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FACTORING IDEALS IN PRÜFER DOMAINS

MARCO FONTANA, EVAN HOUSTON, AND THOMAS LUCAS

Abstract. We show that in certain Prüfer domains, each nonzero ideal I can be factored as
I = I

vΠ, where I
v is the divisorial closure of I and Π is a product of maximal ideals. This is

always possible when the Prüfer domain is h-local, and in this case such factorizations have
certain uniqueness properties. This leads to new characterizations of the h-local property in
Prüfer domains. We also explore consequences of these factorizations and give illustrative
examples.

Let R be a Prüfer domain. Recall that R has finite character if each nonzero element of

R is contained in only finitely many maximal ideals of R and that R is h-local if it has finite

character and each nonzero prime ideal of R is contained in a unique maximal ideal of R. It

follows from [1, Theorem 4.12] that if R is h-local, then each nonzero ideal I of R factors as

I = IvΠ, where Iv denotes the divisorial closure of I and Π is a product of maximal ideals.

Part of the first section of this work may be viewed as an elaboration of this result. We

observe that, for a nonzero ideal I of an h-local Prüfer domain, we have I = IvM1 · · ·Mn,

where the Mi are precisely the nondivisorial maximal ideals M of R which contain I and for

which IRM remains nondivisorial in RM (and where we take the empty product of maximal

ideals to be R itself); moreover, this factorization is unique in the sense that no Mi can be

deleted. On the other hand, we show that in certain almost Dedekind domains, one can

have a weaker factorization property: each nonzero ideal I factors as I = IvΠ, where Π

is a product of (not necessarily distinct) maximal ideals. We show (Proposition 1.7) that

in a Prüfer domain with this weak factorization property each nonmaximal prime ideal is

divisorial, each branched nonmaximal prime ideal is the radical of a finitely generated ideal,

and each branched idempotent maximal ideal is sharp. (Relevant definitions are reviewed in

the sequel.) If, in addition to possessing the weak factorization property, the Prüfer domain

R has finite character, then R is h-local (Theorem 1.13). Moreover, a Prüfer domain is h-local

if and only if it has the strong factorization property (Theorem 1.12). Another interesting

property of h-local Prüfer domains is that a nonzero ideal of such a domain is divisorial if

and only if it is locally divisorial (at maximal ideals). In fact, we show in Theorem 1.12 that

a Prüfer domain with this property is h-local.

The first author was supported by MIUR, under Grant PRIN 2005-015278, and the second author was
supported by a visiting grant from GNSAGA of INdAM (Istituto Nazionale di Alta Matematica).
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In Section 2, we explore in h-local Prüfer domains how a given factorization of an ideal I

affects that of rad I and II−1 and how factorizations of ideals I and J affect those of such

related ideals as IJ , I ∩ J , and I + J .

Section 3 is devoted to examples. As has already been mentioned, it is possible for an

almost Dedekind domain to possess the weak factorization property; in Example 3.2 we show

that this can happen even in an almost Dedekind domain with infinitely many nondivisorial

maximal ideals. While in a Prüfer domain with the strong factorization property, the sum

of two divisorial ideals must be again divisorial, we show in Example 3.3 that an almost

Dedekind domain may have the weak factorization property and still possess divisorial ideals

I and J with I+J not divisorial. We also give an example (Example 3.5) of a one-dimensional

Bezout domain R which does not have the weak factorization property, and we observe that

in this example, there is a divisorial ideal J and a maximal ideal M with JRM not divisorial.

Acknowledgement. The authors would like to thank Bruce Olberding and the referee,

whose many helpful comments greatly improved this paper.

1. The strong and weak factorization properties

We begin by recalling some facts which we shall use frequently and without further ref-

erence. Let V be a valuation domain with maximal ideal M . If M is divisorial, then M is

principal and every nonzero ideal of V is divisorial by [10, Lemma 5.2]. On the other hand,

if M is not divisorial, then by [3, Lemma 4.2] a nonzero ideal I of V is nondivisorial if and

only if I = xM for some element x ∈ V .

Theorem 1.1. Let R be an h-local Prüfer domain. Then

(1) For each divisorial ideal I of R, if M ⊇ I with M a non-divisorial maximal ideal of

R, then IRM is divisorial in RM , and IRM is properly contained in MRM .

(2) For each nonzero nondivisorial ideal I of R, I factors as a product BM1M2 · · ·Mn

where B is a divisorial ideal and the Mi are distinct non-divisorial maximal ideals

of R that contain I for which IRMi
is not a divisorial ideal of RMi

. Moreover, this

factorization is unique in the sense that B = Iv and the Mi include all maximal ideals

that contain I where IRMi
is not divisorial.

Proof. Let A be a nonzero ideal of R. Since R is h-local, (ARM)−1 = A−1RM = (AvRM)−1 for

each maximal ideal M ([2, Lemma 2.3] or [16, Theorem 3.10]). Moreover, AvRM = (ARM)v.

In particular, if M is nondivisorial, then (MRM )v = MvRM = RM , so that MRM is not

divisorial, while if I is divisorial, then IRM is also divisorial. This proves (1).

If ARM is not divisorial, then it must be of the form xMRM for some x ∈ R. In this case,

we have AvRM = (ARM)v = xRM and ARM = AvMRM .
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Now let I be a nonzero nondivisorial ideal of R. Let M1, M2, . . . , Mn be the nondivisorial

maximal ideals that contain I where IRMi
is not divisorial. (It will follow from the rest of the

proof that n > 0, but for the moment we take the empty product to be R.) Consider the ideal

J = IvM1M2 · · ·Mn. For each Mi, it is clear that JRMi
= IRMi

from the argument above.

Let M be any other maximal ideal. If M does not contain I, then JRM = RM = IRM . On

the other hand if M contains I, we must have that (IRM )v = IRM . As IvRM = (IRM)v,

we obtain IRM = IvRM = JRM . Hence I = J .

Now suppose I = BN1N2 · · ·Nm with B divisorial and the Ni distinct members of

{M1, M2, . . . , Mn}. Since for each i, BRMi
is divisorial (but perhaps trivial) and IRMi

is not, checking locally at Mi shows that some Nj must equal Mi. Hence m = n and each

Mi is needed in the factorization. Rewriting, we have I = BM1M2 · · ·Mn. Thus, since the

Mi are nondivisorial (and since for a maximal ideal M , we have M nondivisorial if and only

if M−1 = Mv = R), Iv = (BM1 · · ·Mn)v = Bv = B. �

Definition 1.2. A Prüfer domain R has the strong factorization property if for each nonzero

ideal I of R, we have (1) I = IvM1 · · ·Mn where M1, . . . , Mn are precisely the nondivisorial

maximal ideals of R which contain I for which IRM is nondivisorial and (2) this factorization

is unique in the sense that no Mi can be omitted.

Remark 1.3. In Definition 1.2, we take the empty product of maximal ideals to be R; thus,

if IRM is divisorial for each maximal ideal M , then I = Iv (that is, I is divisorial).

Thus, according to Theorem 1.1, h-local Prüfer domains possess the strong factorization

property. In Theorem 1.12 below, we show that the converse holds.

Remark 1.4. Let I be a nonzero ideal of the Prüfer domain R, denote by Max(R, I) the

set of maximal ideals of R containing I, and set

M(I) := {M ∈ Max(R, I) | Mv = R , IRM 6= (IRM)v}
M

′(I) := {M ′ ∈ Max(R, I) | M ′v = R , IRM ′ = (IRM ′)v}
N(I) := {N ∈ Max(R, I) | N = Nv} .

Then Definition 1.2 requires that M(I) be finite (possibly empty), that I = Iv
∏

M∈M(I) M ,

and that this factorization be irredundant. We say nothing about the possible finiteness of

M
′(I) or N(I). It is also possible that I could have a different factorization involving some

of the maximal ideals in M
′(I) ∪ N(I). For example, let (V, M) be a valuation domain

containing a non-principal divisorial ideal I. Then M(I) is empty, and the factorization of

I is just I = Iv. However, since I is not principal, we also have I = IM(= IvM). (The

fact that I not principal implies that I = IM is probably well known, but here is a proof:

Begin with an element x ∈ I. Since I is not principal, we may then choose y ∈ I \ V x so

that x/y ∈ M and x = y(x/y) ∈ IM .) By constructing V appropriately, we may have M

divisorial or not, that is, N(I) = {M} or M
′(I) = {M}.
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Remark 1.5. Using the notation in Remark 1.4 and following the proof of [1, Theorem

4.12], we have for any nonzero ideal I in an h-local Prüfer domain a decomposition of Iv as

follows. Set I ′ =
⋂

M ′∈M′(I)(IRM ′ ∩ R) and JI =
⋂

N∈N(I)(IRN ∩ R). For each M ∈ M(I),

there is an invertible ideal L of R with IRM ∩R = LM ; set LI equal to the product of these

L’s. Then Iv = LII
′JI .

We now introduce our second factorization property.

Definition 1.6. A Prüfer domain R has the weak factorization property if each nonzero

ideal I can be written as I = IvΠ, where Π is a (finite) product of (not necessarily distinct)

maximal ideals (and where, again, the empty product of maximal ideals is taken to be R).

Before stating our next few results, we need some terminology. Recall that a domain R

satisfies the trace property if, for each nonzero ideal I of R, we have that II−1 is equal either

to R or to a prime ideal of R. The domain R satisfies the radical trace property if each

nonzero ideal I of R satisfies II−1 = R or II−1 = rad(II−1). Finally, R satisfies the weak

trace property for primary ideals if, for each nonzero, nonmaximal prime ideal P and each

P -primary ideal Q, we have QQ−1 = P . For information about the trace and radical trace

properties, the reader is referred to [6] and [14]. Now recall from [7] that a domain R is said

to be a #-domain if
⋂

M∈M RM 6= ⋂

N∈N RN for each pair of distinct nonempty subsets M
and N of the set of maximal ideals of R, equivalently, if for each maximal ideal M of R,

RM does not contain
⋂

RN , where the intersection is taken over those maximal ideal N with

N 6= M . This was extended to focus on a single maximal ideal in [13]: a maximal ideal is

sharp if RM does not contain
⋂

N 6=M RN . By [9, Corollary 2] a maximal ideal M of a Prüfer

domain R is sharp if and only if there is a finitely generated ideal of R which is contained in

M and no other maximal ideal of R. Finally, a domain R is a ##-domain if each overring

of R is a #-domain (see [9]).

Proposition 1.7. Let R be a Prüfer domain with the weak factorization property. Then

(1) each ideal which is primary to a nonmaximal ideal of R is divisorial (in particular,

each nonmaximal prime is divisorial),

(2) if M is an idempotent maximal ideal of R and I is a nondivisorial M-primary ideal,

then I = IvM ,

(3) each branched maximal idempotent ideal of R is sharp,

(4) R has the weak trace property for primary ideals, and

(5) each branched nonmaximal prime ideal of R is the radical of a finitely generated ideal.

Proof. (1) Let Q be a P -primary ideal of R with P nonmaximal. Write Q = QvΠ, where Π

is a product of maximal ideals. Then Π * P , whence Qv ⊆ Q, and so Q is divisorial.

(2) This is clear.
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(3) Let M be a branched idempotent maximal ideal of R. Since M is branched, there is

an M-primary ideal I with I 6= M . If Iv * M , then Iv = R, and I = IvM by (2). But this

yields I = M , a contradiction. Hence Iv ⊆ M , and M is sharp by [16, Proposition 2.2].

(4) Let Q be a proper P -primary ideal with P not maximal. Then Q is divisorial by (1).

We shall show that QQ−1 = P . By [6, Corollary 3.1.8 and Theorem 3.1.2] P−1 =
⋂

RM ∩RP ,

where the intersection
⋂

RM is taken over those maximal ideals which do not contain P .

For x ∈ Q−1, we have (R :R x) * M , since Q * M ; thus x ∈ RM . Hence Q−1 ⊆ ⋂

RM . The

same argument shows that Q−1 ⊆ Ω(P ) :=
⋂

RN , where N ranges over the prime ideals of

R which do not contain P .

For y ∈ P−1, we have y ∈ RP , whence ay ∈ R for some a /∈ P . Then ayQ ⊆ Q yields

yQ ⊆ Q (since it is clear that yQ ⊆ R). Thus P−1Q ⊆ Q. Therefore, (QQ−1)−1 = (QQ−1 :

QQ−1) ⊇ P−1, and we have QQ−1 ⊆ P v = P by (1). We also have that P−1 ⊆ (QQ−1)−1 ⊆
Q−1 ⊆ Ω(P ) with Q−1 a ring. Since R is a Prüfer domain, this yields (QQ−1)−1 = P−1

[6, Theorem 3.3.7], whence (QQ−1)v = P (again by (1)). If QQ−1 is not divisorial, then

QQ−1 = (QQ−1)vΠ = PΠ, for some product Π of maximal ideals each of which necessarily

contains P (since each contains Q). A routine local check then shows that PΠ = P , so that

QQ−1 = P , as desired.

(5) This follows from (1) and [5, Proposition 2.9]. �

Next, we give some consequences of the strong factorization property.

Theorem 1.8. Let R be a Prüfer domain with the strong factorization property. Then

(1) If I is a nonzero ideal of R, then I is divisorial if and only if IRM is divisorial for

each maximal ideal M of R.

(2) If M is a maximal ideal of R and A is a divisorial ideal of RM , then A∩R is divisorial

in R.

(3) For each maximal ideal M , if M is not divisorial, then MRM is not divisorial. Thus

the non-divisorial maximal ideals are those that are idempotent.

(4) For each nonzero ideal I of R and each maximal ideal M of R, we have (IRM)v =

IvRM .

(5) If I is an ideal contained in no nondivisorial maximal ideals, then I is divisorial.

(6) For each fractional ideal F , F = F vM1M2 · · ·Mn where the Mi are the maximal ideals

that contain some particular fixed nonzero principal multiple xF of F with xFRMi

not divisorial. Moreover, the factorization is unique.

(7) If R has finite character, and I is an ideal for which IRM is divisorial only in the

trivial case IRM = RM , then Iv is invertible.

Proof. (1) Let I be a nonzero ideal of R, and let M be a maximal ideal. Suppose that I is

divisorial. If M is nondivisorial, then IRM is divisorial by Definition 1.2. If M is divisorial,
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then it is invertible; hence MRM is principal, and every ideal of RM is divisorial. For the

converse, see Remark 1.3.

(2) Let M be maximal, and let A be a divisorial ideal of RM . Set I = A ∩ R, and write

I = IvM1 · · ·Mn as in Definition 1.2. Since IRM = A is divisorial, M /∈ {M1, · · ·Mn}. We

then have IRM = IvM1 · · ·MnRM = IvRM . Hence Iv ⊆ IvRM ∩ R = IRM ∩ R = I, as

desired.

(3) From (1) if M is a nondivisorial maximal ideal, then MRM is also nondivisorial and

hence idempotent. Since idempotence is a local property, M is itself idempotent.

(4) Let the factorization of I be I = IvM1 · · ·Mn, and let M be a maximal ideal of R. If

M /∈ {Mi}, then (IRM)v = (IvM1 · · ·MnRM)v = (IvRM)v = IvRM , with the last equality

following from (1). If M = Mi for some i, then (IRM)v = (IvM1 · · ·MnRM)v = (IvMRM )v =

(IvRM)v = IvRM , with the penultimate equality following from (2) and the last equality

following from (1).

(5) This is immediate from the definition.

(6) Let F be a fractional ideal and let x ∈ R \ {0} be such that xF ⊆ R. Then we

can factor xF uniquely as (xF )vM1M2 · · ·Mn where the Mi are the nondivisorial maximal

ideals that contain xF where xFRMi
is not divisorial. Of course, (xF )v = xF v, so we can

cancel the x to obtain F = F vM1M2 · · ·Mn. For any nonzero y ∈ (R : F ), we obtain a

(possibly different) factorization F = F vN1N2 · · ·Nk where the Nj are such that yFRNj
is

not divisorial. If these two factorizations were actually different, we would have two distinct

factorizations of xyF , one as xyF vM1M2 · · ·Mn and the other as xyF vN1N2 · · ·Nk. Thus

we must have a unique factorization for F .

(7) Let I be as indicated. Then I = IvM1 · · ·Mn, where the Mi are precisely the maximal

ideals which contain I. For each i, IRM not divisorial yields an element xi ∈ Iv with

IRMi
= xiMiRMi

and IvRMi
= xiRMi

. Let A = (x1, x2, . . . , xn). At most finitely many

maximal ideals contain A, say N1, N2, . . . , Nk. For those Nj that are not among the Mis,

we may choose an element yj ∈ I \ Nj . Let B be the ideal generated by A and the yj.

Obviously, B ⊆ Iv. Now consider the ideal J = BM1M2 · · ·Mn and let M be a maximal

ideal of R. If M = Mi for some i, then JRMi
= BMiRMi

. Thus JRMi
= IvMiRMi

= IRMi

since xiRMi
= IvRMi

and xi ∈ B ⊆ Iv. If M is a maximal ideal not among the Mi, then

B * M , and we have JRM = BRM = RM = IRM since no other maximal ideals contain

B. Hence J = I. As B is divisorial and factorizations are unique, we must have B = Iv.

Therefore, Iv is invertible. �

We observe that, in view of Theorem 1.12 below, part (5) of Proposition 1.8 is [11, Propo-

sition 6.5 (a)] and part (7) may be viewed as a generalization of [11, Proposition 6.5 (b)].
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We need a couple of general results before proving that statement (1) in Theorem 1.8 is

equivalent to the h-local property. Our next lemma provides a way to prove statement (2)

of Theorem 1.8 using only the assumption that each locally divisorial of the Prüfer domain

R is divisorial.

Lemma 1.9. Let I be a nonzero ideal of a Prüfer domain R and let M a maximal ideal

that contains I. For J = IRM

⋂

R, JRN is a divisorial ideal of RN for each maximal ideal

N 6= M .

Proof. Let N be a maximal ideal of R with N 6= M . Then JRN = (IRM

⋂

R)RN =

IRMRN

⋂

RN = IRP

⋂

RN where P is the largest prime contained in M ∩ N . If JRN

is not divisorial, then JRN = xNRN for some x ∈ R. This yields JRP = xRP , and we

then have x ∈ JRP

⋂

RN = IRP

⋂

RN = JRN = xNRN , a contradiction. Hence JRN is

divisorial. �

Theorem 1.10. Let R be a Prüfer domain and let P be a nonzero nonmaximal prime that

is the radical of a finitely generated ideal. If I is a finitely generated ideal whose radical is P

and M is a maximal ideal that contains P , then the ideal J = IRM

⋂

R is divisorial if and

only if M is the only maximal ideal that contains P .

Proof. Let J = IRM

⋂

R where M is a maximal ideal that contains P . It is clear that if M

is the only maximal ideal that contains P , then Jv = J = I.

For the remainder of the proof, we assume that M is not the only maximal ideal that

contains P . Denote by P ′ the largest prime ideal contained in all the maximal ideals which

contain I. Then P ′ is properly contained in M . We shall show that J−1 = P ′I−1.

We check the inclusion P ′I−1 ⊆ J−1 locally. At M we have I−1P ′JRM = I−1P ′IRM ⊆
RM . For N ∈ Max(R, I) \ {M}, we have I−1P ′JRN = I−1P ′(IRP ′ ∩ RN) ⊆ I−1P ′IRP ′ =

I−1IP ′RN ⊆ RN . Finally, for L /∈ Max(R, I), we have I−1P ′JRL = I−1RL = (IRL)−1 = RL.

Thus P ′I−1 ⊆ J−1.

For the reverse inclusion, let t ∈ J−1. Choose any N ∈ Max(R, I) \ {M}, and then choose

a ∈ NRN \ P ′RN . Then a−1I ⊆ IRP ′ ∩ RN = JRN . Hence ta−1I ⊆ tJRN ⊆ RN , yielding

tI ⊆ aRN . It follows that tI ⊆ P ′RN ∩R = P ′. Thus J−1I ⊆ P ′, and we have J−1 ⊆ I−1P ′,

as desired.

Finally, we show that J is not divisorial. Suppose, on the contrary, that J = Jv = IP ′−1.

Then I−1J = P ′−1. Now choose m ∈ M \ P ′, and then choose u ∈ (I, m)−1 \ RM . Then

(R :R u) * P ′ and (R :R u) * L for each maximal ideal L with L /∈ Max(R, I). It follows

that u ∈ RP ′ ∩ (
⋂{RL | L /∈ Max(R, P ′)}) = P ′−1 [6, Theorem 3.1.2 and Corollary 3.1.8].

Hence u ∈ P ′−1RM = I−1JRM = RM , a contradiction. �

Lemma 1.11. Let R be a Prüfer domain. If R has the property that an ideal I of R is

divisorial whenever IRM is divisorial for each maximal ideal M , then R has the radical trace

property.
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Proof. Assume that R has the property that each locally divisorial ideal is divisorial. By

[14, Theorem 23], to show that R has the radical trace property, it suffices to show if Q is

a P -primary ideal such that Q−1 is a ring, then Q = P . To this end, let Q be a proper P -

primary ideal. Since R is integrally closed, Q−1 is a ring if and only if Q−1 = P−1 = (P : P )

[6, Proposition 3.1.16].

If P is not maximal, then QRM is divisorial for each maximal ideal M (see the argument

that JRN is divisorial in Lemma 1.9 above). Hence Q is divisorial and we have P−1 ( Q−1.

Thus Q−1 is not a ring.

If P is maximal and Q is divisorial, then we again have that Q−1 is not a ring. The only

other case is when QRP = xPRP with P idempotent and x some nonzero element of P .

Then Q′ = xRP

⋂

R is a proper P -primary ideal which is divisorial since it is divisorial in

each RN . Hence we have P−1 ( Q′−1 ⊆ Q−1, and again Q−1 is not a ring. �

Theorem 1.12. The following are equivalent for a Prüfer domain R.

(1) R is h-local.

(2) R has the strong factorization property.

(3) For each nonzero ideal I of R, I is divisorial if and only if IRM is divisorial in RM

for each maximal ideal M of R.

(4) For each nonzero ideal I of R, if IRM is divisorial for each maximal ideal M , then

I is divisorial.

Proof. Observe that (1) implies (2) by Theorem 1.1 (2), (2) implies (3) by Theorem 1.8 (1),

and (3) implies (4) is trivial. Assume that R is a Prüfer domain with the property that each

locally divisorial ideal is divisorial. Then it has the radical trace property by Lemma 1.11.

Now let P be a nonzero nonmaximal branched prime. Since R has the radical trace

property, P is the radical of a finitely generated ideal I by [14, Theorem 23]. If M is

a maximal ideal that contains P , then J = IRM

⋂

R is locally divisorial by Lemma 1.9.

Hence by Theorem 1.10, M is the unique maximal ideal that contains P .

Since each unbranched prime must contain a nonzero branched prime, each nonzero prime

is contained in a unique maximal ideal. Thus R is h-local by [16, Proposition 3.4]. �

Our next result adds another equivalence to the h-local property for Prüfer domains.

Theorem 1.13. Let R be a Prüfer domain with finite character, and suppose that R has the

weak factorization property. Then R is h-local.

Proof. We shall make frequent use of the fact, which follows easily from [9, Theorem 1],

that a Prüfer domain with finite character satisfies both the #- and ##-properties. To

show that R is h-local, it suffices to show that each nonzero prime ideal is contained in a

unique maximal ideal. Suppose to the contrary that R has a prime ideal P contained in

more than one maximal ideal. Since R has finite character, P is contained in only finitely
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many maximal ideals, say M1, . . . , Mn, n > 1. Let {Pα} denote the set of prime ideals of R

which contain P and are contained in M1 ∩ (
⋃n

j=2 Mj). This is a chain of prime ideals, and

so P1 =
⋃

α Pα is a prime ideal; moreover, P1 ⊆ M1, and, by prime avoidance, P1 ⊆ Mi for

some i > 1. One sees easily that P1 is maximal with respect to being contained in M1 and

at least one other maximal ideal. Hence we may as well assume that P has this property.

Denote by {Nα} the set of maximal ideals of R which do not contain P . Set T =
⋂

j>1 RMj
∩ (

⋂

α RNα
). Since R has finite character, we may find a finitely generated ideal

I with the property that M1 is the only maximal ideal containing I. For x ∈ I−1, we have

I ⊆ (R :R x), so that (R :R x) is contained in M1 but no other maximal ideal of R. It follows

that x ∈ T . Hence I−1 ⊆ T , and since I is invertible, I ⊇ T−1. In particular, M1 ⊇ T−1.

By [6, Corollary 3.1.8 and Theorem 3.1.2], P−1 = RP ∩ (
⋂

α RNα
). In particular P−1 ⊇ T .

By Proposition 1.7, P is divisorial. Hence P ⊆ T−1. We claim, in fact, that P = T−1.

Suppose not. Then shrink M1 to a prime ideal Q minimal over T−1. By the maximality

property of P and the fact that R has the ##-property, we may choose a finitely generated

ideal J contained in Q such that M1 is the only maximal ideal of R containing J . As in the

preceding paragraph, we have T−1 ⊆ J . In fact, T−1 ⊆ Jn for each positive integer n. Hence

in RM1
, we have that T−1RM1

is contained in the prime ideal
⋂

n≥1 JnRM1
of RM1

. This

prime ideal is Q0RM1
for some prime ideal Q0 of R, and we must have P ⊆ T−1 ⊆ Q0 $ Q,

a contradiction. Thus P = T−1, as claimed.

We next claim that T is a fractional ideal of R which is not divisorial. Otherwise, the fact

that P = T−1 implies that P−1 = T . However, observe that T ⊆ RM2
, and so it suffices

to show that P−1 * RM2
. To see this, observe by the #-property, RM1

∩ (
⋂

α RNα
) * RM2

.

Since P−1 = RP ∩ (
⋂

α RNα
) ⊇ RM1

∩ (
⋂

α RNα
), we also have P−1 * RM2

. Thus T is not

divisorial. Note that P−1 = T v 6= T .

Now consider a possible factorization of T : T = T v · Π, where Π is a product of maximal

ideals. Then T = P−1Π. Since P−1 ⊆ RNα
, we have NαP−1 6= P−1 (note that P−1 is a ring).

If Nα appears as part of Π, then 1 ∈ T = P−1Π ⊆ P−1Nα, a contradiction. Hence no Nα

appears in Π. On the other hand, we claim that MiP
−1 = P−1 for each i. Otherwise, P−1

contains a prime ideal L contracting to Mi in R, from which it follows that the valuation

domains (P−1)L and RMi
must coincide. However, the argument in the preceding paragraph

showing that P−1 * RM2
can easily be adapted to show that P−1 * RMi

. Hence the claim

is true, and we have T = P−1Π = P−1, a contradiction. This completes the proof. �

The situation with respect to the weak factorization property is dramatically different.

Suppose that R is an almost Dedekind domain with exactly one nondivisorial maximal ideal–

see [8, Example 42.6]. Then R is certainly not h-local, but Theorem 1.15 below implies that

R has the weak factorization property.

Lemma 1.14. Let R be an almost Dedekind domain, let P be an invertible maximal ideal

of R, and let I be a nonzero ideal of R. Then IvRP = IRP .
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Proof. Since P is invertible, so is P i for each i = 1, 2, . . . . Hence I ⊆ P i if and only if

Iv ⊆ P i. Since RP is a rank one discrete valuation domain, we have IRP = P nRP for some

n ≥ 0. Since P n is primary, we then have I ⊆ IRP ∩ R ⊆ P nRP ∩ R = P n. Note that

I * P n+1. It follows that Iv ⊆ P n and hence that IvRP = P nRP = IRP . �

Theorem 1.15. Let R be an almost Dedekind domain, and let I be a nonzero ideal of R

which is contained in only finitely many nondivisorial maximal ideals of R. Then I = Iv ·Π,

where Π is a product of maximal ideals. Thus, if R is an almost Dedekind domain in which

each nonzero ideal is contained in only finitely many nondivisorial maximal ideals, then R

has the weak factorization property.

Proof. Denote by M1, . . . , Mn the non-invertible maximal ideals which contain I. For M ∈
{Mi}, we have IRM = M rRM and IvRM = MsRM for integers r, s with 0 ≤ s ≤ r. Hence

IRM = IvM r−sRM . Therefore, for each i = 1, . . . , n, we have a nonnegative integer ti with

IRMi
= IvM tiRMi

. We claim that I = Iv · ∏n

i=1 M ti
i . We verify this locally. Let P be a

maximal ideal of R. If P = Mj for some j, then

IRP = IRMj
= IvM

tj
j RMj

= Iv · (
n

∏

i=1

M ti
i RMj

) = (Iv ·
n

∏

i=1

M ti
i )RP .

If P /∈ {Mi} and P is invertible, then, applying Lemma 1.14, we have

IRP = IvRP = (Iv ·
n

∏

i=1

M ti
i )RP .

Finally, if P /∈ {Mi} and P is non-invertible, then I * P , so that

IRP = RP = IvRP = (Iv ·
n

∏

i=1

M ti
i )RP .

�

Thus any almost Dedekind domain with only finitely many nondivisorial maximal ideals

has the weak factorization property by Theorem 1.15. In fact, it is possible to give examples

of almost Dedekind domains which have infinitely many nondivisorial maximal ideals but

in which each nonzero ideal is nonetheless contained in only finitely many nondivisorial

maximal ideals–see Example 3.2 below.

The next result shows that the integers ti in the proof of Theorem 1.15 cannot be “con-

trolled”.

Proposition 1.16. Let R be an almost Dedekind domain, let M1 . . . , Mn be distinct non-

invertible maximal ideals of R, and let r1, . . . , rn, s1, . . . , sn be integers with 0 ≤ si ≤ ri. Then

there is a nonzero ideal I of R such that I = Iv ·∏n

i=1 M ri−si

i , and for each j, IRMj
= M

rj

j RMj

and IvRMj
= M

sj

j RMj
.
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Proof. Note that Mi 6= M2
i for each i (since this is true locally). Hence by “extended”

prime avoidance [12, Theorem 81], we may pick ai ∈ Mi \ (
⋃

j 6=i Mj ∪ M2
i ). Note that

we then have MiRMi
= aiRMi

. Set I =
∏n

i=1 asi

i M ri−si

i . Since the Mi are non-divisorial,

we have Iv =
∏n

i=1 asi

i R and hence I = Iv · ∏n

i=1 M ri−si

i . Moreover, for each j, IRMj
=

a
sj

j M
rj−sj

j RMj
= M

rj

j RMj
, and IvRMj

= a
sj

j RMj
= M

sj

j RMj
. �

2. Effects of the strong factorization property

Let D be an integral domain with quotient field K. Let F (D) denote the set of all

nonzero D–submodules of K, and let F (D) be the set of all nonzero fractional ideals of

D, i.e., E ∈ F (D) if E ∈ F (D) and there exists a nonzero d ∈ D with dE ⊆ D. Let

f (D) be the set of all nonzero finitely generated D–submodules of K. Then, obviously

f (D) ⊆ F (D) ⊆ F (D). A semistar operation on D is a map ∗ : F (D) → F (D), such that,

for each nonzero element x ∈ K and for each E, F ∈ F (D), we have:

(1) (xE) = (xE)∗,

(2) E∗ ⊆ F ∗ whenever E ⊆ F , and

(3) E ⊆ E∗ and (E∗)∗ = E∗.

The semistar operation ∗ on D is called a (semi)star operation on D if D∗ = D. (The

use of the term “(semi)star” is due to the fact that, when D = D∗, ∗ is not really a star

operation since it remains defined on the D-submodules of K and not only on the fractional

ideals.)

A localizing system on D is a set F of ideals of D such that:

(1) if I ∈ F and J is an ideal of D with I ⊆ J , then J ∈ F , and

(2) if I ∈ F and J is an ideal of D with (J :D a) ∈ F for each a ∈ I, then J ∈ F .

It is easily seen that a localizing system F is a multiplicative system of ideals and that

DF := {x ∈ K | xI ⊆ D for some I ∈ F} is an overring of D. For background on localizing

systems, see [4], and for background on semistar operations, see [15] and [4].

Now set
F v := {I | I ideal of D , Iv = D} ,
Πv := {Q ∈ Spec(D) | Qv 6= D and Q 6= 0} ,

F(Πv) := {I | I ideal of D , I 6⊆ Q , for each Q ∈ Πv} .

Lemma 2.1. (1) F v is a localizing system of D (called the localizing system associated

to the v–operation).

(2) The operation v := ∗Fv defined, for each E ∈ F (D), as follows:

Ev :=
⋃

{(E : I) | I ∈ F v} ,

is a (semi)star operation defined on D which is stable (i.e. (E ∩ F )v = Ev ∩ F v, for

all E, F ∈ F (D)), and it is the largest stable (semi)star operation on D.
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(3) The operation vsp := ∗Πv defined, for each E ∈ F (D), as follows:

Evsp :=
⋂

{EDQ | Q ∈ Πv} ,

is a semistar operation defined on D (called the spectral semistar operation associated

to the v–operation) and v ≤ vsp.

(4)

F vsp := {I | I ideal of D , Ivsp = D} = F(Πv) .

(5) The following are equivalent:

(i) vsp is a (semi)star operation on D ;

(ii) vsp ≤ v ;

(iii) D =
⋂{DQ | Q ∈ Πv} .

Proof. Statements (1), (2), and (3) follow from [4, Proposition 2.8, Theorem 2.10 (B), Propo-

sition 3.7 (1), and Proposition 4.11 (2)]. Statements (4) and (5) are easy consequences of

the definitions. �

Remark 2.2. Note, with respect to Lemma 2.1 (2), that v ≤ v and so Dv = Dv = D, hence

v is a (semi)star operation on D. As a matter of fact, if x ∈ Ev =
⋃{(E : I) | I ∈ F v}

then, for some I ∈ F v, we have that I ⊆ (E :D xD), thus (E :D xD) ∈ F v. Therefore,

D = (E :D xD)v ⊆ (Ev :D xD), hence necessarily 1 ∈ (Ev :D xD), thus x ∈ Ev.

Proposition 2.3. Assume that D is an h-local Prüfer domain. Then:

(1) v = v .

(2) The following statements are equivalent:

(i) The v–operation is quasi–spectral (i.e. for each nonzero ideal I of D, with Iv 6=
D, there exists a prime ideal Q of D such that I ⊆ Q and Q = Qv);

(ii) vsp ≤ v ;

(iii) D =
⋂{DQ | Q ∈ Spec(D) , Q = Qv} ;

(iv) v = vsp = v ;

(v) F v = F(Πv) .

Proof. (1) It is easy to see that Mv = R for each nondivisorial maximal ideal M . Hence if

I is a nonzero ideal of R, the factorization I = IvM1 · · ·Mn yields Iv = (IvM1 · · ·Mn)v =

(Iv)v = Iv.

(2) These equivalences follow from (1), Theorem 1.8, Lemma 2.1 (5), and [4, Proposition

4.8 and Theorem 4.12 (2)]. �

Remark 2.4. If V is a valuation domain whose maximal ideal N is idempotent but branched,

then V does not satisfy any of the (equivalent) conditions in Proposition 2.3 (2). On the

other hand, if D is an h-local Prüfer domain with non-idempotent maximal ideals, then each

nonzero ideal of D is divisorial [10, Theorem 5.1]; in this case, the (equivalent) conditions in

Proposition 2.3 (2) hold trivially.
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We next study how factorization of an ideal I affects the factorization of its radical and

how factorization of ideals I and J affect the factorization of IJ , I ∩ J , and I + J .

Proposition 2.5. Let R be an h-local Prüfer domain, and let I, J be nonzero ideals of R.

Suppose that I, J have the following factorizations as in Definition 1.2:

I = IvM1 · · ·MkMk+1 · · ·MmH1 · · ·Hr and

J = JvN1 · · ·NlNl+1 · · ·NnH1 · · ·Hr,

where the Hi are the nondivisorial maximal ideals which contain I+J and for which both IRHi

and JRHi
are nondivisorial, JRMi

is principal (including the possibility that JRMi
= RMi

)

for i = 1, . . . , k, and divisorial but not principal for i = k + 1, . . . , m, and IRNi
is principal

for i = 1, . . . , l and divisorial but not principal for i = l + 1, . . . , n. Further assume that

P1, . . . , Pu are the nondivisorial maximal ideals for which IRPi
and JRPi

are divisorial but

IJRPi
is not divisorial for each i. Then the canonical factorizations of IJ and IvJv are as

follows:

IJ = (IJ)vM1 · · ·MkN1 · · ·NlH1 · · ·HrP1 · · ·Pu(1)

IvJv = (IJ)vP1 · · ·Pu.(2)

Proof. (1) For each i = 1, . . . , k, we have elements xi, yi ∈ R with IRMi
= xiMiRMi

and

JRMi
= yiRMi

, so that IJRMi
= xiyiMiRMi

. Thus IJRMi
is not divisorial, and each of

these Mi must appear in the factorization of IJ . Similarly, N1, . . . , Nl must appear. For

i = k + 1, . . . , m, there is an element zi ∈ R with IJRMi
= ziMiJRMi

= ziJRMi
; the

second equality follows from the fact that in a valuation domain with maximal ideal Q a

nonprincipal ideal K satisfies K = KQ (see Remark 1.4). In this case, IJRMi
is divisorial,

and so Mi does not appear in the factorization of IJ . Similarly, Nl+1, . . . , Nn do not appear.

For H ∈ {Hi}r
i=1, since both IRH and JRH are nondivisorial, there are elements x, y with

IJRH = xHyHRH = xyHRH (note that H is idempotent by Theorem 1.8 (2)); this is not

divisorial, so each Hi must appear. Finally, it is clear that the Pi must appear and that no

other maximal ideals can appear.

(2) First, observe that if Q is a nondivisorial maximal ideal for which IRQ, JRQ, and

IJRQ are all divisorial, then by [2, Lemma 2.3], IvJvRQ = (IRQ)v(JRQ)v = IJRQ, which

is divisorial. Hence no such Q appears in the factorization of IvJv. Let M ∈ {Mi}m
i=1. Then

there is an element x ∈ R with IvJvRM = IvJRM = J(IRM)v = J(xMRM )v = JxRM ,

which is divisorial. Thus no Mi appears; similarly, no Ni appears. For H ∈ {Hi}r
i=1, we have

an element y ∈ R with IvJvRH = Iv(JRH)v = Iv(yMRH)v = IvyRH, which is divisorial.

Thus no Hi appears. �
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Proposition 2.6. Let R be an h-local Prüfer domain, and let I, J be nonzero ideals of R.

Suppose that I, J have the following factorizations as in Definition 1.2:

I = IvM1 · · ·MkMk+1 · · ·MmH1 · · ·Hr and

J = JvN1 · · ·NlNl+1 · · ·NnH1 · · ·Hr,

where the Hi are the nondivisorial maximal ideals which contain I + J and for which both

IRHi
and JRHi

are nondivisorial, IRMi
⊆ JRMi

for i = 1, . . . , k, IRMi
* JRMi

for i =

k + 1, . . . , m, JRNi
⊆ IRNi

for i = 1, . . . , l, and JRNi
* IRNi

for i = l + 1, . . . , n. Then

I ∩ J has the following factorization

I ∩ J = (I ∩ J)vM1 · · ·MkN1 · · ·NlH1 · · ·Hr.

Proof. For i = 1, . . . , k, (I ∩ J)RMi
= IRMi

, and so Mi appears in the factorization of I ∩ J .

Moreover, for j > k, (I ∩J)RMj
= JRMj

; since JRMj
is divisorial, Mj does not appear. The

Ni are handled similarly. Finally, it is straightforward to show that the Hi appear and that

no other maximal ideals can appear. �

Proposition 2.7. Let R be an h-local Prüfer domain, and let I, J be nonzero ideals of R.

Then:

(1) If I and J are divisorial, then I + J is divisorial.

(2) In general, (I + J)v = Iv + Jv.

(3) Let I and J have the following factorizations as in Definition 1.2:

I = IvM1 · · ·MkMk+1 · · ·MmH1 · · ·Hr

J = JvN1 · · ·NlNl+1 · · ·NnH1 · · ·Hr,

where the Hi are the nondivisorial maximal ideals which contain I +J and for which

both IRHi
and JRHi

are nondivisorial, IRMi
⊆ JRMi

for i = 1, . . . , k, IRMi
* JRMi

for i = k + 1, . . . , m, JRNi
⊆ IRNi

for i = 1, . . . , l, and JRNi
* IRNi

for i =

l + 1, . . . , n. Then the factorization of I + J is

I + J = (I + J)vMk+1 · · ·MmNl+1 · · ·NnH1 · · ·Hr.

Proof. (1) Let M be a maximal ideal of R. By Theorem 1.8, both IRM and JRM are

divisorial. Since (I +J)RM is equal to one of these, it is divisorial. Hence I +J is divisorial,

again by Theorem 1.8.

(2) Using (1), we have (I + J)v = (Iv + Jv)v = Iv + Jv.

(3) Using the same reasoning as in the proof of Proposition 2.5 (1), we see easily that

each Hi must appear in the factorization of I + J . Similarly, for M ∈ {Mi}m
i=k+1, we have

(I + J)RM = IRM , so these Mi must appear. Each Ni, i = l + 1, . . . , n, must also appear.

The same reasoning shows that none of the other Mi or Nj can appear, and it is clear that

no other maximal ideals can appear. �
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Proposition 2.8. Let R be an h-local Prüfer domain, and let I be an ideal of R with

factorization (as in Definition 1.2)

I = IvM1 · · ·MlMl+1 · · ·MkMk+1 · · ·Mn,

where M1, . . . , Mk are minimal over I, Iv ⊆ Mi for i = 1, . . . , l, Iv * Mi for i = l +1, . . . , k,

and Mi is not minimal over I for i = k + 1, . . . , n. Let {N1, . . . , Nr} denote the (possibly

empty) set of nondivisorial maximal ideals that are minimal over I and are such that IRNi

is divisorial. Then:

(1) The factorization of rad I is rad I = (rad I)vM1 · · ·MkN1 · · ·Nr.

(2) (rad I)v = (rad Iv)v.

(3) The factorization of rad Iv is rad Iv = (rad I)vM1 · · ·MlN1 · · ·Nr.

Proof. (1) For i = 1, . . . , k, (rad I)RMi
= MiRMi

, so Mi must appear in the factorization of

rad I. Also, since (rad I)RNi
= NiRNi

, each Ni must appear. For any other nondivisorial

maximal ideal P containing I, P is not minimal over I, whence (rad I)RP is a nonmaximal,

and hence divisorial, prime ideal of RP .

(3) We have (rad I)v = (rad(Iv
∏n

i=1 Mi))
v = (rad Iv ∩ ∏n

i=1 Mi)
v = (rad Iv)v, with the

last equality following from the fact that the v-operation is stable in the presence of strong

factorization (Proposition 2.3).

(4) For Q ∈ {Mi}l
i=1, it is clear that Q is minimal over Iv. For Q ∈ {Ni}r

i=1, use the

fact that R is h-local to obtain IRQ = IvRQ. Since I ⊆ Q, we must have Iv ⊆ Q, and,

again, Q is minimal over Iv. In either case, we therefore have (rad Iv)RQ = QRQ, which is

nondivisorial, whence Q must appear in the factorization of rad Iv. It is clear that no other

maximal ideals can appear. �

Proposition 2.9. Let R be an h-local Prüfer domain. Let I be a nonzero ideal of R, and

suppose that the factorization of I (as in Definition 1.2) is I = IvM1 · · ·Mn. Let P1, . . . , Pu

be the nondivisorial maximal ideals containing II−1 for which IRPi
is divisorial but II−1RPi

is nondivisorial. Then the factorization of II−1 is II−1 = (II−1)vM1 · · ·MnP1 · · ·Pu.

Proof. For M ∈ {Mi}n
i=1, there is an element x ∈ R with

II−1RM = xMI−1RM = xM(IRM )−1 = xM(xMRM )−1 = MRM ,

where the second equality follows from the fact that R is h-local [2, Lemma 2.3]. Hence each

Mi must appear. It is clear that each Pi must appear and that no other maximal ideals can

appear. �

We observe that the Pi in Propositions 2.5 and 2.9 can actually occur–see Example 3.4

below.

We end this section with a result which contains more information related to Proposi-

tions 2.6 and 2.9
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Proposition 2.10. Let R be an h-local Prüfer domain. If I is a nondivisorial ideal of R

with factorization I = IvM1 · · ·Mn (as in Definition 1.2), then

(1) for each i = 1, . . . , n, IvI−1 * Mi, and IvRMi
is principal;

(2) II−1 = IvI−1M1 · · ·Mn, and for each i = 1, . . . , n Mi is minimal over II−1 and

II−1RMi
= MiRMi

;

(3) there is a finitely generated ideal J ⊆ Iv with I + J = Iv, and, for any such J ,

(I ∩ J)v = J ; and

(4) for each nonzero ideal B ⊆ Iv, (I ∩ B)v = Bv.

Proof. Let M ∈ {Mi}. Write IvMRM = IRM = xMRM , where (we may assume) x ∈ Iv.

Then IvRM = (IRM)v = xRM , and by [16, Theorem 3.10] I−1RM = (IRM)−1 = x−1RM . It

follows that IvI−1 * M . In particular, IvRM is invertible, hence principal, in RM , proving

(1).

For (2), from what was just proved, we have II−1 = IvI−1M1 · · ·Mn with IvI−1 and

M1 · · ·Mn comaximal. Thus II−1RMi
= MiRMi

, as desired.

Now let J = (x1, . . . , xn) ⊆ Iv be such that xiRMi
= IvRMi

for each i. Then for M ∈ {Mi},
we have IvRM = JRM = (I + J)RM . On the other hand, if N is a maximal ideal with

N /∈ {Mi}, then IRN = (IRN)v = IvRN , from which it follows easily that (I+J)RN = IvRN .

Therefore, I +J = Iv. Using Proposition 2.3 (1), we also obtain (I∩J)v = Iv∩Jv = Jv = J ,

proving (3). Statement (4) also follows from Proposition 2.3 (1). �

3. Examples

We begin with a lemma which is probably known but for which we have no convenient

reference.

Lemma 3.1. For any nonempty set of indeterminates Z = {Zα} and any field F , the ring

D =
⋂

F [Z](Zα) is a PID with Max(D) = {ZαD |Zα ∈ Z}.

Proof. Let f ∈ F [Z]. If no Zα divides f in F [Z], then f−1 is in each localization F [Z](Zα).

Thus a reduced rational expression g/f from the quotient field of F [Z] is in D if and only if

no Zα divides f . Thus each element of D has the reduced form g/f where no Zα divides f .

Clearly g/f is a unit of D if and only if no Zα divides g. It follows that each nonzero prime

ideal of D is principal of the form ZαD for some (unique) Zα. Hence D is a PID. �

Example 3.2. An example of an almost Dedekind domain D with infinitely many nondivi-

sorial maximal ideals such that D has the weak factorization property.

Notation:

(1) For each n ≥ 1, let Xn =
∏

i>0 Xn,i where {Xn,i | 1 ≤ i, 1 ≤ n} is a countably infinite

set of algebraically independent indeterminates.
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(2) For each n and each k ≥ 0, let Xn,k =
∏

i>k Xn,i (so Xn,0 = Xn).

(3) Let E0 = K[{Xn | 1 ≤ n}] and for each n, let Qn,0 = (Xn)E0.

(4) For each k ≥ 1, let Ek = K[{Xn,j | 1 ≤ j ≤ k, 1 ≤ n}, {Xn,k | 1 ≤ n}], Pn,j = (Xn,j)Ek

for j ≤ k and Qn,k = (Xn,k)Ek.

(5) Let D0 =
⋂

(E0)Qn,0
and for k ≥ 1, let Dk =

(
⋂

(Ek)Qn,k

)

∩
(
⋂

(Ek)Pn,j

)

.

(6) Finally let D =
⋃

Dk.

Then

(1) D is an almost Dedekind domain which is also a Bezout domain.

(2) Each nonzero ideal is contained in at most finitely many nondivisorial maximal ideals.

(3) D has the weak factorization property.

Proof. Each Dk is a PID. Also it is clear that each maximal ideal M of Dk contracts to a

maximal ideal Nj of Dj for each j < k and Nj(Dk)M = M(Dk)M . Moreover, each maximal

ideal of Dk survives in Dm for each m > k. Thus by [13, Theorem 2.10], D is an almost

Dedekind domain that is also a Bezout domain – given a finitely generated ideal I of D,

I = IkD where Ik = I ∩ Dk for some k.

By the proof of [13, Theorem 2.10], each maximal ideal M of D is the union of its con-

tractions to the Dk’s. As in the proof of [13, Example 3.2], D has two distinct types of

maximal ideals. For each Xn,k, the ideal Mn,k = Xn,kD is a principal maximal ideal of

D. The other maximal ideals are those of the form Mn =
⋃

j≥0 Qn,j . For each n, we let

Fn = {Mn, Mn,1, Mn,2, . . . } and call this the family of maximal ideals centered on Xn. These

are the only maximal ideals of D that contain Xn (and each does). Since D is an almost

Dedekind domain, some member of Fn is not finitely generated. The only one that is not

principal is Mn. Thus Mn is not divisorial.

For a nonzero proper ideal I, recall that Max(R, I) is the set of maximal ideals of D that

contain I; let us refer to this as the support of I. We will show that Max(R, I) is contained in

a finite union of families Fn. To this end, let f be a nonzero nonunit of D and let Dk be the

smallest member of the chain that contains f . By the argument above, f = ug/v with u and

v units of Dk and g a finite product of monomials of the form Xn,k and Xm,i with i ≤ k. Since

u and v are units of D, the monomials in g completely determine the families that contain

the support of f . Thus Max(R, (f)) is contained in the union of finitely many families Fn.

Hence the same is true for the support of each nonzero proper ideal. Moreover, since each

family contains exactly one nondivisorial ideal, each nonzero proper ideal is contained in at

most finitely many nondivisorial maximal ideals. Therefore, D has the weak factorization

property by Therorem 1.15. �
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Example 3.3. An example of a Prüfer domain R with the weak factorization property such

that R contains ideals I, J with I and J divisorial but I + J not divisorial.

We recall the construction of the domain in [13, Example 3.2].

Let X =
∏

i>0 Xi, where the Xi are indeterminates. Let K be a field, and for each n, let

Xn =
∏

k≥n Xk and En = K[X1, . . . , Xn−1,Xn] (E0 = K[X ]). Set Pn,k = XkEn, Pn = XnEn,

and Dn =
(
⋂

k<n(En)Pn,k

)

∩ (En)Pn
. Let Qn,k = Pn,kDn and Qn = PnDn. Then each Dn is

a semilocal PID, and D =
⋃

Dn is an almost Dedekind domain with a unique noninvertible

maximal ideal. We also have the following.

(1) D has only countably many maximal ideals M, M1, M2, . . ., where M =
⋃

Qn, and

Mn = XnD. Also D has nonzero Jacobson radical, since X is in each maximal ideal.

The maximal ideal M is nondivisorial, while the Mn’s are all principal.

(2) The ideals I =
⋂

k≥1 M2k and J =
⋂

k≥1 M2k−1 are (nonzero) divisorial ideals, but

I + J is nondivisorial.

(3) D has the weak factorization property.

Proof. Statement (1) is from [13, Example 3.2].

Since D has nonzero Jacobson radical, I and J are nonzero; they are divisorial since each

Mn is divisorial. We have I +J ⊆ M since each element of D which is contained in infinitely

many Mn is also in M (see either Lemma 2.2 or Theorem 2.5 of [13]). In fact, we claim that

I + J = M . Observe that XRM = MRM so that (I + J)RM = MRM . Moreover, for each

positive even integer k the element X2X4 · · ·XkXk+1 is in I but is a unit in DMk−1
; hence

(I +J)DMk−1
= IDMk−1

= DMk−1
= MDMk−1

. Applying the same argument to J , we obtain

(I + J)DMk
= MDMk

. It follows that I + J = M , so I + J is not divisorial. �

Example 3.4. An example of a valuation containing V containing a divisorial I for which

II−1 is not divisorial (thus the product of divisorial ideals need not be divisorial).

Let (V, M) be an valuation domain with value group the additive rational numbers. Note

that M is not principal and therefore not divisorial. Let I denote the ideal consisting of those

elements of V having value greater than
√

2. For each positive rational number α, let xα

denote an element of V with value α. Then I =
⋂

α<
√

2(xα). Hence I is divisorial. However,

I is not (principal hence not) invertible, whence by [6, Proposition 4.2.1] II−1 must be a

prime ideal of V . Since V is one-dimensional, we must therefore have II−1 = M , which is

not divisorial.

Example 3.5. An example of a one-dimensional Bezout domain which does not have the

weak factorization property.

Let X =
∏

k≥0 X2k

k where {Xk} is a countably infinite set of indeterminates. Let K be a

field, and for each integer n, let Xn =
∏

k≥n X2k−n

k and En = K[X0, X1, . . . , Xn−1,Xn] (with

E0 = K[X ]). Let Pn,k = XkEn for k < n, Pn = XnEn, and Dn = (
⋂

(En)Pn,k
) ∩ (En)Pn

.
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Use Qn,k to denote the extension of Pn,k to Dn and Qn to denote the extension of Pn to Dn.

Each Qn,k is principal as is each Qn. Also each Dn is a semilocal PID.

Let D =
⋃

Dn. Then D is a one-dimensional Bezout domain with nonzero Jacobson

radical. Also, D has countably many maximal ideals. Of these, all but one is principal. The

one that is not principal is idempotent. This maximal ideal is not the radical of a finitely

generated ideal, so it is non-sharp. It follows that from Proposition 1.7 (3) that D does not

have the weak factorization property.

Proof. Let I = (a1, a2, . . . , am) be a finitely generated proper ideal of D. Let Dn be the

smallest ring in {Di} that contains the set {a1, a2, . . . , am}. Since Dn is a PID, there is an

element a ∈ I ∩ Dn such that I ∩ Dn = aDn. In particular, each ai is in aDn and it follows

that I = aD. Thus D is a Bezout domain.

For integers 0 ≤ m < n and 0 ≤ k < n, Qn,k

⋂

Dm = Qm,k when k < m and Qn,k

⋂

Dm =

Qm when m ≤ k. In the first case, Qm,k(Dm)Qn,k
= Qn,k(Dn)Qn,k

, and in the second,

Qm(Dn)Qn,k
= Qj

n,k(Dn)Qn,k
where j = 2k−m.

Let f be a nonzero member of D. Since D is the union of the chain Dn and no nonunit of

Dn becomes a unit in a larger Dm, f is a nonunit of D if and only if it is a nonunit in the

smallest Dn that contains it. In Dn, f is a nonunit if and only if has the form ug/v where u

and v are polynomials of En that are units of Dn and g is a finite (nonempty) product of the

monomials X0, X1, . . . , Xn−1 and Xn. If the factorization of g does not include a positive

power of Xn, then for all m > n, f /∈ Qm. On the other hand, if the factorization of g does

include a positive power of Xn, then f ∈ Qm for all m ≥ n. In the latter case, we also have

that f ∈ Qm,k for all m > k ≥ n since Xn = X 2m−n

m

∏m−1
k=n X2k−n

k

For each n the ideal Mn = XnD is a height one maximal ideal of D, being the union of

the chain of primes Q0 ⊂ · · · ⊂ Qn−1 ⊂ Qn,n ⊂ Qn+1,n ⊂ · · · . The only other maximal ideal

of D is the ideal M =
⋃

Qn, the union of the chain {Qn}0≤n. The height of M is also one,

so D is one-dimensional. Let f be a nonzero member of M . Then there is an integer n such

that f is in Qm for each m ≥ n. But this implies that f ∈ Qm,k for each pair m > k ≥ n.

Since D is a Bezout domain, M cannot be the radical of a finitely generated ideal. �

Remark 3.6. It is perhaps worth noting that the preceding provides an example of a divi-

sorial ideal J in a Prüfer domain such that JRM is not divisorial for some maximal ideal M .

With the notation above, let J be the intersection of the principal maximal ideals. Then J

is nonzero and divisorial. We must have J ⊆ M . Otherwise, for x ∈ J \ M we would have

(M, x) = R. However, writing 1 = m + rx, m ∈ M , r ∈ R then yields that M is the only

maximal ideal containing m, a contradiction. Since J is a radical ideal, we must then have

JRM = MRM , which is nondivisorial.
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