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Let R be an integral domain, X(R) the abstract Riemann surface of R, and (R’)b 
the Kronecker function ring of the integral closure R’ of R. It is proved that there 
exists a homeomorphism, natural in R, between X(R) and Spec((Z?)*). Ideal- 
theoretic and topological results are given for the extension j: RG(R’)~, notably 
that R is a Priifer domain if and only if R = R’ and j is universally going-down. It is 
also proved that each spectral space X is a closed spectral image of a treed spectral 
space Y, if X is irreducible, Y can be taken as an abstract Riemann surface. 0 1986 

Academic Press, Inc. 

1. INTRODUCTION 

Let R be an integral domain with quotient field K. As in [3], the 
abstract Riemann surface of R is a topological space X(R) whose underly- 
ing set is the collection of all valuation overrings of R. An open basis in 
X(R) is given by the sets ER(x,,..., x,) = (VEX(R): X~E V for each 
i= l,..., n} as {x ,,..., xn} ranges over the finite subsets of K; the space X(R) 
is called S* in [ 16, p. 1131. It was shown in [ 3, Theorem 4.11 that X(R) is 
a spectral space, in the sense of [ 111; that is, X(R) is homeomorphic to 
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Spec(A), with the Zariski topology, for some (commutative) ring A. The 
proof of this fact in [3] did not construct an explicit A, given R. This is 
remedied in Theorem 2 below: X(R) is homeomorphic to Spec( (R’)“), 
where (R’)b is the Kronecker function ring of the integral closure R’ of R. 
(Background on Kronecker function rings appears in [ 13; and 10, 
Sects. 32-341, some of which is summarized in Sect. 2.) Moreover, in a 
sense made precise in Corollary 5, there is such a homeomorphism which is 
natural in R. Along the way, we see in Proposition 4 that “taking the 
Kronecker function ring” is functorial. 

Theorem 2 implies that, up to order-isomorphism, abstract Riemann sur- 
faces are just the spectral trees with unique minimal point. It therefore 
seems reasonable to study the treed spectral spaces. In this regard, 
Theorem 7 establishes that each spectral space is a closed spectral image of 
a treed spectral space. Proposition 9 and Examples 8 and 10 treat the con- 
verse and related questions. 

The extension j: Rcr (R’)b merits consideration since, as Remark 3(b) 
shows, Spec(j): Spec((R’)b) --) Spec(R) can be identified with the canonical 
surjection fR : X(R) + Spec(R). This point of view leads to a new ideal- 
theoretic proof, in Remark 3(c), that fR is closed map. (This fundamental 
result, which implies that Spec(R) is a quotient space of X(R), was first 
proved in [3] by appeal to topological arguments from [16].) In 
Theorem 11, several related results are collected, notably that R is a Priifer 
domain if and only if R is integrally closed and j is a universally going- 
down homomorphism. 

Throughout, R will denote an integral domain with integral closure R’ 
and quotient field K. If V is a valuation overring of R, then v will denote a 
valuation on K having valuation ring V, u* will denote the inf-extension of 
u to a valuation on the rational function field K(X); and V* will denote the 
trivial extension of V to-K(X), that is, the valuation ring of u*. Unreferen- 
ced material is standard, typically in [lo]. 

2. RESULTS 

Suppose, for the moment, that R is integrally closed. Let { Vor} be the set 
of all valuation overrings of R. The b-operation (also known as completion) 
converts a fractional ideal Z of R to Zb = n IV,. By definition, the 
Kronecker function ring of R is 

Rb= (o>U {flg:f, g~RCXl\{Of and C(f)bCC(g)b} 

(As usual, if h E K[X], then c(h) denotes the fractional ideal of R generated 
by the coefficients of h.) 
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Rather than the above definition, we shall need the following facts, 
collected from [ 10, Sect. 321. Rb is a B&out (and, hence, a Priifer) domain 
with quotient field K(X); Rb n K= R; and the function g, : X(Rb) + X(R), 
WH Wn K, is a bijection, with inverse given by VW Y*. 

We begin by showing that g, remains an isomorphism in a richer 
categorical setting. 

LEMMA 1. Zf R is an integrally closed integral domain, then the canonical 
bijection g, : X( Rb) + X(R) is a homeomorphism. 

ProoJ The typical quasi-compact open subset of X(R) is the union of 
finitely many sets of the form E&x~,..., x,). Since 

gR *t~Rtx,,-, -%I)) = ~R4XLY7 %z), 

it follows that g, is continuous (and spectral). As g, is a bijection, it now 
suffices to show that g, sends the typical subbasic open set E&a) to an 
open set Y. The case a = 0 is evident. If a # 0, write 

a=(a,+a,X+ *a* +a,X”)/(b,+b,X+ ... +b,Xm) 

in lowest terms, with all uj, bj E 1% Ignoring vanishing coefficients, we find 
that 

Y = { VVE X(R): a E V* > = ( VEX(R): inf u(a,) 2 inf u(b,)f 

= IJ { VEX(R): u(ai) < ~(a,) f or all Iz, u(b,) < u(b,) for all CL, u(ai) 2 u(bi)) 

= G ER( (ada,: I <ldn) u (b,/bj: 1 <.j<m) u {ai/bj;>) 
ii 

is indeed open, completing the proof. 

We next recover the fact [3, Theorem 4.11 that each X(R) is a spectral 
space. More explicitly, we have 

THEOREM 2. Let R be an integral domain. Then X(R) is homeomorphic 
to Spec( (R’)b). 

Proox The identity map X(R’) + X(R) is a homeomorphism. Thus, 
without loss of generality, R is integrally closed. By Lemma 1, it is enough 
to prove, for S = (R’)‘, that X(S) is homeomorphic to Spec(S). However 
this is evident since S is Priifer domain (cf. [3, Proposition 2.2 3). 

Remark 3. (a) Each X(R) is a T,,-space, and in the usual way [ 11, 
p. 531 thus acquires the structure of a partially ordered set: V, < V, if and 
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only if Vz is in the closure of Vi, that is, if and only if V, c V,. It follows, 
in case R = R', that the bijection g, studied in Lemma 1 is an order- 
isomorphism; in other words, valuation overrings Vi of R (=R') satisfy 
V2c Yr if and only if VT c Vr. This order-isomorphism may also be 
established without appeal to Lemma 1: the reader may fashion a direct 
proof using [ 10, Theorem 32.101. In this way, one finds a new proof of 
Theorem 2 which uses [3, Theorem 4.11 but not the full force of Lemma 1. 
The point is that, for R= R', g, is then a homeomorphism by virtue of 
[l 1, Proposition 151, since g, is an order-isomorphism and a spectral map 
of spectral spaces. 

(b) For each integral domain R, it was shown in [3, Corollary 2.61 
that Spec(R) is a quotient space of X(R). This followed since the canonical 
surjection fR: X(R) --, Spec( R), V-center of V on R, is a closed map [3, 
Theorem 2.55. We next give a ring-theoretic translation of this topological 
fact, namely that the inclusion map j: Rcr (R')* satisfies the going-up 
property (GU, in the notation of [12, p. 281). 

An equivalent assertion is that Spec(j) is a closed map (cf. [S, 
Proposition 2.7(b)]). However, this assertion holds since [3, 
Corollary 4.5(b)] provides a commutative diagram 

kcR 
I I 

X(R’) ‘ix, + Spec(R’) 

II I 
X(R) fR * Spec(R) 

Spec(jt 

which now, by Theorem 2, permits us to identify Spec(j) with fR. 
By [ 12, Theorem 421, it therefore follows that j also satisfies the lying- 

over property (LO). Theorem 11 will present a thorough study of j with 
respect to related properties such as incomparability (INC), going-down 
(GD), etc. 

(c) We next give a direct proof that j: Rci (R')* satisfies GU. By the 
remarks in (b), this yields a new proof of E3, Theorem 2.51, namely that 
fR : X(R) + Spec(R) is a closed map. 

R 4 R', being an integral extension, satisfies GU. By factoring j through 
R', we may therefore take R integrally closed. Consider primes Pi c P, of 
R and a prime Q, of Rb such that Q, n R = P,. By [lo, Corollary 19.7(2)], 
IV, = (Rb)Q, contains a valuation ring (IV, M) of K(X) such that Rc W 
and Mn R = P2. (Note that the maximal ideal of IV, lies over P, .) Set 
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W, = ( Wn K)*. By the order-isomorphism X(Z?‘) +X(R) noted in (a), we 
have 

Rbc Wzc(WlnK)*= W,. 

Since Rb is a Priifer domain, W, = (Rb)ez for some prime Q2 of Rb. Eviden- 
tly, Q, c Qz. Moreover, Q2 n R = P, because 

Q2 n R = (center of W, on R) = center of W on R. 

This completes the proof. 

We next fix some useful notation. Let D be the category whose objects 
form the class of all integral domains and whose morphisms are the 
inclusion maps. Let Z be the category of all abstract Riemann surfaces of 
integral domains, viewed as a full subcategory of the category S of spectral 
spaces and spectral maps. 

It was noted in [3, Corollary 4.5(a)] that the object assignment 
R-X(R) extends to a contravariant functor X: D + Z. Moreover, if 
I: Z + S denotes the inclusion functor, then {fR: RE Oh(D)} gives a 
natural transformation IX i Spec (of contravariant functors D --t S). These 
facts explain the genesis of the diagram in Remark 3(b). 

Our next categorical goal is more substantial, namely to describe X up 
to natural equivalence. Let C be the full subcategory of D whose objects 
are the integrally closed integral domains. An easy first step asserts that 
integral closure (“normalization”) gives a functor N: D + C; that is, given 
integral domains R c S, one then has R’ c S’. The key step is given next. It 
shows that “taking the Kronecker function ring” is functorial and thus 
introduces the functor (- )b: C + D. 

PROPOSITION 4. Zf R c S are integrally closed integral domains, then 
Rb c Sb. 

Proof. Let K (resp. L) be the quotient field of R (resp. S); view Kc L. 
Let { VoL) be the set of valuation overrings of R; for each index tl, let u, be a 
valuation on K with valuation ring V,. As above, let I’,* be the trivial 
extension of V, to K(X), obtained from u,*, the inf-extension of u, to a 
valuation on K(X). Since R is integrally closed, [ 10, Theorem 32.1 l] yields 
that Rb= n V,*. 

For each index E, let { Wa,s> be the set of valuation rings of L such that 
Wm,s n K= V,; /I runs over an index set depending on CI. Let Wz,a, w~,~ and 
wza have the obvious meanings. Then Sb = n,,p W& since { Wol,s} is the set 
of valuation overrings of S. Hence, it will suffice to prove that V,* c W& 
whenever /I is in the index set depending on a. 

Let u be the restriction of w& to K; then u is equivalent to u, since each 
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has valuation ring V,. (The point is that W,$n K= V,.) Let u* be the inf- 
extension of u to a valuation on K(X). Then, by construction of the 
inf-extension, u* is just the restriction of wzp to K(X). Thus W& n K(X) is 
the valuation ring of u*. However, it is easy to see that inf-extensions of 
equivalent valuations remain equivalent. Therefore, u* and u,* have the 
same valuation ring, and so I’,* = W$n K, completing the proof. 

We next give a functorial version of Theorem 2. 

COROLLARY 5. X~(Spec) 0 ( -)b 0 N. In other words, the abstract 
Riemann surface functor X is naturally equiualent to the composite of the 
functors N: D -+ C, ( - )“: C --f D, and Spec: D -+ S. 

Proof We shall show that a natural equivalence is given by the 
homeomorphisms X(R) + Spec( ( R’)b) established in Theorem 2. Recall 
their construction: the identity X(R) = X(R’) is composed with the 
homeomorphisms gi,‘: X(R’) -+ X( ( R’)b) and fcRslh : X( ( R’)b) -+ Spec( ( R’)b). 
The effect is to send the typical VE X(R) to the center of V* on (R’)b. 

The asserted naturality means that, for integral domains Rc S, the 
canonical diagram 

X(S) - Swc((Wb) 

I I J’(R) - SpeWVb) 
is commutative. There is no harm in assuming that R = R’ and S = s’. 

Let K (resp. L) be the quotient field of R (resp. S). Chase WE X(S) 
through the above diagram. If I’ denotes Wn K, the “vertical, followed by 
horizontal” path sends W to P, the center of V* on Rb. The other path 
sends W to Q, the intersection of Rb with the center of W* on Sb. To verify 
commutativity, that is to prove P= Q, it is enough to show (Rb)p= (Rb)o. 
Note that (Rb)r= V* and (Rb)o = W* n K(X). Applying [lo, 
Theorem 32.101, we have W* n K(X) = ( W* n K(X) n K)* which is, of 
course, just ( W* n K)*. Since W* n K= V, the proof is complete. 

It is natural to say that a To-space X is a treed space in case the induced 
partially ordered set structure on the points of X is a tree. Treed spectral 
spaces abound: consider, for instance, Spec(R), R any Priifer domain. It is 
also easy to show directly that each abstract Riemann surface is treed, 
using the fact that the overrings of any given valuation domain are linearly 
ordered by inclusion. Another proof of this is indicated next. 

LEMMA 6. (a) A nonempty topological space X is an irreducible spec- 
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tral space if and only tf X is homeomorphic to Spec(R), R an integral 
domain. 

(b) Each abstract Riemann surface is an irreducible treed spectral 
space. 

(c) A partially ordered set X is a spectral set and a tree with a unique 
minimal point tf and only tf X is order-isomorphic to an abstract Riemann 
surface. 

Proof (a) This assertion is well known: cf. [l, Corollary 1, p. 1023. 
(b) Combine Theorem 2 with (a) and the preceding remarks, bearing 

in mind that each Kronecker function ring is a Prtifer domain. 
(c) If X is a spectral tree with a unique minimal element, a result of 

Lewis [ 14, Theorem 3.11 supplies a Prtifer domain R with Spec(R) order- 
isomorphic to X. As Spec(R) g X(R), the “only if’ assertion follows. The 
converse follows directly from (b) and (a). 

THEOREM 7. Let X be a spectral space. Then there exists a treed spectral 
space Y and a closed spectral (continuous) surjection Y + X. If, in addition, 
X is irreducible, then one can also arrange that Y is an abstract Riemann sur- 
f ace. 

Proof If X is irreducible, Lemma 6(a) provides an integral domain R 
such that X is homeomorphic to Spec(R). By [3, Lemma 2.1, Theorem 2.5 
and Theorem 4.11, the canonical map fR: X(R) + Spec(R) is continuous, 
surjective, closed and spectral. By Lemma 6(b), choosing Y = X(R) dis- 
patches this case. 

For the general case, we proceed via a construction suggested by [ 15, 
Example 5.61. Let co denote a point outside X, and topologize 
X* = Xv {co } as follows. The closed subsets of X* are just X* and the 
closed subsets of X. Now the space X* is spectral, since it is 
straightforward to verify that X* inherits the criteria of Hochster [ll, 
Proposition 43 from X. Moreover, X* is irreducible, since each XE X 
satisfies co <x in the induced partial order. By the first case, there exist a 
treed spectral space Z and a closed spectral (continuous) surjection 
h: Z + X*. Note that Y = h-‘(X) is spectral, being a closed subspace of a 
spectral space. Thus h 1 y: Y-+X meets the asserted conditions. 

We next show that the converse of Theorem 7 is false. 

EXAMPLE 8. There exists a closed continuous surjective map h: Y--f X 
such that Y is a treed spectral space, although the space X is not spectral. 
One can arrange, in addition, that Y is (homeomorphic to) an abstract 
Riemann surface and X is irreducible. 
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To begin the construction, we use [ 14, Corollary 3.61 to find a valuation 
domain V such that Y= Spec( V) is order-isomorphic to the denumerable 
totally ordered set S = { y,} u {cc } satisfying 

y,< yz< ... <y,< ..’ <co. 

Of course, YzX( V) is an irreducible treed spectral space. 
Next, let X be the three-element space {xi, x2, x} whose open subsets 

are 4, X, and {x,, x2}. Note that X is not spectral since X is not a r,- 
space. Moreover X is irreducible. 

Finally, identify Y with S and define h: Y + X as follows: h( y,, + ,) = x, , 
h(Yk) =x2> and h(co) = x. It is straightforward to verify the assertions 
concerning h. 

Example 8 should be contrasted with the result of Hochster [ll, 
Theorem 71 that S has images. Since the space X in Example 8 satisfies all 
of Hochster’s criteria for spectral spaces except the T,-condition, it seems 
natural to ask the following question. Under what conditions on a closed 
continuous surjection h: Y + X from a treed spectral space Y to a T,,-space 
X may one conclude that X is spectral? The next result is a small con- 
tribution in this direction. For additional motivation, note in Example 8 
that h-‘(U)= {y,} is not quasi-compact for the quasi-compact open 
u= {Xl, xz}. 

PROPOSITION 9. Let h: Y -+ X be a continuous surjective map such that 
h-‘(U) is quasi-compact for each quasi-compact open subset U of X, Y is a 
spectral space, and X is a To-space having a basis of quasi-compact open sets. 
Then X is a spectral space. 

Proof: Let YH (resp. XH) denote Y (resp. X) with the patch topology, 
in the sense of [ll, p. 523. By [ 11, Corollary, p. 543, it is enough to show 
that XH is compact. Since the quasi-compact open sets in X (resp. Y) and 
their complements form an open sub-basis for XH (resp. Y”), it is 
straightforward to verify that XH is Hausdorff and that h: Y“ + XH is con- 
tinuous. However Y” is (quasi-) compact [ll, Theorem 11, so the asser- 
tion follows. 

Remark 10. One cannot replace the “continuous” hypothesis in 
Proposition 9 with “closed.” To illustrate this, begin with the set N of 
positive integers, equipped with the discrete topology. Select b 4 N and let 
W= N u {b} be the one-point compactification of N. It is well known that 
W is a Boolean space; in particular, W is a spectral space. Let co denote a 
point outside W, and let Y = Wu {co } be the spectral space topologized as 
in the proof of Theorem 7. Select c 4 N and set X = fV u {c}, equipped with 
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the discrete topology. Then the asserted behavior is exhibited by h: Y + X 
defined by h(n)=n for all HE N and h(b)=c=h(co). 

Indeed, h is evidently surjective and closed, and X is a To-space whose 
singleton subspaces form a quasi-compact open basis. Moreover, h-‘(U) is 
quasi-compact for each quasi-compact (open) subset U of X since U (and 
h-‘(U)) must be finite. 

However, X is not a spectral space. Unlike the situation in Example 8, 
the culprit here is not the To-property: the present X is not quasi-compact, 
the reason being that X is infinite and discrete. 

The infinitude of N (not to mention Proposition 9) also explains why h 
is not continuous: N is closed in X and N = h - ‘( N ) is not closed in Y. To 
see this, namely that N is not closed in W, or equivalently that {b) is not 
open in W, one need only recall the construction of the one-point compac- 
tification. An open neighborhood V of b in W must be such that IV/I’ is 
finite, but W\(b) = N. 

In closing, we shall pursue a theme mentioned in Remark 3(b). As usual, 
if P is a property of some ring-homomorphisms, then a ring- 
homomorphism f: R + T is said to be (have, satisfy) universally P if, for 
each change of base R + S, the induced homomorphism S + SQR T 
satisfies P. The various kinds of P and other background needed below are 
discussed conveniently in the following references, with which we assume 
familiarity. For Theorem 11(a), see [12]; for (b), see [4,7]; for (d), see 
[ 12,9]; and for (e), see [ 12,4, 51. We need not treat “universally LO” and 
“universally flat” explicitly since LO and flat are universal properties (cf. 
[6, Corollary 2.21 and [ 1, Corollary 2, p. 193). Finally, for partial 
motivation of Theorem 1 l(e), recall the following result of J. T. Arnold 
(cf. [ 10, Theorem 33.43). If R is an integrally closed integral domain, then 
Rb = R(X) if and only if R is a Priifer domain. 

THEOREM 11. Let R be an integrally closed integral domain with quotient 
field K and Kronecker function ring Rb. Let j: R + Rb be the inclusion map. 
Then: 

(a) j satisfies GU and LO. 
(b) j satisfies none of the following five properties: universally GU, 

universally INC, universally i-, universally unibranched, universally mated. 

(c) Spec( j): Spec(Rb) + Spec(R) is an open map if and only if 
Spec(Nx,,..., x,1) + Spec(R) is an open map for each finite subset 

b 1 ,..., x,> of K. 
(d) j satisfies GD if and only if R is a GD-domain. 

(e) The following seven conditions are equivalent: 



272 DOBBS AND FONTANA 

(1) R’ IS a YU er P-j’ d omain; 

(2) j is unibranched; 

(3) j is mated, 

(4) j is an i-extension; 

(5) j satisfies INC; 

(6) Rb is R-flat; 

(7) j is universally GD. 

Proof: (a) This was established in Remark 3(b), as a consequence of 
the fact that Spec(j) is a closed map. (A direct proof was given in 
Remark 3(c).) 

(b) It is well known that universally GU is equivalent to integral 
(cf. [2, Lemma, p. 1601). Hence, j is not universally GU since the induced 
extension of quotient fields, Kc K(X), is not algebraic. 

Each of the other four universal properties in the assertion is known to 
entail algebraic (in fact, for the last three properties, purely inseparable) 
residue field extensions: see [7, Theorem 2.2; 4, Theorem 2.11. Thus it suf- 
fices to show that if Q E Spec(Rb) and P= Q n R, then k,(P) c k,+(Q) is 
not algebraic. Let ( W, M) denote the valuation domain (Rb), and set 
( V, N) = Wn K. Since [ 10, Theorem 32.101 assures that W = V*, it follows 
from [l, Proposition 2, p. 4361 that W/M (which is just kRb(Q)) is the 
rational function field F(Y), where F= V/N. But k,(P) = R,/PR, 
canonically embeds in F, giving the assertion since Y is not even algebraic 
over F. 

(c) As noted in Remark 3(b), Spec(j) may be identified with the 
canonical surjection fR: X(R) --t Spec(R). Thus, (c) may be viewed as a 
translation of [ 3, Proposition 3.11. 

(d) The characterizations of GD-domains [9, Theorem l] give the “if 
half, and reduce its converse to showing, in case j has GD, that R c V has 
GD for each valuation overring V of R. Accordingly, consider primes 
P, c P, of R and a prime Qi of V such that Q, n R = P,. We must find 
Q2 E Spec( V) such that Q2 c Q, and Q2 n R = P,. 

Let ( W, N) denote I$,. Since Rb is a Prtifer domain, W is just (Rb)p, 
where P=NnRb. Note that PnR=NnR=NnVQ,nR=QlnR=P,. 
Thus, since j has GD, there exists a prime Q of Rb contained in P and 
satisfying Q n R = P,. Set T= (Rb)e and S = Tn K, valuation domains 
whose maximal ideals we denote by M and m, respectively. Since S con- 
tains Wn K= Ve,, it follows that S is the localization of V,, at some 
prime Q,V,,. Then Q,cQ,, S=V,,, and Q,nR=mnR=MnR= 
Q n R = P,, as desired. 
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(e) In general, unibranched * mated * i-extension. However, we 
recalled in (a) that j satisfies LO, and so these implications reverse when 
applied to j. In other words, (2)0(3)0(4). 

(2) is just the requirement that Spec(j) be a bijection. As Spec(j) may be 
identified with fR: X(R) -+ Spec(R), a translation of [3, Proposition 2.21 
yields that ( 1) o (2). 

(4) =z. (5) Each i-extension satisfies INC. 
(5) Z. (1) Deny. By [lo, Theorem 26.2 and Corollary 19.7(l)], there 

exists a valuation overring V of R such that R c V does not satisfy INC; 
that is, Q, n R = P = Q, n R for some distinct primes Q, c Q2 of I’. Let 
Wi = V& for i = 1,2. By the order-isomorphism X(Rb) + X(R) noted in 
Remark 3(a), it follows that W, $ W,. Then P, r$ Pz, where 
Pj~ Spec(Rb) satisfies Wi = (Rb)pi. But each Pi lies over P since 

P,nR=(maximalidealof Wi)nR=QiV,,nR=QinR. 

This contradicts (5), as desired. 
(1) * (6) Each torsion-free module over a Priifer domain is flat. For an 

alternative proof, appeal to the above-cited result of Arnold and factor j as 
the composite of the flat maps R 4 RCA’] and R[X] 4 R(X). 

(6) * (7) Each flat map is universally GD. 
(7) * (1) Priifer domains are just the integrally closed universally GD- 

domains [S, Corollary 2.31. Hence by [S, Theorem 2.61, it suffices to prove 
that R 4 V is universally GD for each valuation overring V of R. Thus by 
[4, Corollary 2.31, it suffices to prove that R[X, ,..., X,] c V[X ,,..., X,] 
satisfies GD for each positive integer n. 

Consider primes P2 c P, of RIXl ,..., X,] and a prime Ql of VIXl ,..., X,,] 
such that Ql n R[X,,..., X,] = P,. Let P= Q, n V and W= V,. Since W* 
dominates W and WC W* satisfies GD, it follows that WC W* satisfies 
LO. Since LO is a universal property, W[X, ,..., X,] c W* [X, ,..., X,] 
also satisfies LO. Therefore, there exists a prime N of W*[X,,..., A’,] 
which lies over Ql W[X, ,..., X,,] = Qi Y[X, ,..., X,,] V,p. Observe that 
N n VIX1 ,..., X,] = Q1. Hence, it suffices to show that RIXl,..., X,] c 
w* [A-, )..., X,] satisfies GD; for if ME Spec( W* [X, ,..., X,]) is contained in 
N and lies over P,, then M n V[X, ,..., X,] is the desired prime inside Ql. 
Thus, it is enough to show that Rci W* is universally GD. But this factors 
as the composite of j: Rc; Rb and Rb~ W*, each of which is a universally 
GD-map. The proof is complete. 
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