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1. INTRODUCTION 

Let f: R + T be a homomorphism of commutative rings. It is known that 
change of base need not preserve the property that f satisfies going-down 
(henceforth abbreviated GD, as in [ 121). Indeed, [4, Example 3.91 presents a 
Noetherian local integral domain R of (Krull) dimension 1 and an overring 
T of R (that is, a ring T contained between R and the quotient field of R) 
such that, although the inclusion map R -+ T necessarily satisfies GD, the 
induced map R [X] -+ T[X] of polynomial rings does not satisfy GD. As a 
strengthening of the GD property, we are thus led to consider 
homomorphisms f: R + T such that the induced homomorphisms f,: 
R [X, ,..., x,,] + T[X, ,..., X,] satisfy GD for each n > 1. It is easy to see (cf. 
Corollary 2.3) that such f are “universally going-down,” in the sense that 
S + S OR T satisfies GD for each change of base R + S. On the other hand, 
McAdam has shown that such f are of interest for the following additional 
reason ([ 13, Theorems B and C; 14, Theorem 41). Iff is the inclusion of an 
integral domain R in an integral overring T, then each f, satisfies GD if and 
only if each f, is unibranched; and moreover, in this context, each f, satisfies 
GD if (and only if) f, satisfies GD or is unibranched. The aim of this paper 
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is to identify and study the universal properties underlying such 
investigations. 

Section 2 presents a unified treatment of universally i-, universally 
unibranched, and universally mated homomorphisms (definitions recalled 
below). Its main results, Theorems 2.1 and 2.5, show in each of the three 
cases that the “universal” property is equivalent to the conjunction of the 
“ordinary” property and the condition that the induced inclusions of residue 
fields be purely inseparable extensions. Much of the material in Section 2 
may be considered folklore. Indeed, the above observation for 
“universally i-” is essentially due to Grothendieck-Dieudonne, for 
“universally i-” means precisely radiciel, in the terminology of [lo]. In 
addition, in the “universally unibranched” case, the observation has been 
somewhat anticipated by work of Andreotti-Bombieri 111 on weak 
normalization and by [ 13, Theorem 3 J. However, it is the “universally 
mated” property which will play a key role in the analysis of “universally 
going-down” in Section 3. Section 2 also contains some useful technical 
results (Lemma 2.4(a)) concerning stability of various properties under direct 
limit. 

The third, and most important, section begins by describing an essential 
difference between the behaviour of GD and the behaviour of the three 
“related” properties noted in Section 2. Specifically, Example 3.1 presents an 
overring T of an integral domain R such that the the inclusion map R -+ T 
satisfies GD and is universally unibranched (and hence satisfies the “purely 
inseparable” condition for residue field extensions) and such that the induced 
map R[X] --t T[X] d oes not satisfy GD. Accordingly, we pause next to apply 
the criterion from Corollary 2.3 in order to obtain some examples of 
universally going-down homomorphisms, including all R + T for which 
dim(R) = 0 (cf. Proposition 3.3). Then, in an attempt to obtain an “internal” 
characterization of “universally going-down,” we modify some constructions 
of Andreotti-Bombieri [ 1 ] and Traverso [ 171, and thus introduce the notion 
of a UGD homomorphism. In casef: R + T is injective and integral, we find 
that f is UGD if and only if f satisfies GD and T is the weak normalization 
of R with respect to f (in the sense of [ 11). For arbitrary (not necessarily 
integral) f, UGD is shown to have several useful consequences, notably 
“radiciel” and “universally mated” (cf. Corollary 3.12). After observing that 
UGD implies a weak variant of going-up, we infer our main result, 
Theorem 3.15, concerning universality of UGD. Its specializations include 
Theorem 3.17, a characterization of “universally going-down” for (the 
inclusion map of) an arbitrary overring of an integral domain. This entails 
consequences for certain nonintegral maps, which cannot be handled by the 
riding hypotheses in [ 13, 141. The upshot for an integral overring of an 
integral domain is that “universally going-down” and UGD are equivalent 
(cf. Corollary 3.20). In particular, there is but one type of integral overring 
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extension R + T of the type studied by McAdam [ 13, 141, viz. for which the 
induced homomorphisms f, satisfy GD or are unibranched: T must be the 
weak normalization of R inside T. 

Throughout, all rings are assumed commutative, with unit; and all ring- 
homomorphisms are assumed unital. If f: R + T is a ring-homomorphism 
and p is a prime ideal of R, then T, denotes TfCRbJ (ET@, R,); and k(p) = 
k,(p) denotes Rp/pRp. In addition, X=X,,..., X,, denote commuting, 
algebraically independent indeterminates over the appropriate rings; and R’ 
denotes the integral closure of R. Any unexplained material is standard, as in 
[9] and [12]. 

2. MATEDNESS AND UNIVERSALITY 

This section’s goal is to characterize the universally mated ring- 
homomorphisms. This work will be used in the study of “universally 
going-down” in Section 3. Our methods will also yield characterizations of 
the universally i- and the universally unibranched ring-homomorphisms, 
thereby recovering some facts about “radiciel” homomorphisms from [ 101 
and placing [ 13, Theorem B] into a more general setting. 

The underlying definitions are the following. Let JR + T be a ring- 
homomorphism. We say that f is an i-homomorphism in case 
Spec(Z’) + Spec(R), its induced function on prime ideals, is an injection. We 
say that f is unibrunched (resp. mated) if, for each p E Spec(R) (resp., for 
each p E Spec(R) such that f(p)T# T), there exists a unique q E Spec(T) 
such that f-‘(q) = p. Finally, if P is a property of (some) ring- 
homomorphisms, then f is said to be (have, satisfy) universally P if, for each 
change of base R + S, the induced homomorphism S + S OR T satisfies P. 

The first three definitions given above appear in [ 15, 13,4], respectively, 
for the case in which f is an inclusion map of integral domains. For the 
general situation, it is evident that 

unibranched * mated * i-homomorphism. 

Moreover, neither of these implications has a valid converse. To see this in 
the first case, it is enough to consider R --t R,, where p is a nonmaximal 
prime of R; and the second is also easy: cf. [ 15, Example 2.31. 

To aid our study of universal properties, we make the following definition. 
Let P be a property of (some) ring-homomorphisms and let f: R -+ T be a 
ring-homomorphism. We say that f is strongly P iff satisfies P and, for each 
q E Spec(T), the induced extension of fields, kR(f -l(q))+ k,(q), is 
(algebraic) purely inseparable. Note that a strongly i-homomorphism is 
termed “radiciel” in [lo], and a strongly unibranched inclusion map of 
integral domains is called a U-extension in [ 131. It is easy to use the D + M 



UNIVERSALLY GOING-DOWN HOMOMORPHISMS 413 

construction to find a unibranched ring-homomorphism which is not strongly 
unibranched. Indeed, in [ 13, Example, p. 7091, McAdam presents such a 
unibranched inclusion map g: R + T of integral domains which is not 
strongly unibranched, and he notes that the induced map g,: R (X] -+ T[X] is 
not unibranched. It will follow from Theorem 2.1 that g, is not even an 
i-homomorphism. 

An “i-homomorphism” variant of the next result was anticipated by 
Grothendieck-Dieudonne [ 10, Proposition 3.7.1, p. 2461. The “unibranched” 
assertion was obtained by McAdam [ 13, Theorems B, 3 and 4) in case f is 
an inclusion map of integral domains. Finally, we note that 14, 
Proposition 3.11 has anticipated the “mated” case of the equivalence 
(i) u (ii) in Theorem 2.1. We shall only sketch how the techniques of 1131 
adapt to treat the general situation. 

THEOREM 2.1. For a ring-homomorphism f: R -+ T, the following are 
equivalent: 

6) f,: R IX1 + WI is an i-homomorphism (resp., unibranched; resp., 
mated). 

(ii) f is a strongly i-homomorphism (resp., strongly unibranched; 
resp., strongly mated). 

(iii) There exists n > 1 such that f,,: R[X, ,..., X,] --t T[X, ,..., X,] is an 
i-homomorphism (resp., unibranched; resp., mated). 

(iv) For each n > 0, f,: R[X ,,..., X,] + T[X, ,..., X,] is an 
i-homomorphism (resp., unibranched; resp., mated). 

(v) For each n > 0, f,: R[X, ,..., X,] -+ T[X ,,..., X,] is a strongly 
i-homomorphism (resp., strongly unibranched; resp., strongly mated). 

Prooj It is evident that (v) * (iv) * (i) * (iii). 
Next, we remark that [ 13, Theorem 2 and Lemma 41 extend directly from 

the context of inclusions of integral domains to that of ring-homomorphisms. 
(Details of such modifications of 1131 will be left to the reader.) In 
particular, the resulting variant of [ 13, Theorem 21 now describes the 
preimage of any prime in R(X] under the map Spec(T[X]) --t Spec(R [Xl) 
induced by f, . 

(iii) a (i). It is enough to show that if f, has any of the three 
properties (i-homomorphism, unibranched, or mated), then so does f. The 
first and second of these are direct consequences of the following facts. If 
p E Spec(R) and q E Spec(T), then f -l(q) = p if and only if f ;‘(qT[X]) = 
pR[X]; and if Q E Spec(T[X]), then f ;‘(Q)n R = f -'(en 7’). For the 
“mated” conclusion, we also need to observe that if p E Spec(R), then 
f,(pR[X]) T[X] # T[X] if and only iff(p)T# T. 



414 DOBBSANDFONTANA 

(i) o (ii). Combine the preceding argument with a straightforward 
modification of the first and second paragraphs of the proof of [ 13, 
Theorem 3 1. 

(ii) =+ (v). By induction on n, we can assume that n = 1. Since 
(ii) * (i), it remains only to show that if Q E Spec(T[X]), then 
kRIX,(f;‘(Q)) -+ krrx,(Q) is a purely inseparable extension. In case Q = 
qT[X] for some q E Spec(r), we can argue as in [ 13, p. 710, lines 25-301. In 
the remaining case, Q is an “upper” and, sincef, is an i-homomorphism, so 
is f ;l(Q); thus, the (modified) proof of [ 13, Lemma 41 may be applied, and 
the proof is complete. 

Before showing that strongly P is equivalent to universally P for each of 
P = i-homomorphism, unibranched and mated, we collect some useful infor- 
mation about universal properties. (As usual, a property P is said to be a 
universal property in case P is equivalent to universally P: cf. 110, pp. 
239-2401.) 

PROPOSITION 2.2. Let P be a property of (some) ring-homomorphisms 
which is preserved by direct limits. Then P is a universal property if and only 
if both the following conditions hold: 

(a) Iff: R + T has P, then so does f,: R[X, ,..., X,] -+ T[X, ,..., X,] for 
each n > 1. 

(b) Iff: R -+ T has P and if J is an (finitely generated) ideal of R, 
then the induced homomorphism R/J-+ TIJT also has P. 

Prooj The “only if’ half is clear, even without the hypothesis about 
direct limits, since T[X, ,..., X,] g R [X, ,..,, X,] OR T and T/JT z R/J@, T. 

Conversely, consider any change of base, g: R + S. By [ 10, 
Proposition 6.3.8, p. 1361, S is a direct limit of finitely presented R-algebras. 
More precisely there exists a directed system of ring-homomorphisms, 
{gi: i E I}, such that gi: R -+ Si is finitely presented for each i E I and 
l& gi: R + 4 Si is R-isomorphic to g. For each i, write Si g R [X, ,..., X,,]/J, 
for a suitable (finitely generated) ideal Ji. Assuming thatf: R --t T has P, we 
may use (a) and (b) to show that Si-+ T[X ,,..., X,,]/J,T[X, ,..., X,,] has P, 
for each i; that is, Si -+ Si @R T has P. Since tensor product commutes with 
direct limit, the direct limit of {Si + Sj OR T} is identified as S -+ S OR T, 
which, by the preservation hypothesis, must have P. This completes the 
proof. 

COROLLARY 2.3. A ring-homomorphism f: R -+ T is universally going- 
down if (and only if) f,: R [X, ,..., X,] + T[X, ,..., X,] satisfies GD for each 
n > 0. 
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Proof: It was shown in [ 5, Theorem 2.11 that GD is preserved by direct 
limits. Moreover, it is easy to see that P = GD satisfies condition (b) in the 
statement of Proposition 2.2. Thus, the required assertion follows from the 
proof of Proposition 2.2. 

LEMMA 2.4. Let P be one of the following six properties of (some) ring- 
homomorphisms: i-homomorphism, unibranched, mated, strongly 
i-homomorphism, strongly unibranched, and strongly mated. Then: 

(a) P is preserved by direct limits. 

(b) If a ring-homomorphism f: R --) T has P and if J is an ideal of R, 
then the induced homomorphism 3 R/J -+ T/JT also has P. 

Proof. (a) The assertion for i-homomorphisms was proved in [5, 
Proposition 2.31. To approach the remaining assertions, we fix the following 
notation. Let (I, <) be a directed set, and let (Ai, fij) and (Bi, gij) each be 
directed systems of rings indexed by I. For each i E Z, let hi: Ai -+ Bi be a 
ring-homomorphism satisfying the property in question such that, whenever 
i< j in I, then gijhi=hjfij:Ai+Bj. Set A=QAi, B=&Bi, and h= 
Q hi. The issue is whether h: A + B also has the property in question. 

For the “unibranched” assertion, it is now enough to show that if p E 
Spec(A), then there exists q E Spec(B) such that h-‘(q) = p. To this end, 
consider pi = f i ‘(p), where fi: Ai + A is the canonical structure map. By 
[ 10, Proposition 6.1.2(ii), p. 1281, lirr~ pi z p. By hypothesis, for each i, pi = 
hi ‘(qi) for some uniquely determined qi E Spec(B,). It can be shown that 
gj;‘(qk) = qj whenever j ,< k in I. Indeed, since hj is assumed to be an 
i-homomorphism, it is enough to show that h/‘(g,;‘(q,)) = hj ‘(qj), and we 
leave this calculation for the reader. Now, it follows from [ 10, 
Propositions 6.1.2(i) and 6.1.6(i), pp. 128-1301 that {qi) is a directed system 
and that q = lint qi is a prime of B. To see that q is as desired, one need only 
show that f ;‘h-‘(4) = pi for each i. However, if gi: Bi + B is the structure 
map, observe that 

= hi’g;‘(q) = h;‘(q,) = pi. 

This establishes the “unibranched” assertion. 
The “mated” assertion may be proved by repeating the above argument 

for the “unibranched” fact, after noticing that h(p)B #B implies 
hi(pi) Bi # Bi for each i. 

For the “strongly...” assertions, consider q E Spec(B), and set p = h ~ ‘(9) 
and l= char(k,(q)). Suppose I> 0. (The case I= 0 is similar and hence 
omitted.) We need only to show that for each u E k,(q), there exists n > 1 
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such that U@ E k,(p). Without loss of generality, u E B/q; write u = b + 4, 
with b E B. Setting qi = g,‘(q) and pi = f;‘(p), we can find an index j and 
an element bj E Bj such that gj(bj) = b. Next a calculation using gjhj = hz 
reveals that hI:‘(qi) = pj, which leads to an inclusion of fields k,,(pj) + 
k,j(qj). By hypothesis, there exists IZ > 1 such that (bj + qj)‘” E k,i(pj). As u 
may be assumed nonzero, the construction of quotient fields leads to 
elements cj, dj E Aj\pj such that 

hj(cj) b,;” - hj(dj) E qj. 

Mapping via Bj+ B -+ B/q reveals that u’” E k,(p), the point being that 
hj ‘(qj) = pj and cj 6 pi force hj(cj) E B,\q,, whence gjhj(cj) E B\q. 

(b) The “i-homomorphism” assertion follows easily by observing that 
PWJT) = f-‘(4)/J f or each (prime) q of T which contains JT, the 
“unibranched” assertion, by observing that f - ’ (q) 3 J implies q 3 JT, and 
the “mated” assertion, by observing that if p is a prime of R containing J 
such that (p/J)(T/J) # T/J, then pT# T. For the “strongly...” assertions, 
note that if q E Spec(T) contains JT and if p = f -l(q), then kRIJ(p/J) -+ 
k,&q/JT) may be identified with k,(p) + k,(q). This completes the proof. 

We next close the section by giving its main result. 

THEOREM 2.5. Let P be any one of the following three properties: 
i-homomorphism, unibranched, mated. Then, for each ring-homomorphism 
f: R + T, the following conditions are equivalent: 

(i) f is universally P; 

(ii) f is strongly P; 

(iii) f is universally strongly P. 

Proof (iii) 3 (i). Trivial. 

(i) > (ii). Apply the implication (i) * (ii) established in Theorem 2.1. 

(ii) = (iii). Assume that f is strongly P. By the implication (ii) * (v) 
established in Theorem 2.1, f,: R [X, ,..., X,,] -+ T[X, ,..., X,] is strongly P for 
each n. Moreover, Lemma 2.4 shows that the strongly P property is 
preserved both under direct limits and under formation of factor-rings. The 
desired conclusion now follows from the proof of Proposition 2.2. 

3. GOING-DOWN AND UNIVERSALITY 

This section studies universally going-down ring-homomorphisms (cf. the 
“morphismes universellement genlrisants” of [ 10, Definition 3.9.2, p. 253 I). 
Its main result, Theorem 3.15, uses the “weak normalization” notion 
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introduced by Andreotti-Bombieri [l] to obtain, i.a., an “internal” charac- 
terization of the universally going-down inclusion maps of integral overrings 
of integral domains. In this way, new light is shed on the overrings appearing 
in McAdam [ 13, Theorem C]. 

We begin with a sharp contrast to Theorem 2.5: strongly GD does not 
imply universally going-down. Example 3.1 is inspired by work of Doering- 
Lequain [ 6, Example C 1. 

EXAMPLE 3.1. There exist an integral domain R and an overring T of R 
such that the inclusion map f: R -+ T satisfies GD and is strongly (univer- 
sally) unibranched, although f, : R [X] + T[X] does not satisfy GD. 

For the construction, let F be a field and { Ti} a denumerable set of 
(independent) i n d eterminates over F; set k = F(T, , T, ,... ). Let X, Y, , Y, be 
indeterminates over k, set K = k(X, Y,, Yz) and consider the one- (resp., 
two-) dimensional valuation domain I’, = k(Y, , Y,)(X]t,, (resp., V, = 
k(X)[ Y,](,,, + Yzk(X, Yi)[ Y21cy,,), with quotient field K. Let M, (resp., M,) 
denote the maximal ideal of I’, (resp., V,). It is well known (cf. [ 12, 
Theorem 1071) that the maximal ideals of the Priifer domain A = V, n V, 
are m,=M,nA and m,=M,n7A; and that Ami= Vi for i= 1,2. Hence 
the only nonzero nonmaximal prime of A is 

and it is straightforward to verify that A, = k(X, Yl)[ Y,]c,z, (cf. 
[2, Theorem 1, (a), p. 376)). 

Next, note that there is an F-algebra isomorphism g,: kA(m,) + k since 
k,(m,) = V,/M, r k( Y, , YJ; similarly, k,(m,) % k(X), leading to an 
isomorphism g,: k,(m,) + k. Let U: k(m,) + k(m,) x k(m,) be the composite 
of g,, the diagonal map k+ k x k, and g;’ X g;‘: k x k- k(m,) x k(m,). 
Let U: A + k(m,) X k(m,) be the product map, which is surjective (by the 
Chinese remainder theorem). Define R to be the pullback of u and v; view 
R c A in the usual way. The topological description of Spec(R) in [8, 
Theorem 1.4, especially (c), p. 3351 yields that R has but three distinct 
primes 0 c q = pf’R cm = m, n m2, and that R, = A,. In particular, 
k(q) = k, (PI. 

Set T= V, and consider the inclusion map f: R + T. The above infor- 
mation about spectra easily reveals that f is unibranched and satisfies GD 
(and going-up). Moreover, for each prime w E Spec(T), the canonical 
injection kR(f-‘(w)) + kr( w is the identity map (and, hence, a purely ) 
inseparable extension). To see this for w the maximal ideal of T, recall from 
[8, Theorem 1.4(a),(b)] that R/m is canonically k(mJ, viz., k,(M,); for w 
the nonzero nonmaximal prime of T, note that kT(w) = k,(p), which we have 
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seen coincides with k,(q); and for w  = 0, the injection in question is just the 
identity map K-+ K. Thus f is strongly unibranched. 

Returning to our construction, we infer that f,: R [X] -+ T[X] is 
unibranched by Theorem 2.1 (or [ 13, Theorem 31). Hence, to show that f, 
does not satisfy GD, it is enough to show that f, does not satisfy going-up. 
This may be done in two ways: either modify the argument of Doering-Le- 
quain [6, p. 592, lines 28-351 or use the folklore result that an inclusion 
h: B -+ D is integral if (and only if) h,: B[X] + D[X] satisfies going-up. (Of 
course, f is not integral: cf. [ 16, Proposition 21.) This completes the proof of 
Example 3.1. 

We pause to emphasize that [ 14, Theorem 41 shows that no example 
R c T with the properties asserted in Example 3.1 can be integral. Put 
differently, Example 3.1 shows that one cannot remove the integrality 
hypothesis for the (i) * (iv) part of [ 13, Theorem C]. 

Example 3.1 has indicated that the universally going-down ring- 
homomorphisms cannot be characterized as the strongly GD maps. Before 
trying to see how they can be characterized, it seems prudent to collect some 
examples. A first source of examples has a homological origin: if a ring- 
homomorphism JR + T makes T a flat R-module, then f is universally 
going-down. The reason is simply that flat implies GD (cf. [ 12, Exercise 37, 
p. 441) and flatness is a universal property [2, Corollary 2, p. 191. A second 
family of examples is topological: each universally open ring-homomorphism 
is universally going-down. (Cf. [ 10, Corollaire 3.9.4, p. 2541. As usual, a 
ring-homomorphism R + T is said to be open if its induced function 
Spec(T)+ Spec(R) is open in the Zariski topology.) In his study of “univer- 
sally open,” Ferrand [7] has observed that any (GD) ring-homomorphism 
satisfying the hypotheses of the classical “going-down theorem” of 
Cohen-Seidenberg [3, Theorem 51 actually fits into this second family of 
examples. It is interesting to note that “universally open” does not imply 
“flat” (cf. [ 10, Remarques 7.3.12(ii), p. 3411); “flat” does not imply “open” 
(consider R --) R,, for a nonmaximal prime p); and “open” does not imply 
“universally going-down” (consider, for instance, [4, Example 3.91). A third 
family of examples, the homomorphisms defined on zero-dimensional rings, 
will be treated in Proposition 3.3. For motivation, recall the case of discrete 
schemes treated in [ 10, Proposition 7.3.13, p. 3411. 

As usual, r(A) will denote the radical of a ring A; Ared will denote A/r(A); 
and if f: R + T is a ring-homomorphism, then fred will denote the induced 
map Rred -+ Teda 

LEMMA 3.2. (a) A ring-homomorphism j’z R --f T satisfies GD if and 
only iffred satisfies GD. 

(b) If Z is an ideal of a ring R such that Z c r(R), then the canonical 
surjection R --) R/I satisfies GD. 
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Proof. (a) This follows easily from the observation that if q E Spec(T), 

then fr;&/V)) = f ?WV). 
(b) One need only recall that r(R) is the intersection of the prime 

ideals of R. (Much more could be said. For instance, Spec(R/Z)+ Spec(R) is 
a homeomorphism. Cf. [ 10, Proposition 1.1.6, p. 1951.) 

PROPOSITION 3.3. If JR + T is a ring-homomorphism and if 
dim(R) = 0, then f is universally going-down. 

ProoJ Consider any change of base, R + S. Since Rred is zero- 
dimensional and reduced, it is von Neumann regular (cf. [ 12, Exercise 12, 
p. 631) that is, “absolutely flat” in the terminology of [2]. Accordingly, by 
[2, Exercise 16(d), p. 1431, fred is flat and thus, by the above remarks, 
universally going-down. Therefore the map g: Sred --t Sred ORrrd Tred 
satisfies GD. 

Notice that the induced map f,: S -+ S OR T leads to a commutative 
diagram 

S red - cs @R T)red 

1 
‘red @I&, Tred -----+ @red @bred Tred)red 

in which the top arrow is (fs)red, the bottom is the canonical surjection TC, 
the left vertical map is g, and the right is the canonical isomorphism [ 10, 
Corollaire 4.5.12, p. 2711. Since Lemma 3.2(b) impies that 71 satisfies GD, so 

do n&T and (f&d. An application of Lemma 3.2(a) completes the proof. 
It is interesting to note that the notation in the preceding proof becomes 

more compact if one uses the criterion from Corollary 2.3, for then S = 
R IX, >..., x,] and g: Rred [x, ,..., x,,] + T,,,[x, ,..., x,,] is just (fre&. 

We next introduce a notion which is general enough to encompass both 
the integral contexts of [ 1, 171 and such quintessentially nonintegral GD 
contexts as localizations. To wit, we say that a ring-homomorphismfi R + T 
is quasi-lying-over (in short, QLO) if, for each p E Spec(R) such that 
f(p)T# T and ker(f) c p, there exists at least one q E Spec(Z’) such that 
f-‘(q) = p. Evidently, as the terminology suggests, lying-over implies QLO. 
Moreover, f: R -+ T is QLO if and only if the inclusion map f(R) -+ T is 
QLO. Thus, integral maps and the canonical inclusions A + A [X] all satisfy 
QLO (cf. [ 12, Theorem 441). Moreover, it is essentially well known (and 
easy to see) that GD implies QLO (cf. [ 12, Exercise 38, p. 451). In 
particular, flat maps (and, a fortiori, localizations) all satisfy QLO. We next 
record a useful example. 
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Remark 3.4. (a) (Q uasi-)lying-over does not imply GD. One way to 
see this is to appeal to the famous examples of Cohen-Seidenberg [3, 
Section 31. For another way, let R be a quasilocal one-dimensional integral 
domain with maximal ideal m, quotient field K, and residue field k = R/m. 
One verifies easily that the product map f: R -+ K )( k is QLO (indeed, 
strongly unibranched) but does not satisfy GD. 

(b) QLO does not imply LO. To see this, it is enough to consider the 
inclusion map R + K of an integral domain R which is properly contained in 
its quotient field K. 

(c) It seems worthwhile to observe that not every ring-homomorphism 
satisfies QLO. For example, consider the inclusion map of any local 
(Noetherian) integral domain of (Krull) dimension n > 2 into a dominating 
DVR overring. 

We next put the QLO concept to work. Let f: R -+ T be a ring- 
homomorphism which is QLO. Let p E Spec(R) be such thatf(p)T# T, and 
consider the canonical map f,: R, + T,. If ker(f) c p, it is easy to see that 
some prime of T, lies over pRP, and so 

I;, = n {q E RWT,): f;‘(s) = PR,} 

is a proper ideal of T,. If ker(f) & p, F,, = T,. Set 

l = \ char(k,W)~ if char(k,(p)) f 0 

I 1, if char(k,(p)) = 0. 

Inspired by Andreotti-Bombieri [ 1, p. 4331 and Traverso [ 17, p. 5851, we 
introduce the sets 

RP’ = f,(R,) + F. 

and 

RT = {X E TP: there exists II > 1 such that x’~ E R; ). 

(Thus, if char(k,(p)) = 0, then RT = Rz.) In general, we have 

f,(R,) c R; c R; c T,. 

Proposition 3.7(a) will establish that RJ and R,* are rings: it will then follow 
that Rz is integral over Ri. 

It is now possible to make the key definition in this paper. Iff: R --f T is a 
ring-homomorphism (satisfying QLO), we say that f satisfies the UGD 
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property in case f satisfies GD and, for each p E Spec(R) such that 
f(p)T# T, one has Rz = Tp. (Of course, one need only consider such p 
which also satisfy ker(f) c p.) We turn immediately to some examples. 

Remark 3.5. (a) If p is a prime ideal of a ring R, then the canonical 
ring-homomorphism R + R, satisfies UGD. To see this, it remains only to 
verify that R$ = R, 4 ( ) for each prime q of R which is contained in p. This, 
in turn, is evident since (Rp& may be identified with R, and Rt = 4 
R, + qR, = R,, whence Rz = R, as well. 

(b) If T is a flat overring of an integral domain R, then the inclusion 
map R --f T satisfies UGD. Indeed, if p E Spec(R) is such that pT # T, then 
flatness assures that T c R, (cf. [ 16, Theorem 1 ]), whence T, = R, and Rp’, 
R; both coincide with T,. 

(c) It is easy to show that QLO does not imply UGD. Indeed, if R is 
a field k, then the inclusion map k + k[X] does not satisfy UGD since the 
prime p = 0 is such that T, = k]X] properly contains k = k + 0 = R ,’ 
(=R;). 

Matters simplify in the integral case, essentially for “going-up” reasons. 
Indeed, if a ring-homomorphism f: R -+ T is integral (that is, makes T 
integral over f(R)), then for each p E Spec(R), which contains ker(f), Fp is 
just the Jacobson radical of T,, since the prime ideals of T, which lie over 
pRp are precisely the maximal ideals of T, (cf. [ 12, Theorem 471). 

Inspired by [ 1, Definizione 1, p. 4371 and [ 171, we define the weak (resp., 
semi-) normalization of R (inside T) with respect to a given quasi-lying-over 
ring-homomorphism f: R -+ T to be {x E T: for each p E Spec(R) such that 
f(p)T# T, R,* (resp., Rl) contains the canonical image of x in Tp}. As a 
direct consequence of the definitions, we have 

Remark 3.6. Let an injective ring-homomorphism f: R -+ T be integral. 
Then f satisfies UGD if and only if f satisfies GD and T is the weak 
normalization of R with respect to f. 

PROPOSITION 3.7. Let f: R + T be a ring-homomorphism which is QLO 
and let p E Spec(R) be such that f(p)T # T and ker(f) c p. Then: 

(a) R: and Rz are subrings of T,. 

(b) FD is a maximal ideal of both Rl and Rp*. 

(c) The canonical map k,(p) + Ri/Fp is an isomorphism of fields. 
The canonical inclusion k,(p) -+ R$/Fp is a purely inseparable field 
extension. 

Proof (a) Since Fp is an ideal of T,, it is evident from the definition 
that Rz is a ring. As for Rz, we may now assume that l> 2. To see that R,* 
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is closed under products, consider x, y in Rp*. Then xim, y’” E Rl for some 
m, n > 1 and, since Ri is closed under products, (~y)‘~*” E RJ; that is, 
xy E Rp*. As for differences, let x, y, m, and II be as above, and observe that 
the canonical ring-homomorphism 

induced by f, is an injection. Accordingly char(T,/F,) = 1, and so IT, c F,. 
However, by the binomial theorem, 

(x - y)lm+’ - X’m+n + y’m+” E IT, 

so that (x - y)lmtn E xlm+” - y’mtn + FP c Rp’, as desired. 

(b) and (c). The canonical ring-homomorphism from the field R,/pR, 
to RJ/FP has image (f,(R,) + F,,)/FP = R;/FP. Thus Ri/FD s k(p), a field, 
and so FP is a maximal ideal of Rp’. 

We shall show next that F, is also a maximal ideal of Rt. By integrality 
of R$ over R; (cf. [ 12, Theorem 47]), it is enough to prove that F, is prime 
in Rt. Without loss of generality, I > 2. Suppose x, y E R: are such that 
xy E F,. Since x’*, y”’ E Rl for suitable m and n, we compute as above that 

(x’~)‘~ . (y’“)‘” = (xy)lm+” E F,. 

As FP is a prime (because maximal) ideal of RJ, we may assume, without 
loss of generality, that (x’“)” = x’~‘” E F,. However, by its very 
construction, FP is a radical ideal of T,, and so x E F,, as desired. 

The definition of Rz now assures that R$/Fp is a purely inseparable field 
extension of RJ/FP, that is, of k(p). This completes the proof. 

If a ring-homomorphism f: R -+ T is integral and if p E Spec(R) contains 
ker(f), then Rz and RT are each quasilocal (with maximal ideal FJ. Indeed, 
we noted following Remark 3.5 that F, is the Jacobson radical of T, in this 
case; by using integrality of TP over Rf in the same way, we see that the 
Jacobson radical of R,* is F, n R,* = F,, which we know, by 
Proposition 3.7(b), is a maximal ideal of R,* and, hence, must be the only 
maximal ideal of Rt. The argument for R; is similar. 

Proposition 3.9 will give a modest generalization of the preceding obser- 
vation. First, we shall show that some weak version of “integrality” is 
necessary for the conclusion. 

EXAMPLE 3.8. There exist an injective ring-homomorphism f: R - T 
which is QLO and a prime p of R for which f(p)T # T and Rz is not 
quasilocal. 

Indeed, one need only consider the second example mentioned in 
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Remark 3.4(a), taking care to arrange also that char(k) = 0. Then, with 
p=m (and T=K x k), we find that 

R$=R,t=f(R)+(Kx {O})=Kxk (=T=T,) 

which, as desired, is not quasilocal. (Note also that R$ r K X (0) g T, 
canonically, but f is not UGD since f does not satisfy GD.) 

The above f does not satisfy going-up, and thus gives additional 
motivation for 

PROPOSITION 3.9. Let the ring-homomorphismf: R + T satisfy the QLO, 
going-up, and incomparability properties. Then for each p E Spec(R) such 
that f (p)T # T and ker(f) c p, the rings Rz and R,’ are each quasilocal. 

Proof The rings in question are well-defined. As Rt is integral over R;, 
it is enough to consider R;. By hypotheses, the maximal ideals of Tp are 
precisely the primes of T, which lie over pRp, and so F, is just the Jacobson 
radical of T,. Consider the commutative diagram of ring-homomorphisms 

in which the top surjection is obtained from Proposition 3.7(c). The diagram 
is evidently Cartesian (that is, a pullback), and so [S, Theorem 1.4(b),(c)] 
assures that if m is a maximal ideal of Ri other than F,, then there exists a 
unique ME Spec(T,) such that MT‘I R; = m. Since the inclusion map 
R: + T, inherits incomparability from (f, and) f, it follows that M is 
maximal in Tp. By the above observation about the Jacobson radical, 
F, c h4, and so Mn R,i = F,, contradicting the supposition about m. Thus 
F,, is the only maximal ideal of Rl, completing the proof. 

We next introduce a useful technical concept. A ring-homomorphism 
f: R + Twill be said to be quasi-going-up (in short, QGU) if, for each pair of 
primes p, c p2 of R such that f(p,)T # T and each q1 E Spec(T) such that 
f -‘(q,) = p,, there exists q2 E Spec(7) such that q, c q2 and f -‘(qJ = p2. 
It is easy to see that fi R -+ T is QGU if and only if the inclusion map 
f(R) + T is QGU. The next remark collects some relevant material. 

Remark 3.10. (a) It is easy to see that a ring-homomorphismf: R -+ T 
is QGU if and only if f,: R, + T, satisfies going-up for each p E Spec(R) 
such that f(p)T # T. (Only such p which also contain ker(f) need be con- 
sidered.) 
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(b) One readily infers from (a) that QGU implies QLO. 

(c) Any localization R + R, is QGU, indeed universally QGU. 

(d) Integral homomorphisms satisfy QGU. Indeed, going-up implies 
QGU. However, the converse fails: consider R -+ R, for any nonmaximal p E 
Spec(R). 

(e) By using the information in Remark 3.5(b), we see that QGU is 
satisfied by the inclusion map R + T of each flat overring T of an integral 
domain R. A generalization of this fact will be given in Corollary 3.12(c). 

We turn now to some of the consequences of UGD. 

PROPOSITION 3.11. If a ring-homomorphism J R -+ T is UGD, then f,: 
R, + T, is unibranched for each p E Spec(R) such that f(p)T# T and 
ker(f) = P. 

Proof: Consider primes p1 c p of R such that f(p)T# T. If distinct 
primes of Tp each lie over p1 R,, 
each lie over p, R, . 

then (the induced) distinct primes of T,, 
Accordingly, suppressing the subscript “ 1,” it is enough 

to show that Fp is’the only prime of T, lying over pRp. (Of course, Fp is a 
maximal ideal of T, by Proposition 3.7(b) since the UGD hypothesis gives 
Tp = R,*.) By its very definition, Fp lies over pRp and is contained in any q E 
Spec(T,) which lies over pRp. Then, by maximality of F,, any such q must 
be F,, completing the proof. 

Part (a) of the next result is reminiscent of Proposition 3.9, and is to be 
contrasted with Example 3.8. 

COROLLARY 3.12. Let f:R + T be a ring-homomorphism satisfying 
UGD. Then: 

(a) For each p E Spec(R) such that f(p)T# T and ker(f) c p, the 
rings Rf (=T,) and Rl are each quasilocal. 

(b) f is universally (strongly) mated. 

(c) f is QGU. 

ProoJ: (a) By integrality, we need only consider R:, that is, T,. It is 
enough to show that Tp cannot have a maximal ideal M other than F,. 
Setting m = f;l(M), we infer via Proposition 3.11 that m # pR,. Then, 
since f, inherits GD from f, there exists Q E Spec(T,) such that Q c Fp and 
f; l(Q) = m. Since f, is unibranched, Q = il4, although Q is evidently not 
maximal in T,. Hence no M of the above kind exists. 

(b) If q E Spec(7’) and f-l(q) = p, then T, z T, by [9, Cor. 5.21. 
Consider the inclusions 

k,(p) + b(q) + T,IqT, = Rp*/qTp. 
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Since we showed in the proof of Proposition 3.11 that F, is the only prime of 
T, which lies over pRp, it follows that qTp = Fp, and so Proposition 3.7(c) 
now implies that k,(q) is purely inseparable over k,(p). By Theorem 2.5, it 
remains only to prove that f is mated. However, this is evident since f 
satisfies GD (by virtue of UGD) and is an i-homomorphism (as a conse- 
quence of Proposition 3.11). 

(c) If p E Spec(R) is such that ker(f) c p and f(p)T # T, then f, is 
unibranched (by Proposition 3.11) and inherits GD fromf. Thus f, satisfies 
going-up, and an application of the parenthetical part of Remark 3.10(a) 
completes the proof. 

COROLLARY 3.13. Let (I, <) be a directed set, and let (Ai,fii) and 
(Bi, gij) each be directed systems of rings indexed by I. For each i E Z, let hi: 
Ai + Bi be a ring-homomorphism satisfying UGD such that, whenever i < j 
in I, then gijhi=hjfij:Ai-+Bj. Set A=l&Ai, B=l&B,, and h=@h,. 
Then h: A + B is UGD. 

ProoJ We shall first verify the criterion in Remark 3.10(a), to show that 
f is QGU. Consider p E Spec(A) such that h(p)B # B, as well as primes p, c 
p2 c p of A and q, E Spec(B) such that h; ‘(ql BP) = p1 A,. Our task is to 
produce q2 E Spec(B) such that q1 c q2 and h;‘(q,B,) = p2A,. 

Use the structure maps A: Ai + A and gi: Bi + B to yield pi = f ,T ‘(p), 
pli = f ,‘(pl), pzi = f ,:‘(pJ, and q,i = g,:‘(q,). Evidently, q,i lies over pli 
for each i (since g,h, = hJ>. Moreover, Corollary 3.12(c) shows that hi 
satisfies QGU; and hi(pzi) Bi # Bi. Thus we obtain qzi E Spec(B,) such that 
q,[ c qzi and h;‘(q,i) = pzi. However, {qIi} forms a directed system, indeed 
g,,;l(qpk) = qzj whenever j < k in Z, since (hj)p,, is unibranched (and, hence, 
an i-homomorphism) by virtue of Proposition 3.11. It remains to verify that 
q = l& qli is a satisfactory q2, and this follows easily from the fact that A = 
u f,(Ai). Thus h is QGU and, a fortiori, QLO. 

Moreover, h satisfies GD, since direct limits preserve GD [5, 
Theorem 2.11. Hence, it remains only to show that A,* = B, for each p E 
Spec(A) such that h(p)B # B and ker(h) c p. Consider pi= f (r’(p) for 
each i. As usual, there are canonical isomorphisms A, g lir~(A~&~ and B, ” 
l&(Bi),i (cf. [lo, Propositions 6.1.5 and 6.1.6(ii), p. 129-1301). Let F,,i 
(resp., FJ be the ideal arising in the construction of (Ai); (resp., A;). Then 
there is a canonical map m: lir~~ Fpi + F, which is compatible with the second 
canonical isomorphism mentioned above; thus m is injective. It suffices to 
prove that m is surjective, for then Al g lir~+~(A~)i, and it readily follows that 
A,* z @(Ai); zz B,. 

As for the surjectivity of m, consider v E Fp. Viewing v as the canonical 
image of vi E (Bi&[ for some i, we need only show that vi E Fpi. As 
ker(h) c pi and hi(pi) Bi # Bi, Proposition 3.11 gives a unique qi E Spec(B,) 
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such that hi ‘(qi) = pi; thus, FPI = qi(Bi)pi. Now, since we have seen that h is 
QLO, there exists q E Spec(B) such that h-‘(q) = p; of course, u E qB,. 
Necessarily, g;‘(q) = qi, whence the inverse image of qB, under the map 
(Bi)ri-+ B, is qi(Bi)pi = Fpi. As vi is in this inverse image, the proof is com- 
plete. 

We come now to a fundamental step in this section’s program. 

PROPOSITION 3.14. Letf: R + T be a ring-homomorphism. If f,: R[X] + 
T[X] is mated and f satisfies GD, then f is UGD. 

Proof By Theorem 2.1, f is strongly mated. Now, let p E Spec(R), such 
that f(p)T# T. As f is an i-homomorphism (because mated) and satisfies 
GD, it is easy to see that f,: R, -+ T, is unibranched. 

We claim that Tp is quasilocal, with maximal ideal F,. Indeed, consider 
any maximal ideal qT, of T, (where q E Spec(T) is maximal with respect to 
the property that p1 = f-l(q) c p). To check that each element u E qT, lies 
in F,, we shall show that u E QT, for each Q E Spec(T) such that 
f; ‘(QT,) = pRp. To this end, use the fact that f satisfies GD in order to find 
Q, E Spec(Z’) such that Q, c Q and f -‘(Q,) = p,. Since& is unibranched, it 
follows that Q, Tr = qT,, whence u E Q, Tr c QT,. This proves the claim. 

Now let q denote the prime of T such that qTp = F,. A useful fact about 
localizations [9, Corollary 5.21 guarantees that T, FZ T,. It therefore remains 
only to prove that Rt = T,. 

It is enough to show that each element x E T, lies in R:. Let X denote 
x + qT, E k,(q). By the proofs initial observation, k,(q) is purely 
inseparable over k,(p); thus, 2’“’ E k,(p) for some m > 1. Hence there exists 
y E R, such that xlm - f,(y) E ST,. However, qT4 = F,,, by equating the 
maximal ideals of T, and T,. Thus xlm E Ri, completing the proof. 

The next result is in the spirit of Theorem 2.1 and [ 131. 

THEOREM 3.15. Let J R + T be a ring-homomorphism. Then the 
following five conditions are equivalent: 

(i) f is UGD and, for each m > 1, f,: R[X, ,..., X,] + T[X, ,..., X,] 
satisfies QGU. 

(ii) f,: R [X] + T[X] is UGD and, for each m 2 1, f,,,: [X ,,..., X,] + 
T[X, >...> X,,,] satisfies QGU. 

(iii) There exists n > 1 such that f,: R[X, ,..., X,] + T[X, ,..., X,] is 
UGD, and, for each m > 1, f,: R[X, ,..., X,] + T[X, ,..., X,] satisfies QGU. 

(iv) For each n > 0, f,: R[X, ,..., X,,] -+ T[X ,,..., X,] is UGD. 

(v) f is universally UGD. 

Proof It is trivial that (v) implies (iv). To see the converse, note first by 
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direct calculation that (GD and) UGD each satisfy condition (b) in the 
statement of Proposition 2.2. (The key point is that if q E Spec(7’) and p = 
f - ‘(9) 3 J, then F,,J = Fp/JT We omit the details.) In view of 
Corollary 3.13 and (iv), one ma;‘now apply the proof of Proposition 2.2, to 
conclude that f is universally UGD. 

As for the asserted equivalences, Corollary 3.12(c) yields (iv) * (iii); 
Corollary 3.12(b) and Proposition 3.14 combine to give (ii) * (i); and 
(iii) + (ii). The last of these follows from the general fact that a ring- 
homomorphism g: A --) B inherits UGD from its induced map g,: 
A [Xl + B[X], which is itself a consequence of the above calculation that 
UGD satisfies condition (b) of Proposition 2.2. It therefore remains only to 
show that (i) 3 (iv). 

By induction on n, we need only prove (i) zj (ii). Let f be as in (i). By 
Corollary 3.12(b) and Theorem 2.5, f,: R[X] + TlX] is strongly mated. Now 
consider P E Spec(R [Xl) such that f,(P) T[X] # T[X]. Since f, is mated, 
(f,),: R [Xlp + T[X], is evidently unibranched. Moreover, f, satisfies GD, by 
virtue of being both mated and QGU. One may now repeat the argument in 
the proof of Proposition 3.14, mutatis mutandis, to show first that T[X], has 
unique maximal ideal Fp and ultimately that R [Xl,* = T[X],. This 
establishes (ii) and completes the proof. 

COROLLARY 3.16. If a ring-homomorphism f: R + T is UGD and f,,: 
R IX, ,..., X,1 + T[X, ,...> X,] satisfies QGU for each n > 1, then f is univer- 
sally strongly GD. 

Proof Combining Theorem 3.15 with Corollary 2.3, Corollary 3.12(b) 
and Theorem 2.5, we see that f is universally going-down and universally 
strongly mated. This completes the proof. 

We can now give our principal application. We reiterate that it 
accomodates possibly nonintegral extensions. (Cf. Remark 3.5(b); contrast 
[ 13, Theorem C 1 and [ 14, Theorem 41.) It is in the spirit of Theorem 2.5 
(and (13 1). 

THEOREM 3.17. Let R be an integral domain, T an overring of R and 
f: R --) T the inclusion map. Then the following are equivalent: 

(i) f is universally going-down. 

(ii) f is universally strongly going-down. 

(iii) For each n > 0, f,: R[X, ,..., X,] + T[X, ,..., X,] is UGD. 

(iv) For each n > 0, f,: R[X, ,..., X,] -+ T[X, ,..., X,] satisfies going- 
down. 

(v) f is UGD and, for each n > 1, f,: R[X, ,..., X,] + T[X, ,..., X,,] is 
QGU. 

481190/2-IO 
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(vi) f is UGD and universally QGU. 

(vii) f is universally UGD. 

(viii) f is universally strongly UGD. 

Proof: In view of Corollary 2.3, Theorem 3.15 and Corollary 3.16, it is 
enough to prove that (iv) * (iii). Accordingly, assume (iv). One sees easily 
that it suffices to show f is UGD. Therefore, by Proposition 3.14, it is 
enough to prove that f,: R [X] -+ T[X] is mated. However, this is a direct 
consequence of [4, Theorem 2.11 since f, satisfies GD and T is an overring 
ofR. The proof is complete. 

Remark 3.18. (a) To underscore the importance of the “overring” 
hypothesis in Theorem 3.17 (and shed further light on its role in [ 131, [ 141 
and [4]), consider the following example. If k is a field andf: k+ k[X] is the 
inclusion map, then f is universally going-down (because flat) but is not 
UGD (by Remark 3.5(c)). 

(b) The example in Remark 3.5(a) shows, by virtue of Remark 3.10(c) 
and Theorem 3.17, that one cannot remove entirely the “integrality” 
hypothesis in [ 13, Theorem C, (vi) * (ii)] relating universally going-down 
and universally unibranched. 

It seems interesting to combine our results with the relevant literature for 
the integral case. (An instructive example in this regard is the inclusion map 
J k[[X2J311 -k[[Xll, h w  ere k is a field. Since f is integral and UGD, 
Theorem 3.17 implies that f is universally going-down. To motivate (ii) 
below, notice that the domain off is not seminormal.) This results in 

COROLLARY 3.19. Let R be an integral domain, T an integral overring 
of R, and f: R + T the inclusion map. Then the following are equivalent: 

(i) f is universally going-down. 

(ii) T is the weak normalization of R inside T (with respect to f ). 
(iii) f,: R [X] -+ T[X] satisfies going-down. 

(iv) f,: R [X] + T[X] is unibranched. 

(v) f is universally unibranched. 

Proof Since integrality is a universal property, Remark 3.10(d) and 
Theorem 3.17 imply that (i) is equivalent to f being UGD. Accordingly, in 
order to derive (i) u (ii) from Remark 3.6, we can assume that T is the weak 
normalization of R with respect to f and need only show that f satisfies GD. 
However [ 1, Theorem 1 ] implies that f induces a homeomorphism Spec( 7’) -+ 
Spec(R) (and hence an isomorphism of the corresponding partially ordered 
sets: cf. [ 11, p. 53]), whence f satisfies GD. 

By Corollary 2.3, Theorem 2.1, [ 13, Theorem C] and [ 14, Theorem 41, the 
remaining equivalences follow, to complete the proof. 
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In closing, we summarize the impact of Theorem 3.17 for integral 
extensions, which form the most important family of universally QGU 
homomorphisms. In view of Example 3.1 and Remark 3.18(a), 
Corollary 3.20 seems a pleasant GD-analogue of Theorem 2.5. 

COROLLARY 3.20. Let R be an integral domain, T an integral overring 
of R, and f: R -+ T the inclusion map. Then the following conditions are 
equivalent: 

(i) f is universally going-down. 

(ii) f is universally strongly going-down. 

(iii) f is UGD. 

(iv) f is universally UGD. 

(v) f is universally strongly UGD. 
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