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Abstract. It is proved under mild assumptions that the class of Jaffard domains
and the class of S-domains are each stable under direct limit. New examples of Jaffard
domains obtained thereby include the factorial domain of Fujita, and Nagata rings
in arbitrarily many indeterminates over a Jaffard domain. New examples of S-domains
are the polynomial rings in arbitrari ly many indeterminates over any domain. Also,
any locally finite-dimensional directed union of universally catenarian going-down
domains is itself a universally catenarian going-down domain. However, many related
types of rings (such as [stably] strong S-domains or [universally] catenarian domains)
are not preserved by direct l imit. Numerous examples i l lustrate the need for various
hypotheses, the failure of various converses, etc., as well as the sharpness of bounds
that we give for the dimension and the valuative dimension of a direct l imit.

l. Introduction

A well known and useful result [2, Proposition 22.6] states that any directed
union of Priifer domains is a Priifer domain. This was generalized to direct limits of
Prtifer domains in [8]. One purpose of this paper is to develop similar stabil ity results
for other related classes of (commutative integral) domains. A natural class to consider
is that of the (not necessarily Noetherian) universally catenarian domains introduced
in [3], since each locally finite-dimensional Priifer domain is universally catenarian
(cf. [3, Theorem 6.2]). Unfortunately, we show in Example 2.15 that universal
catenarity is not stable under direct l imit. However, a satisfactory analogue of the
motivating result is given in Corollary 2.10: any locally f inite-dimensional directed
union of universally catenarian going-down domains is itself a universally catenarian
going-down domain. (Going-down domains were introduced in [6]; each Priifer
domain is a going-down domain.)

corollary 2.10 follows ultimately from our first main result, Theorem 2.3. This
asserts that, under mild restrictions, direct l imit preserves Jaffard domains. (Recall
from [[1] that a domain A of f inite (Krull) dimension z is a Jaffard domain if i ts
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valuative dimension, dim,,(.a), is also r, each finite-dimensional universally catenarian

domain is a Jaffard domain.) New examples of Jaffard domains obtained as

applications of Theorem 2.3 include the factorial domain constructed by Fujita [11]

(see Corollary 2.4) and the Nagata ring in arbitrari ly many indeterminates over a

Jaffard domain (corollary 2.5). We assume familiarity with Nagata rings, as in [12'

sect ion 331.
Theorem 2.3 is preceded by two lemmas giving inequalit ies describing how

dimension and valuative dimension behave under direct l imit. Equality holds for

certain directed unions (Corollary 2.8). However, examples in section 3. especially

Example 3.5, show emphatically that the inequality results are best-possible' In fact,

section 3 is devoted to examples that i l luminate the results in section 2 by showing

that certain hypotheses cannot be deleted, certain converses fail, etc. Much of section

3 depends on "gluing" ideas, as in [9, Theorem 1.4], with which we assume familiarity'

It was shown in [15. Theorem 3.5]. essentially via a result of Nagata [16]' that

any Priifer domain is a (stably) strong S-domain. Moreover, each finite-dimensional

strong S-domain is a Jaffard domain. It now seems natural to ask whether direct

l imit preserves (stably) strong S-domains. Unfortunately, Example 2' l5 is a

counterexample to this too. However, there is a positive result: Theorem 212

establishes that, with mild restrictions, S-domains are stable under direct l imit ' One

consequence (Corollary 2.13) is that polynomial rings in arbitrari ly many

indeterminates over any domain must be S-domains'

what are the appropriate transition maps for our directed systems of rings? A

clue comes via Noetherian rings. (A Noetherian domain is perhaps the most important

example of an S-domain and, in the finite-dimensional case, of a Jaffard domain')

It is known [2a, Exercise l2 (e), page 44]thaI any directed system of Noetherian

rings with flat transition maps has a coherent direct l imit. Since flat ring-

homomorphisms satisfy going-down (cf' [14. Exercise 37, page 44])' we often

consider transition maps satisfying going-down. Occasionally' we consider ones with

going-up. Both are tractable because direct l imit preserves going-down [8] and

going-up [7].- 
All r ings considered are commutative, with unit; and all r ing-homomorphisms

are unital. suitable background on direct l imits is [13, pages 128 130]. Any

nonreferenced material is standard, as in [12], [14]'

2. Stability theorems for Jaffard domains and S-domains

To avoid unnecessary repetition, let us fix notation for much of sections 2 and

3. Data wil l consist of a directed system (Ai,f1r) of rings indexed by a directed set

(/, <); and its direct l imit, A:|imAi, together with the canonical maps f 
,. A.,+A.

Put r/,:di6(A) and d:dtm(,a). The case in which ,4 is a directed union of l, 's

correiponds to the ./ jo's being inclusion maps; thus, directed unions can be treated

by assuming all [u to be monomorphisms. Finally, notice that if A,is a domain for

each i e/, then ,4 is also a domain.
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Before giving a stabil ity result for Jaffard domains, we give two lemmas describing
how dimension and valuative dimension behave under direct l imit. The statement of
Lemma 2.1 is part of [2b, Exercice l l, page VIII. 82]. We include a proof for the
sake of completeness.

LpNlnr,q, 2.1. With the ubove notation, cl<sup(d).

P ro r , t J .  P i ckacha in  Poc -P rc  . c  P "o f  e t  I  d i s t i nc tp r ime idea l s i n l . (Take
e :d  i f  d< r . )  Choose  1 ' , eP ,1P , -1  f o r  i :  l ,  ' " ,  e .  S ince  1  i s  d i rec ted ,  t he re  ex i s t
7e1and  x ieA j  such  tha t  . / 16 ) : t ,  ( f o r  i : 1 ,  . . . , e ) .  Then ,  t hanks  to  t he  ex i s tence
of  the r , 's ,  \ . f ' ; t (p , ) :0<i  <e)  is  a chain of  ef  l  drst inct  pr imes in l r ,  whence e<d, ,
completing the proof.

It is well known that Spec(A), with the Zariski topology, maps homeo-
morphically onto l imslec(,a). (This follows, for instance, from [13. Proposition

6.1 .2, page 128].) The induced order-isomorphism readily leads to another proof
of  Lemma 2.  l .

We next give the analogue of Lemma 2.1 for valuative dimension.

Lnuua 2.2. Suppose that A., is a domain./br eac:h jel. Then dim"(A)<
sup(dim,(l)).

Proo/-. Essentially by definit ion, dim,.(,4):sup({dim(B): B an overring of A}).
Now. if B is an overring ol A, it follows from [8, Lemma 2.6) that B: l im B;, where

B,  is  a sui table overr ing of  l r .  Then,  us ing Lemma 2.1,  we have

dim(B) < sup(dim(B)) < sup(dim,(l ))

completing the proof.

Tnsonet\l 2.3. Suppose there exists j e I such that Au is a Jafard domain whenever
j<k in L ff d:sup(4) <ryt, then A is a Jalfard domain.

Proof. LeI J:{ke I: j<k}. Since "r is confinal in I, A is canonically the direct
limit of the directed system (Au, fo) indexed by "I. Moreover, the assumptions are
preserved if we replace 1 with "/. Indeed

d < sup{do: k e J } < sup{4 : i e I} : i

where the first inequality follows from Lemma2.l and the second is trivial. Thus.
without loss of generality, Au is a Jaffard domain for each t e 1.

Now, using Lemma 2.2and the fact that dim"(lo):dr,(since lu is Jaffard), we
have

dim(,a)< dim,,(,4) < sup(dim,(,4u)): sup(dr) : d:dim(A) .

Thus, dim"(,4):dim(l)< co, completing the proof.
The assumption that d< oo was made in Theorem 2.3 in order to avoid

non-Jaffard (indeed, infinite-dimensional) examples such as RIXr, Xr, . . '):
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I imR[Xr, ' '  ' ,  Xnf, where R is any Noetherian ring. Similar assumptions in

subsequent results are made for similar reasons.
The next seven results are applications of rheorem 2.3.The first two are about

specific rings; the remaining five are more general. we begin these applications by
considering a three-dimensional non-Noetherian UFD constructed by Fujita Il l ].
(Some errors have been found in ! l] but. according to a private communication
from Fujita, the main conclusions are correct.) Since it is an open problem to compute
the valuative dimension of a UFD. the next result is of some interest. It answers
affirmatively a conjecture of Alain Bouvier.

C<rnorlany 2.4. The example of Fujita is a Jaffard domain.

Proo. f .  Let  us recal l  the construct ion f rom [ l l ] .  Let  yr .  yr ,  yr ,  Xr ,  X2, . . .
be denumerably many indeterminates over  a f ie ld k .  Put  Ao:k l lY, , ,yr ,  X. ] l ;  and
let I, be the Nagata ring Ao(Xr). Next, put

A2 :  A r l f t lY r ] ( r , . / , / r , . r . ) ,  whe re  . f r :  Y3Xy - t  Y2 ,  and  A r :  Az (X r )  .

For each positive integer i, put

Az j * t :A21 (X i+ , ) ,  w i t h  max ima l  i dea l  ( y r , . f  i * r ,  ) , . ) ,  whe re
.l i *, : Y 3X i + r * .f1l Y t and
A z j  n z  :  A t ;  *  t l f  i  *  r l  Y r )u r ,  r ,  * , , / r r ,  r : ) .

It was shown in [1] Lhat A:UAi is a three-dimensional quasilocal UFD. Notice
next that for each j, Atis a three-dimensional regular local ring. In particular, l, is
Noetherian and, hence, a Jaffard domain. viewing the directed union uA, as a direct
l imit, we see via Theorem 2.3 that I is a Jaffard domain, completing the proof.

l t  was shown in [ ,  Proposi t ion l .2 l  and Corol lary 1.23 (a) ]  that  i f  Xr , . . - .  X,
are finitely many indeterminates over a Jaffard domain l, then the Nagata ring
A(Xt , '  ,X, )  is  a lso a Jaf fard domain,  having the same dimension as l .  We next
extend this result to any number of indeterminates.

Conollll,cny 2.5. Let {X,} be a set o./-(arbitrarily many) algebraically independent
indeterminates over a d-climensional Jaffard donain A. Let B be the Nagata ring
A(.IX,}) Then B is a d-dimensional Jat'J'ard donuin.

Proof . It is easy to see that B is a directed union of the Nagata rings of the
form ,4(X,,, ,X,") According to the result recalled above from [l], each
A(Xi,," ,X,") is a d-dimensional Jaffard domain. By Theorem 2.3, i therefore
suffices to show that dim(B) : d. By Lemma 2.l, dim(B) < d. For the reverse inclusion,
one need only remark v ia [2,  Proposi t ion 33.1 (4) ]  that  i f  \ fPoc " 'cP,  is  a
chain of  d+1 d is t inct  pr imes in l ,  then {PkA({X}) :0<k<d} is  a chain of  d is t inct
nonzero primes in B. The proof is complete.

We turn now to more general considerations. The next result is stated for
motivational purposes. It is an immediate consequence of the observations that direct
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l imits preserve integrality; and that if Dc_ E is an integral extension of.domains, thenD is  a Jaf fard domain i f  and only i f  E is  a Jaf fard .omain [ r ,  proposi t ion r . r ] .
PnoposnloN 2.6. Sup.po,se rhat A, i.s a,omain f.rr eat.h jel antl rhat .f'u is unintegral monomorphism whenever 1<i in I. Then the foilotrrng condirions ureequivalen t:
( I ) A, i.s a Ja/furd domain ./br some ie I:
(2) There exi,t '  jer sut'h that Aois a Jafl 'artt crrmuin w,rtenever j<k in I:
(3) A,is a Joflard domain.for alt iel:
(4) A is a Jafl'ard domain.

Since integral maps satisfy going-up, the next result generalizes the implication(2)+(a)  in  proposi t ion 2.6.  Note thai  i t  is  a coro l rary of  rheorem 2.3,  nor  ofProposition 2.6.

Conrlrlany 2.7. 
. 

Suppose that A., is a clomain for each jel and that .f,o is amonomorphism satis.fl;ing going-up whenever .i <k in I. Suppose also thare: sup(d ) < q. Then d: e. (Thus, if there exi.sts j e I such that Ao is a JofJarcr domainv'henever.i <k in I, then A is a Jaffarct clomain.)

Protf ' we have ct<e by Lemma 2.r. For the reverse inequality, it suffices toprove that dim(A ) < r/ for each 7e 1. Since monomorphisms satisfying going-up mustalso satisfy lying-over [14. Theorem 42], it suffices to show that (the monomorphismAi'A\.ft satisfies going-up. This, in turn, hords since direct t i, 'r i , pr"r..ve going_up
[7' Theorem 2'l (b)] ' Finally. the parenthetical assertion now follows from Theorem2.3. The proof is complete.

Many important examples arise as directed unions of valuation domains. wenext analyze the dimensions of such, generalizing the context as we'. Among theexamples in section 3 that i l luminate the results of this section, we note that Examples3'5 and 3 '6 show rhe need. for  the " . f jk(Mj) -M*"  
hypothesis  in  coro l lary 2.g.(Corollary 2.8 may be viewed as the "going-down,,'unuiogu. 

of coro'ary 2.7.)
conorlanv 2'8' sunn\t, that (A,, M1) is a quasirocar domain.lor each je I andthat .f,u i'g a local monomorphism satis5y,i11g'roing-rlown whenever j<k in I. (,,Locar,,here merns that fro(M,)c-Mo.) Then"i:J"i6,1,. (Hence if d.; and each A, is uJuflard domain, A is al.to a Jafarct domain.i

Protf" I is a quasirocal domain whose maximal idear M satisfies ./ ' ; 
r(M): M jfor each je I (cf . Ir3, proposition 6. r.4, page 129]). More over, f,: A,+A satisfiesgoing-down since direct.rimits preserv. going-do*n Jg, Th.o.. ^").s1. Hence d,<trfor each 7e 1' It follows rhar supidj) < d. S]nce Le ̂ ^ulJ gives the *u..r. inequality.we have the asserted equality. Finaily, Theorem 2.3 now gives the parentheticalassertion. to complete the proof.

The next two apprications concern some crasses of rings that were of speciali n te res l  i n  i  t l  and  l 3_1 .

I
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Conor r , . q ,nv2 .9 .Suppose ' f o reach ie l ' t ha tA t . i sa loca l l yJ ,aJ fa rddomu inand

that, for each Pesp"@)"o'n ias ht(P):sup(ft(/;1(P)))<m' Then A is a lctcally

Jqlfard domain.

Proof. Put Pi:.f i t(P)' By [13' Proposition 6'1'6 (i i) '  page 130]' '4" is

canonically isomorphic io i*iz)", '  which is a direct l imit of Jaffard domains' By

Theorem 2.3, Apis a fanardOo-uitt' "ott''pteting the proof'

Conot-t-.q.nv 2.10' Let A:LIA, be a directecl union of universullv catenariun

going-dov'n domains lr' (S' fu^i',::..i."'lu'io' *op u'ltenever j<k in L) Suppose' for

each PeSpec(A), 'n' i '" ifniit1(P)l) <n' Then A is also a universallv catenarian

going-down domain' 1Hen'ci ' l  Oi*t 'at <'t '  then A is a JalJ'ard domain')

ProoJ'. The hypothesis on P' together with Lemma 2'l and the isomorphism

noted in the proof orco,ottu.y 2.9, yields t.hat A is locally f inite-dimensional. Also'

,4 is a going-down d;;;; 'i""e direct tl'it' ptt'"'ve going-down domains [8'

Corollary Z.Zl. ftruJe"t"' iuff '  UV t: '  fneo'"* O'Zf it suffices to show that l ' is

a Priifer domain' (At; ';;1' ; i  d*Jtt ' the integral "lo'utt of a'domain D') Now'

A',is aPriifer d"-;' ;;';ntiallv Uv [3: Theorel 6'2]' Hence' the integral closure

of A,inthe quotrent n"fJ"f ,l lcittt-tii fr; is also a Priifer domain (cf' [12' Theorem

22.3))'However, tt i '  tftut that A'is the directed union UB' of Priifer domains'

Hence, by [12, ptopo'iilon 22'6)' A' is a Priifer domain' as required' Finally' the

parentheticaf u,.t"il"n ioit'o*' ft- [:' CoJtuty 3'3]' to complete the proof'

Whataboutstabi l i tyresul ts forre latedclassesofJaf farddomains?Hereisone

such result. Let A : (J A,bea directed_ union or to"utty finite-dimensional going-down

srrong s-domains i ffi itrat sup(rr(/-;tplli. -"i" r ea.ch 
,P 

e spec(A); then I is

also a locally fl"it"-d;;;;i"- *l; u;i""i rone S-domain' (Inview of [4' Theorem

ll, this result isjust "'ir""ri"ri", orcoroilu.v i.r"o.)rnitraises the question whether

direct limits ot""'uJ;;;;;; s-domains'.4' *t tnir see in Examples 2'15 and 2'16'

the answer is negative; these examptes show that several]:Y::1^O*ttions also have

negatlve answers. io,' i, i, of some jnterest to give a positive stability result for

S-domains .Wedo,o ' in r t , .o , .m2. |2andtheng ive twoapp l ica t ions .F i rs t ,weg lve
the following useful result'

Lerr.rrrr l  2.11. A chain po-.  .  .c-p^ o.f  m*l  c l ist in. t  p.r imes in A is saturated

i l t h e c h a i n \ . f i ' g ) t 0 3 i 3 m \ c o n s i s t s ' o f m + l d i s t i n c t p r i m e s a n d i s s a t u r a t e d i n
A,. / 'or eachieI '

proo.f . without ross of generality, n: 1. put p: po, e: p, ' P ,: -f t 
r(P)' and

Qt : f l ' (0 ) . (Noconfus ionwi th theno* t in t 'Poshou ldar ise : jus tu i 'ung t0d / ' ) f i
the result ruilr, irt.tt exists I'Ile sp"lA lying strictly '9'ttl""" 

P and 0; put

Wi: J i'(I,Iz). By,the "saturated" hypotheti* fo't each 7:' l{z' is either P' or Qt' Let

J : \i e t'. W ;r,; u"O f : \ ' ir- t t w'': Qi|' Now' if i < k in' 1' we have fu" J'iu: /; ' and

so . / ;u '  "  . f  ; '  : . f  ; i  t i  rot to* '  that i fTel i resp' ' ' i  e K) ?:di :k 
in 1'  then ke"I  (resp' '

keK).Since / " dit;:i;J and '/ is aislolnt from K' either J or K coincides with 1'

I
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Without  loss of  general i ty ,  " / :1 .  Then,  by [ l3 .  Proposi t ion 6.1.2 ( i i ) ,  page l2g] ,
P:lrmP;:ltIW::W. the desired contradiction. to complete the proof.

Trmonru 2.12. suppose that A, is an s-tlomainfor eat'h jel antr rhur .f,u is a
monomorphism satisfying going-downwhenever i<k in L Then A is an s-domain.

ProoJ. Let P be a height I prime ideal of l. put pi:.f 
i  

11lry for each 7e 1.
Since d satisfies going-down by [8, Remark 2.2 (a)). we have ht(p)<I. Since
P: l imP j+0,  there ex is ts  i  e lsuch that  ht (Pk) :  I  whenever i  <k in 1.  Now, consider
Alxf:l imAo[x] where k ranges over the indexes satisfying i<k in 1. since lo is
an S-domain, ht(Pklxl): l; that is,0c Prlx) is saturated for each ft. By Lemma
2.1I ,  i t  fo l lows that  0cP[x]  is  saturated tn AlXf . In  other  words,  hr(p[x] ) :  l ,  to
complete the proof.

Just as with the applications of the eariler theorem, we shall discuss the specific
before the general. Corollary 2.13 (a) generalizes the fact that if {X,} are indeterminates
over a UFD A, then Al{x,}l is (a UFD and hence) an s-domain. For corollary
2.13 (b), note that by definit ion, AIL{X,})I: ltg,AllXi,, . . ., X,^lf.

conorrenv 2. 13. Let {x,} be a nonempty set of (arbitrarily many) indeterminates
over a domain A.Then:

(a) Al{X,\) is an S-domain,
(b) If A is Noetherian, then All{X,\ll ^ o coherent S-elomain.

Proof. (a) Al{x)11 is a directed union of the domains of the form
AlX, , , '  '  ' ,  r ; " ] ,  n> l .  Each of  the la t terdomains is  an S-domain,  by [10,  proposi t ion
2.1]. Each transition map in this directed systent is f lat (indeed, induces a free module),
hence satisfies going-down. The assertion now follows from Theorem 2.12.

(b) view B: All{x,}l l  as a direct l imit of the (Noetherian) domains
ALLX,,, . . - , X,^]].Each transition map is flat, hence satisfies going-down. (The point
is that if D is a Noetherian ring, then D[n:I/D is D-flat: cf. [5, Theorem 2.1].)
The coherence assertion follows via l2a, Exercise 12 (e), page 44]; the s-domain
assertion, via Theorem 2.12. The proof is complete.

The next application is in the spirit of Proposition 2.6. Note that its implication
(3) + (a) follows directly from Theorem 2.12.

Conolt-r-.^nv 2.14. suppose that A., is a domainfor each jeI and thqt -fi* is an
integral monomorphism satisflting going-down whenever j1k in L Then the foitowing
conditions are e quivalent'.

(l) A, is an S-domain for some j e I;
(2) There exists jeI such that Au is an S-domain whenever j<k in I;
(3) A, is an S-domain for all j e I;
(4\ A is an S-doamin.
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Proof . (4) + (3) by [l5, proof of Theorem 4.61 since f i ' .  A,+ I is an integral
monomorphism for each 7e 1; (3) + (2) + (l) tr ivially; and (l) + (4) by ! 5, Theorem
4.91 since I also satisfies going-down (cf. [8, Remark 2.2 (a)]). The proof is complete.

We close this section with two examples which, in contrast to Theorems 2.3 and
2.12, show that several relevant properties are not stable under direct l imit.

Exlupr-E 2.15. Direct l imits do not preserve any of the following four
properties: stably strong S-domain, strong S-domain, catenarity, universal catenarity.
Indeed, there is a directed union I : uAi of denumerably many universally catenarian
(hence catenarian and [stably] strong S-) domains l, such that the inclusion map
A,-+Ao satisfies going-down whenever 7<ft, although .4 is neither catenarian nor a

[stably] strong S-domain. (A fortiori, I is not universally catenarian; by Theorem
2.12, any such I is an S-domain.)

I n  d e t a i l ,  p u t  A  j : Q l X r , ' ' ' , X i ) , w i t h  A : t r y n , : Q l X r ,  X r , ' ' ' 1 .  A s  i n  t h e

proof of Corollary 2.13 (a). each transition map satisfies going-down. Moreover,
each A, is universally catenarian (since Q, being trivially Cohen-Macaulay, is
universally catenarian). However, [3, Proposition 2.1] yields that I is not a [stably]
s t rong S-domain.  Since l :B lxr l  where B:QlXr,Xr ,  " '1 ,  and -B: : l  is  not  a
strong S-domain, it follows from [3, Lemma 2.3] that I is not catenarian. The
verif ication is complete.

ExnnrplE 2.16. Let dbe a positive integer. Then there exist a domain A and
denumerably many indeterminates Xr ,  Xr , ' ' '  over  I  such that :

(a) For any subset {X,,} of {X,}, the ring A({X,}) is a d-dimensional strong
S-domain;

(b) AlXr, " ', Xn) is a strong S-domain for each nonnegative integer n; and
(c) AllX,l) is (an S-domain but) not a strong S-domain.
In detail, take A to be a d-dimensional denumerable valuation domain, say

A : Q +  Y l Q l Y t f s , ) + .  .  +  Y d Q ( Y r ,  .  .  . ,  Y a _ r ) l Y o f v o .

Indeed, since I is a Jaffard domain, the first assertion in (a) follows from Corollary

2.5; the second, since each A(X,,1) is a valuation domain (cf. [ l2, Proposition 33.1
and Theorem 33.41). Next, (b) is a consequence of [0, Proposition 2.1]. Finally, as
for (c), [3, Proposition 2.1] yields that B:AlttXlif is not a strong S-domain, while
Corollary 2.13 (a) assures that B is an S-domain. The verif ication is complete.

3. Additional examples

The examples in this section show that various bounds in section 2 are
best-possible, various hypotheses in section 2 cannot be deleted, etc. Following each
name of an example in this section, we list between braces {' 

'  '} the relevant results
from section 2. The examples are increasing unions A:UAi, that is, directed unions
of  denumerably many r ings lo  -  Ar . -  Az- '  '  '  .
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. 
Exnuplr 3.I {Lemma 2..1, Lemma 2.21 . Let e be a nonnegative Integer. Thenthere exists an increasing ul1:n r:ttAi oiNoetherian domains l, such that r isNoetherian, dim(l) : di6,,(A ;) : j + e for each 7> 0, and dim(l) : dim "(A) : e.In deta i l ,  le t  x , ,  '  ,  x" ,  yr .  yr , . . .  be in f in i te ly  many in ieterminates over  af i e l d  A .  Le t  Ao :k lX r ,  . .  ,  X " l ;  r h i s  means  Ao :k  i f  e :0 .  Fo r  i  >  l ,  pu t

A1 :k (Y t ,  Y2 .  '  ,Y1 i  , t t ) lX r ,  .  .  ' ,  X " ,

Then I : IlAi is an increasing union since

Y i t j - r y r + 1 , ,  Y 1 i * r t , t ]

A i - k ( y r .  . . . ,  y i t : * t t t ) l X r ,  . . . ,  X " f

c k ( Y t ,  '  ' ' ,  Y 1 i * r t t ) l X r ,  .  .  . ,  X " ,  y j r j * r t t r +  
1 ,  ,  y 1 i * r y i * z s 1 r l : A i + t  

.
By the Hilbert Basis Theor"*:^.3.1 r, is Noetherian; its (valuatrve) dimension is

i ( i+ l )12- i ( i -D121s: j *e.  (c f .  t l2 ,  Theorem 30.5 and coro i lary 30.r01.)  Theremaining assertions follow easily since A:k(yr, yr, . .) lXr, . l l  ,*.f.
Note that the cse d:_0,e: l of Example 3.2 is handled with a difrerent examprein [2b, Exercise I l,page VIIf. g2].

. 
Exnn'rpr-E 3'2 {Lemma 2.r' Lemma 2.2}. Let 0<d<e be integers. Then thereexists an increasing u:ion. l.:L/A, of Noetherian domains l, such that l isNoether ian,  d im(A):d im,( l ) :e  for  eachT>0,  and d im(,4) :d ip " (A) :d.I n  d e t a i l ,  c o n s i d e . r . i n d e t e r m i n a t e s  I , ,  . . . , y a , X o r , . . . , X o ( "  

a t , . . . ; X i t , . . . ,Xit" at: '  '  '  over a field ft. Put

As :k lXs1 ,  .  .  . ,  Xo@_oD y r ,  .  .  . ,  yo f  :
41 : k (X6y ,  .  .  . ,  Xo t " - � o t ) fX r r ,  .  . . ,  X , . ( "_o ) ,  y r ,  .  .  . ,  yo ]  ;

and,  for  anyT> I ,

A 1 :  k ( X s 1 , ' ' ' ,  X o @ - a r , ' ' ' ,  X ( j - 1 ) 1 ,  .  .  . ,  X t i _  r x " _  o t ) l X i r ,  .  .  . ,  X  i 1 e -  d D  y r ,  .  .  . ,  y o f  .
It is clear that A:1JAi is an increasing union of Noetherian domains, and thatdim(At):dim'(A):("-d)*d:e. The 

-assertions 
about r follow since one mayver i fy  that  A:k({Xi ; :0<7,  I  < i<e_d}) lyr ,  .  .  . ,  yaf  .

. 
ExalrpLE 3'3 {Theorem 2.3}. Let dbe a positive integer. Then there exists anincreasing union l -L/Ai of d-dimensional non-Jaffara aorn'ainri, such that r is ad-dimensional Jaffard domain.
In detail '  let Xr,xr' " '  be denumerabry many indeterminates over a fierd ft,and let (V, M):k({X,})l-M be a d_dimensional valuation domain. put lo :k+Mand,  for  eachT> I ,  put

A , : k ( X r ,  . . . , X ) +  M : V x  o u * , r k ( X r ,  . . . , X i ) .

Now, Spec(,4 ):Spec(V) as sets (cf. [9, Theorem 1.4]), whence dim(lr):d im(V):d.Moreover I is just the d-dimensionar valuation domain v, and so r is a Jaffard
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domain. However, applying [, Proposition 2.5] to the above pullback description
of ,4, yields Ihat A j is not a Jaffard domain, since ft({X,}) is not algebraic over
k(Xr, " ', X). (In fact, the cited result yields that dim,(,4r):oo.) The verif ication is
complete.

Before giving the final two examples, we need the following technical facts.

LEnur 3.4. Let V be a valuation domain with quotientfield K; L:lXr, '  , X,ti
a.finite set of indeterminates over K;PeSpec(V); k:VrlP; and W a nontrivial
valuation ring of k(X) containing k. Let V* be the "composite" valuation ring

V * : V p ( D x t t x t W .

Then:
(a) V* n K: Vp.
(b) The conductor of V* in Vr( is I: PVp(X). If Qe Spec:(V*) contains 1,

t h e n Q ^ V p : Q a V : P .

Proof. (a) It is well known that V* is a valuation domain (cf. [17, (11.4)]).

Consider the commutative diasram

c------- Vr(X)
l l

V* - >Vp(D

r l
t l+ *

V Y

By the universal mapping property of pullback, there is a ring-homomorphism

Vp-V*, necessarily an injection, making the induced diagram commute. Hence

Vrc-V* nK.  For  the reverse inc lus ion,  not ice that  V* ^rKc:V"(X)n K:Vp,  to

complete the proof of (a).
(b) The first assertion is immediate since W*k(,\ '). Next, since P is a common

ideal of V and Vr, it suffices to show rhar Q n Z" contains (and hence equals) P.

For this, note that

P: PVp(n r-t VrcQ a V,

thus completing the proof.

Exe.lrpls 3.5 {Lemma 2.1, Corollary 2.8; cf. also Examples 3.2 and 3.6}. Let

0 <d<e be integers. Then there exists an increasing union,4 : UAiof valuation (hence

quasilocal) domains l, such that dim(l):e for eachT>0 and dim(,4):/.

In detail, let V be an e-dimensional valuation domain with quotient field K. Let

P be the height d prime ideal of V; put V * : V p and k : V pl P. Consider indeterminates

Xrr, " ', Xr@-a., over K and k. Let K, (resp., ftr) be the field resulting by adjoining

VP

I
I
J
k
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these indeterminates to K (resp., k). Next, take 14/, as any (e-rl)-dimensional
valuation ring of k, containing k. Let z, be the "composite" 

valuatron rins

V t : V * ( X r t ,  .  .  . ,  X y s _ o t ) x , , ,  W ,  .

I t  is  c lear ,  v ia [9,  Theorem 1.4]  and Lemma 3.4,  that  d im(Zr) :d im(Z*({X, , } ) )+
dim(Iyt ) :7J+(e-d) :e;  that  vraK:v+:  and rhat  each pr ime of  v ,  wi th height
at least d l ies over p.

we iterate the construction. Here is the next step. Let p, be the height d prime
of Vr: K, (resp., kr) result from K, (resp., kr) by adjoining indeterminates
r rt, '  '  X zr" - at, w. be an (e - d)-dimensional valuation ring of t, containing k, ;and V, be the "composite" 

valuation rins

v2 : ( v1 )p , ( x2 r ,  ' l '  ,  * r * -oy )  x  y ,  w ,  .

cont inuing in  th is  way,  we obta in e-d imensional  va luat ion domains vrcvrc: . .  . .
Put A : U V,. We claim that dim(A) : fl.

Let  WeSpec(A). .Put . \ i :WaV, for  eachT>1.  Let  p,  denote the height  r /
prtme of Vt. For each j, either I,V,cp, or p,cW1. If p,cW, for some j, we have
\ i * rnV : :P i  by  Lemma 3 .a  (b ) ;  as  W i * rnV , :W 'nV , :W. , ,  i t  f o l l ows  tha t
Pj  

.  
Wl .Hence,  W,c-P,  for  a l l  i ;  that  is ,  e :Upi  conta ins 'W. t tur ,  to  prove the

claim, it suffices ro show that eespec(A) ana t.r^1g1:a.
I t  is  c lear  f rom the pul lback construct ion of  the Zr 's  that  p,  _pz€. . . .  Hence

Qe spec(A).  Moreover,  B:u(v)r , is  an increasing union to which coro l rary 2.g
applies' (The required. going-down property holds for the transition maps becauseany valuation dornain is a going-down domain.) Hence dim(B):sup(dim((t/r)r)):d.
But (B' Q) is quasilocal by [r 3, proposirion 6. r.a, 

'  
page r2gf , whence

ht B(Q) : dim(B) : d. Since I is a Priifer (indeed, valuarion) do.nuin [y t I 2, proposirion
22.6f, the inclusion map A+,8 satisfies going_down, whence hto(e)<ht"(e):d. Butit is clear by applying [9, Theorem t.+1 to the consrruction oithe zr,s thar thesaturated chain of primes reading down from p, in v, gives a compatibre family inthe.sense of  [13,  proposi r ion 6. r .2( i ) ,page l2gj .  The'upshot  in  the d i recr  r imi t  is  achain ofl+ | distinct primes inside e; thut is, ht o(e)>fl proving the craim. Therefore.by defining Ai:Vi_, for each.f>0, ttre assertion follows.

Ex.qN4prr 3.6 {Lemma 2.1, Corollary 2.g; cf. also Examples 3.2 and 3.5}. Letd be a positive integer. Then there exists an increasing union ,a : uA: of valuation(hence quasilocal) domains l, such that dim(l): co for eachT>0 and dim(,4):d.
The details are somewhat l ike those of Example :.s, ano so we onry sketchthem. Let v be an infinite-dimensional valuation domain, with quotient f ield K, suchthat Spec(V), as a partially ordered set, looks like

0 - e r c e z c . . .  c e a : e c . . .  c p r c p , _ 1 c . . .  c p r c M  .
(The notation means, i.a., that htr1g1:4, e has no immediate successor, and p, has"coheight" 

i, in the sense that dim(vlp j)17.1 put v j : ir,- uni-i- : v j lp, for each
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i > l . L e t W r b e a o n e - d i m e n s i o n a l v a l u a t i o n r i n g o f k r ( X t ) c o n t a i n i n g k t ' L e t
(Vr, Mt) be the "composite" valuation ring

V  r :  V t (X  )  x  r , ( * , )W,  .

Reasoning as in the preceding example, we see that dim(lzt) : cn ' V r o K: V\: the

conduc to r  o f  v r i n  v t ( x r )  i s  P , , t :P t v r ( x ) ; and  M '  and  P ' ' '  each  l i e  ove r  P ' '

Here is the next step. Let w, be a two-dimensional valuation domain of

k r(X ,, X ,, Y ,) containing k r(X ,). Let (V t, M t) be the "composite" valuation ring

V  z  :  V 2  ( X  t ,  X  r ,  Y  r )  X  k , ( x , ,  x , , Y , ) W  z '

Reasoning as above'  we have d im(z ' ) :cn '  vzoK:v2 '  the conductor  of  I / t  in

V' (Xr ,  Xr ,  Yr)  is  Pr , r :  PzV2(Xr,  Xr) ;  an 'd Mr,  Pr ' r '  and the pr ime of  Vt  wi th

coheight I each lie over Pr.

The pattern is clear. For instance,

v3 :v3 (x t '  x t ,  Y r ,  X r ,  Y r ,  Y r ) ' 1 , x , ' t , , r r . xz ' vz ' v iw3

where W, is  a three-dimensional  va luat ion domain of  k(X, ,  X2,Y1,X3,Y2.Y3)

containing kr(Xr. Xr, Yr). Notice, as above, that the "top" four prime ideals of I{/'

each lie over P.. Continuing in this way, we obtain a sequence of infinite-dimensional

valuat ion domains V,c-V, . . . . ;  le t  l  denote thei r  union.  I t  wi l l  suf f ice to show

that dim(,4):d.
The verification proceeds nearly as in Example 3.5. Here is one difference' If

WeSpec(A) and Q, is the prime of Z, corresponding to Q' we must show that

wi:w o /, is contained in Qr. If this_fails, p; is properlY contained in Hzt and there

exists k>7 such thatl',o p,i-" of Zo lies over W| this contradicts the existence of

Wr,: W a Vu. Hence, each prime of '4 is contained in Q*:99"

A s i n t h e p r o o f o f E x a m p l e 3 . 5 , w e s e e v i a C o r o l l a r y 2 . 8 t h a t B : U ( V ) a i | s
d-dimensional; via [13, Proposition 6'l '4,page 129] and going-down considerations

t h a t h t o ( Q \ < h t B ( Q \ : d ; a n d v i a [ g , T h e o r e m l ' 4 ] a n d [ 1 3 ' P r o p o s i t i o n 6 ' 1 ' 2 ( i ) '
page l28l that htA(Q\Zd. The verif ication is complete'
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