it does not possede an identity

element (e.g. when D? 2 F (D) r F (D)).

On the other hand, QInv?(D) := fI 2 QInv(D; ?) j I = I?g, with the semistar

composition \�" introduced above, is always a group, having as identity D? and

unique inverse of I 2 QInv?(D) the D{module (D? : I) 2 F (D), which belongs to

QInv?(D). This fact provides also one of the motivations for considering QInv(D; ?)

and QInv?(D) (and not only Inv(D; ?) and Inv?(D), as in the \classical" star case).

It is not diÆcult to prove that: let ? be a semistar operation on an integral

domain D, then:

(Inv?(D);�) is a group , (D : D?) 6= (0) :

As a matter of fact, ()) holds because D? 2 Inv?(D) � F (D) and so (D : D?) 6=

(0). (() holds because (D : D?) 6= (0) implies that D? 2 Inv?(D) and, for each

I 2 Inv?(D), we have (D? : I) 2 F (D), thus (D : I)? = (D? : I) (Remark 2.13(d1))

and so the inverse of each element I 2 Inv?(D) exists and is uniquely determined

in Inv?(D).

Note that, even if (Inv?(D);�) is a group, Inv?(D) could be a proper subset

of QInv?(D). For this purpose, take D; V; M as in Example 2.20, in this case
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D? = V and (D : V ) = M 6= (0), hence (Inv?(D);�) is a group, but M 2

QInv?(D) r Inv?(D).

(b) Note that, if ? is a semistar operation on an integral domain D, the group

(QInv?(D);�) can be identi�ed with a more classic group of star-invertible star-

ideals. As a matter of fact, it is easy to see that:

(QInv?(D);�) = (Inv?� (D?);�0)

where � : D ! D? is the canonical embedding, ?� is the (semi)star operation on

D?, canonically associated to ? (Proposition 1.3), and the (semi)star composition

\�0" in Inv?� (D?) is de�ned by E �0 F := (EF )?� .

(c) Let ?1; ?2 be two semistar operations on an integral domain D. If ?1 � ?2
then Inv(D; ?1) � Inv(D; ?2) and QInv(D; ?1) � QInv(D; ?2). Note that it is not

true in general that Inv?1 (D) � Inv?2 (D) or that QInv?1(D) � QInv?2(D), because

there is no reason for a ?1{ideal (or {module) to be a ?2{ideal (or {module). For

instance, let T be a proper overring of an integral domain D, let ?1 := d be the

identity (semi)star operation on D and let ?1 := ?fTg be the semistar operation

on D de�ned by E?fTg := ET , for each E 2 F (D). If I is a nonzero principal

ideal of D, then obviously I 2 Inv?1(D) (= Inv(D) = QInv?1(D)) but I does not

belong to QInv?2(D) (and, in particular, it does not belong to Inv?2 (D)), because

I?2 = IT 6= I.

Note that, even if Inv(D; ?1) = Inv(D; ?2), for some pair of semistar operations

?1 � ?2), it is not true in general that Inv?1(D) � Inv?2(D). Take D; V; M as

in Example 2.20. Let ?1 := d be the identity (semi)star operations on D and let

?2 := ?fV g. In this case, Inv(D; ?1) = Inv(D; ?2), because ?1 = f?2 and ?2 = (?2)f
(Proposition 2.18). But, Inv?2(D) ( Inv?1(D) = Inv(D), because Inv?2(D) �

Inv?1 (D) = Inv(D) since each ?2{ideal is obviously a ?1{ideal, and moreover the

proper inclusion holds because, as above, a nonzero principal ideal of D belongs to

Inv(D) but not to Inv?2(D).

On the other hand, if ?1 � ?2 are two star operations on D, then it is known

that Inv?1 (D) � Inv?2(D), essentially because, in this case, I 2 Inv?1 (D) implies

that I = I?1 = Iv and so I = I?2 [6, Proposition 3.3].

(d) Let ? be a semistar operation on an integral domain D, let v(D?) be the

semistar operation onD de�ned in Lemma2.11(4) and let I; J 2 F (D) [respectively,

I; J 2 F (D)]. Assume that I is a ?{invertible [respectively, quasi{?{invertible] ?{

ideal of D, then:

(IJv)
?
= (I : (D : J)) [respectively,

�
IJv(D

?)
�?

= (I : (D? : J))]:

Recall that, since I = I?, then (I : (D : J)) = (I : (D : J))?. It is obvious

that IJv � (I : (D : Jv)) = (I : (D : J)) and thus (IJv)
?
� (I : (D : J)).

Conversely, if z 2 (I : (D : J)) then z(D : J) � I and so z(D : I) � Jv. Therefore

z 2 zD? = z((D : I)I)? � (IJv)
?
.

For the quasi{?{invertible case, if I = I?, then (I : (D? : J)) = (I : (D? : J))?

and I = ID?. It is obvious that IJv(D
?) � (I : (D? : Jv(D

?))) = (I : (D? : J)) and

thus
�
IJv(D

?)
�?
� (I : (D? : J)). Conversely, if z 2 (I : (D? : J)) then z(D? : J) �

I and so z(D? : I) � Jv(D
?). Therefore z 2 zD? = z((D? : I)I)? �

�
IJv(D

?)
�?
.

In the next theorem, we investigate the behaviour of a ?{invertible ideal (when ?

is a semistar operation) with respect to the localizations at quasi{?{maximal ideals

and in the passage to semistar Nagata ring. More precisely, in the spirit of Kaplan-

sky's theorem on (d{)invertibility [35, Theorem 62], we extend a characterization

of t{invertibility proved in [36, Corollary 3.2] and two Kang's results proved in the

star setting [34, Theorem 2.4 and Proposition 2.6].
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Theorem 2.23. Let ? be a semistar operation on an integral domain D. Assume

that ? = ?
f
. Let I 2 f(D), then the following are equivalent:

(i) I is ?{invertible.

(ii) IDQ 2 Inv(DQ), for each Q 2M(?) (and then IDQ is principal in DQ).

(iii) I Na(D; ?) 2 Inv(Na(D; ?)).

Proof. (i) ) (ii). If (II�1)? = D?, then II�1 6� Q, for each Q 2 M(?). Since

I 2 f(D), by atness we have:

I�1DQ = (D : I)DQ = (DQ : IDQ) = (IDQ)
�1 :

Therefore, for each Q 2M(?), since II�1 6� Q, we have:

DQ = (II�1)DQ = IDQI
�1DQ = IDQ(IDQ)

�1 :

(ii)) (iii). From the assumption and from the proof of (i) ) (ii), we have that

II�1 6� Q, for each Q 2 M(?). Since I 2 f (D), by the atness of the canonical

homomorphismD ! D[X]N(?) = Na(D; ?), we have:

(I[X]N(?))
�1 = (D[X]N(?) : I[X]N(?)) = (D : I)[X]N(?) = I�1[X]N(?) :

Since II�1 6� Q, then (II�1)[X]N(?) 6� Q[X]N(?), for each Q 2 M(?). From [19,

Proposition 3.1(3)], we deduce that:

D[X]N(?) = (II�1)[X]N(?) = I[X]N(?)(I[X]N(?))
�1 ;

where I Na(D; ?) = I[X]N(?).

(iii)) (i). From the assumption and from the previous considerations, we have:

D[X]N(?) = I[X]N(?)(I[X]N(?))
�1 = (II�1)[X]N(?) ;

and thus (II�1)[X]N(?) 6� Q[X]N(?), for each Q 2 M(?). This fact implies that

II�1 6� Q, for each Q 2M(?). From [19, Lemma 2.4 (1)], we deduce immediately

that (II�1)? = D?. �

Corollary 2.24. Let ? be a stable semistar operation of �nite type on D, and let

I 2 f(D). Then, the conditions (i){(iii) of Theorem 2.23 are equivalent to:

(iv) I is quasi{?{invertible.

Proof. Apply Corollary 2.17. �

Remark 2.25. It is known [34, Proposition 2.6] (cf. also [5, Section 1] and [11,

Section 1]) that, if ? is a star operation of �nite type on an integral domain D,

an ideal I of D is ?{invertible if and only if it is ?{�nite and locally principal

(when localized at the ?{maximal ideals). As a matter of fact, by Corollary 2.6, we

have that, if I is ?{invertible, then I is ?{�nite. Moreover, (II�1)? = D implies

II�1 6� Q, for each ?{maximal ideal Q of D. It follows that IDQI
�1DQ = DQ.

Thus, IDQ is invertible (hence, principal) in DQ. Conversely, assume that I? = J?,

with J 2 f(D), J � I. It is clear that I�1 = J�1, since Iv = (I?)v = (J?)v = Jv,

being ? � v [24, Theorem 34.1(4)]. Suppose that I is not ?{invertible, that is,

(II�1)? ( D. Then, there exists a ?{maximal ideal Q of D, such that II�1 � Q.

It follows QDQ � IDQI
�1DQ = IDQJ

�1DQ = IDQ(JDQ)
�1 � IDQ(IDQ)

�1, a

contradiction, since IDQ is principal.

We will see in a moment that the \if" part of a similar result for semistar

operations does not hold, even if I = I?. More precisely, we can extend partially

[21, Proposition 1.1] in the following way:

Let I 2 F (D) and let ? be a semistar operation on D, the following properties

are equivalent:

(i) I is ?
f
{invertible;

(ii) (Q : I) ( (D : I), for each Q 2 M(?
f
);
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(iii) (Q : I) ( (D : I), for each Q 2 M(?
f
) and Q � I(D : I).

Moreover, each of the previous properties implies the following:

(iv) I is ?
f
{�nite and IDQ 2 Inv(DQ), for each Q 2 M(?

f
) (and so IDQ is

principal in DQ).

As a matter of fact, (i) ) (ii) because D? = (I(D : I))
?
and if (Q : I) = (D : I),

for some Q 2M(?
f
), then I(D : I) = I(Q : I) � Q, thus (I(D : I))

?
f � Q

?
f ( D?,

hence we reach a contradiction. (ii) ) (iii) is trivial. (iii) ) (i): if not, I(D : I) �

Q, for some Q 2 M(?
f
), thus (D : I) � (Q : I) and hence (D : I) = (Q : I), which

contradicts (iii).

Finally (ii)) (iv), because of Proposition 2.6 and because for zQ 2 (D : I)r(Q :

I), we have zQI � D r Q, and so zQIDQ = DQ, i.e. IDQ = (zQ)
�1DQ, for each

Q 2 M(?
f
).

But note that, in the semistar setting, (iv) 6) (i), even in case I is a ?
f
{ideal,

?
f
{�nite, as the following example will show. However, we can re-establish a

characterization in the quasi{?{invertibility setting in the following way: if ? is

a semistar operation of �nite type on an integral domain D and if I 2 F (D),

then I 2 QInv(D; ?) if and only if I? is ?{�nite and I?D?
M is principal, for each

?�{maximal ideal M of D?
.

Example 2.26. Let D be a valuation domain, P a nonzero nonmaximal non-

invertible prime ideal of D such that DP is a discrete valuation domain. (For

instance, if K is a �eld and X; Y are two indeterminates over K, let D :=

K +XK[X](X) + Y K(X)[Y ](Y ) and P := Y K(X)[Y ](Y ); in this case D is a two-

dimensional valuation domain, DP = K(X)[Y ](Y ) and P = PDP = Y DP ) Y D.)

Set ? := ?fPg. In this situation, ? = ?
f
and M(?) = fPg, thus ? = e?, i.e. ?

is a stable semistar operation of �nite type on D. Note that P is in fact a ?{

ideal of D, since P ? = PDP = P . Moreover, P ? = PDP = tDP = (tD)? for

some nonzero t 2 DP , i.e. P is a non zero principal ideal in D? = DP , since

DP is a DVR, by assumption. Thus, P is a ?{ideal, ?{�nite and locally principal,

when localized at the quasi{?{maximal ideal(s) of D. But P is not ?{invertible ,

since in this situation (D : P ) = (P : P ) = DP [14, Proposition 3.1.5] and hence

(P (D : P ))? = (P (P : P ))? = (PDP )
? = P ? = P . Note also that, in this situation,

P is quasi{?{invertible (because (P (D? : P ))? = (tDP t
�1DP )

? = DP = D?) and

D? = DP = (PDP : PDP ) = (P : P )DP = (P : P )?.

Next two results generalize to the semistar setting [34, Theorem 2.12 and The-

orem 2.14].

Corollary 2.27. Let ? be a semistar operation on an integral domain D. Assume

that ? = ?
f
. Let h 2 D[X]; h 6= 0, then:

c(h) 2 Inv(D; ?) , hNa(D; ?) = c(h)Na(D; ?):

In particular, c(h) 2 Inv(D; ?) if and only if c(h) 2 QInv(D; ?).

Proof. The proof of the �rst part of the statement is based on the following result

by D.D. Anderson [1, Theorem 1]: If R is a ring and h 2 R[X]; h 6= 0, then

hR(X) � c(h)R(X) and, moreover, the following are equivalent:

(1) hR(X) = c(h)R(X).

(2) c(h) is locally principal (in R).

(3) c(h)R(X) is principal (in R(X)).

()) By Theorem 2.23 ((i) ) (ii)), we have that c(h)DQ is principal, for each

Q 2 M(?). Hence,

c(h)DQ[X]N(?) = c(h)(D[X]N(?))QD[X]N(?)
= c(h)DQ(X)
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is principal, for each Q 2 M(?). By applying Anderson's result to the local ring

R = DQ, we deduce that hDQ(X) = c(h)DQ(X), for each Q 2 M(?). The

conclusion follows from Proposition 1.4, (2) and (3)

(() If hNa(D; ?) = c(h)Na(D; ?), then by localization we obtain that hDQ(X) =

c(h)DQ(X), for each Q 2 M(?) (Proposition 1.4 and [24, Corollary 5.3]). By

Anderson's result, we deduce that c(h)DQ is principal, i.e. c(h)DQ 2 Inv(DQ), for

each Q 2M(?). The conclusion follows from Theorem 2.23 ((ii) ) (i)).

The last part of the statement follows from the fact that Na(D; ?) = Na(D;e?)
[19, Corollary 3.5(3)] and from Corollary 2.17 and Proposition 2.18 or, directly,

from Corollary 2.24. �

Proposition 2.28. Let ? be a semistar operation on an integral domain D. If H

is an invertible ideal of Na(D; ?), then H is principal in Na(D; ?).

Proof. We can assume that H 2 Inv(Na(D; ?)) and H � Na(D; ?), then, in par-

ticular, H = (h1; h2; : : : ; hn)Na(D; ?), with hi 2 D[X]; 1 � i � n. For each

Q 2 M(?
f
), by localization, we obtain that HDQ(X) = (h1; h2; : : : ; hn)DQ(X) is

a nonzero principal ideal (Theorem 2.23 ((iii) ) (ii)). By a standard argument, if

di := deg(hi), for 1 � i � n, and if

h := h1 + h2X
d1+1 + h3X

d1+d2+2 + : : :+ hnX
d1+d2+:::+dn�1+n�1 2 D[X];

then it is not diÆcult to see that HDQ(X) = hDQ(X), for each Q 2M(?
f
). From

Proposition 1.4(3), we deduce that H Na(D; ?) = hNa(D; ?). �
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