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AN OVERRING-THEORETIC APPROACH TO POLYNOMIAL

EXTENSIONS OF STAR AND SEMISTAR OPERATIONS

GYU WHAN CHANG AND MARCO FONTANA

Abstract. Call a semistar operation ⊛ on the polynomial domain D[X] an

extension (respectively, a strict extension) of a semistar operation ⋆ defined on

an integral domain D, with quotient field K, if E⋆ = (E[X])⊛∩K (respectively,

E
⋆[X] = (E[X])⊛) for all nonzero D-submodules E of K. In this paper, we

study the general properties of the above defined extensions and link our work

with earlier efforts, centered on the stable semistar operation case, at defining

semistar operations on D[X] that are “canonical” extensions (or, “canonical”

strict extensions) of semistar operations on D.

1. Background results

Let D be an integral domain with quotient field K. Let F (D) denote the set of

all nonzero D–submodules of K and let F (D) be the set of all nonzero fractional

ideals of D, i.e., E ∈ F (D) if E ∈ F (D) and there exists a nonzero d ∈ D with

dE ⊆ D. Let f(D) be the set of all nonzero finitely generated D–submodules of

K. Then, obviously f(D) ⊆ F (D) ⊆ F (D).

Following Okabe-Matsuda [31], a semistar operation on D is a map ⋆ : F (D) →

F (D), E 7→ E⋆, such that, for all x ∈ K, x 6= 0, and for all E,F ∈ F (D), the

following properties hold:

(⋆1) (xE)⋆ = xE⋆;

(⋆2) E ⊆ F implies E⋆ ⊆ F ⋆;

(⋆3) E ⊆ E⋆ and E⋆⋆ := (E⋆)
⋆
= E⋆.

The semistar operation defined by E⋆ = K for all E ∈ F (D) is called the trivial

semistar operation on D and it is denoted by eD (or, simply, by e). A (semi)star

operation is a semistar operation that, restricted to F (D), is a star operation (in

the sense of [14, Section 32]). It is easy to see that a semistar operation ⋆ on D is

a (semi)star operation if and only if D⋆ = D.

If ⋆ is a semistar operation on D, then we can consider a map ⋆
f
: F (D) → F (D)

defined, for each E ∈ F (D), as follows:

E⋆
f :=

⋃
{F ⋆ | F ∈ f(D) and F ⊆ E}.

It is easy to see that ⋆
f
is a semistar operation on D, called the semistar operation

of finite type associated to ⋆. Note that, for each F ∈ f(D), F ⋆ = F ⋆
f . A semistar
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operation ⋆ is called a semistar operation of finite type if ⋆ = ⋆
f
. It is easy to see

that (⋆
f
)
f
= ⋆

f
(that is, ⋆

f
is of finite type).

If ⋆1 and ⋆2 are two semistar operations on D, we say that ⋆1 ≤ ⋆2 if E⋆1 ⊆ E⋆2 ,

for each E ∈ F (D). This is equivalent to say that (E⋆1)
⋆2 = E⋆2 = (E⋆2)

⋆1 , for

each E ∈ F (D). Obviously, for each semistar operation ⋆, we have ⋆
f
≤ ⋆. Let

dD (or, simply, d) be the identity (semi)star operation on D, clearly d ≤ ⋆, for all

semistar operation ⋆ on D.

We say that a nonzero ideal I ofD is a quasi-⋆-ideal if I⋆∩D = I, a quasi-⋆-prime

ideal if it is a prime quasi-⋆-ideal, and a quasi-⋆-maximal ideal if it is maximal in

the set of all proper quasi-⋆-ideals. A quasi-⋆-maximal ideal is a prime ideal. It is

possible to prove that each proper quasi-⋆
f
-ideal is contained in a quasi-⋆

f
-maximal

ideal. More details can be found in [11, page 4781]. We will denote by QMax⋆(D)

(respectively, QSpec⋆(D)) the set of the quasi-⋆-maximal ideals (respectively, quasi-

⋆-prime ideals) of D. When ⋆ is a (semi)star operation, the notion of quasi-⋆-ideal

coincides with the “classical” notion of ⋆-ideal (i.e., a nonzero ideal I such that

I⋆ = I).

If ∆ is a set of prime ideals of an integral domain D, then the semistar operation

⋆∆ defined on D as follows

E⋆∆ :=
⋂
{EDP | P ∈ ∆} , for each E ∈ F (D) ,

is called the spectral semistar operation on D associated to ∆. A semistar operation

⋆ on an integral domain D is called a spectral semistar operation if there exists a

subset ∆ of the prime spectrum of D, Spec(D), such that ⋆ = ⋆∆ .

When ∆ := QMax⋆f (D), we set ⋆̃ := ⋆∆, i.e.

E⋆̃ :=
⋂{

EDP | P ∈ QMax⋆f (D)
}
, for each E ∈ F (D).

A semistar operation ⋆ is stable if (E ∩ F )⋆ = E⋆ ∩ F ⋆, for each E,F ∈ F (D).

Spectral semistar operations are stable [7, Lemma 4.1(3)]. In particular, ⋆̃ is a

semistar operation stable and of finite type; and, conversely, if a semistar operation

⋆ is stable and of finite type then ⋆ = ⋆̃ [7, Corollary 3.9(2)].

Let T be an overring of an integral domain D, let ι : D →֒ T be the canonical

embedding and let ⋆ be a semistar operation on D. We denote by ⋆ι the semistar

operation on T defined by E⋆ι := E⋆, for each E ∈ F (T ) (⊆ F (D)).

Conversely, let ∗ be a semistar operation on T and let ∗ι be the semistar operation

on D defined by E∗ι

:= (ET )∗, for each E ∈ F (D).

It is not difficult to see that (∗ι)
f
= (∗

f
)ι and if ⋆ is a semistar operation of finite

type (respectively, a stable semistar operation) on D then ⋆ι is a semistar operation

of finite type (respectively, a stable semistar operation) on T (cf. for instance [10,

Proposition 2.8] and [32, Propositions 2.11 and 2.13]).

Clearly, if ⋆ = dD then (dD)ι = dT . In case ∗ = dT , the semistar operation of finite

type (dT )
ι (defined by E 7→ ET for all E ∈ F (D)) is denoted also by ⋆{T} and it is

stable if and only if T is a flat overring of D [37, Proposition 1.7] and [28, Theorem

7.4(1)].

By vD (or, simply, by v) we denote the v–(semi)star operation defined as usual

by Ev := (D : (D : E)), for each E ∈ F (D). By tD (or, simply, by t) we denote

(vD)
f
the t–(semi)star operation on D and by wD (or just by w) the stable semistar
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operation of finite type associated to vD (or, equivalently, to tD), considered by F.G.

Wang and R.L. McCasland in [38] (cf. also [15]); i.e., wD := ṽD = t̃D. Clearly

wD ≤ tD ≤ vD. Moreover, it is easy to see that for each (semi)star operation ⋆ on

D, we have ⋆ ≤ vD and ⋆
f
≤ tD (cf. also [14, Theorem 34.1(4)]).

We recall from [8, Chapter V] (see also [34, Chapter 4]) that a localizing system

of ideals of D is a family F of ideals of D such that:

(LS1) If I ∈ F and J is an ideal of D such that I ⊆ J , then J ∈ F .

(LS2) If I ∈ F and J is an ideal of D such that (J :D iD) ∈ F , for each i ∈ I,

then J ∈ F .

A localizing system F is finitely generated if, for each I ∈ F , there exists a

finitely generated ideal J ∈ F such that J ⊆ I.

The relation between stable semistar operations and localizing systems has been

deeply investigated by M. Fontana and J. Huckaba in [7] and by F. Halter-Koch

in the context of module systems [19]. In the following proposition, we summarize

some of the results that we need (see [7, Proposition 2.8, Proposition 3.2, Proposi-

tion 2.4, Corollary 2.11, Theorem 2.10 (B)]).

Proposition 1. Let D be an integral domain.

(1) If ⋆ is a semistar operation on D, then F⋆ := {I ideal of D | I⋆ = D⋆} is

a localizing system (called the localizing system associated to ⋆).

(2) If ⋆ is a semistar operation of finite type, then F⋆ is a finitely generated

localizing system.

(3) Let ⋆F or, simply, ⋆ be the semistar operation associated to a given localizing

system F of D and defined by E 7→ E⋆ :=
⋃
{(E : J) | J ∈ F}, for each

E ∈ F (D). Then ⋆F (called the semistar operation associated to the

localizing system F) is a stable semistar operation on D.

(4) ⋆ ≤ ⋆ and F⋆ = F⋆.

(5) ⋆ = ⋆ if and only if ⋆ is stable.

(6) If F is a finitely generated localizing system, then ⋆F is a finite type (stable)

semistar operation.

(7) F⋆
f = (F⋆)

f
:= {I ∈ F⋆ | I ⊇ J, for some finitely generated ideal J ∈ F⋆}

and ⋆̃ = ⋆
f
, i.e., ⋆̃ is the stable semistar operation of finite type associated

to the localizing system F⋆
f . In particular, for each E ∈ F (D), we have:

E⋆̃ =
⋃

{(E : J) | J ∈ f (D), J ⊆ D, and J⋆ = D⋆} .

(8) If F ′ and F ′′ are two localizing systems of D, then F ′ ⊆ F ′′ if and only if

⋆
F′ ≤ ⋆

F′′ . �

If I is a nonzero fractional ideal of D, we say that I is ⋆–invertible if (II−1)⋆ =

D⋆. From the definitions and from the fact that QMax⋆f (D) = QMax⋆̃(D) [11,

Corollary 3.5(2)] it follows easily that a nonzero fractional ideal I is ⋆̃–invertible

if and only if I is ⋆
f
–invertible. An integral domain D is called a Prüfer ⋆–

multiplication domain (for short, P⋆MD) if each I ∈ f(D) is ⋆
f
–invertible. It

is easy to see that the notions of PvMD, PtMD and PwMD coincide. Obviously, a

PdMD is a Prüfer domain, and conversely [14, Theorem 22.1].
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If R is a ring (not necessarily an integral domain) and X an indeterminate over

R, then the ring R(X) := {f/g | f, g ∈ R[X ] and c(g) = R} (where c(g) is the

content of the polynomial g) is called the Nagata ring of R [14, Proposition 33.1].

In case of an integral domain equipped with a semistar operation, we have a

general “semistar version” of the Nagata ring. The following result was proved in

[11, Propositions 3.1 and 3.4] (cf. also [26, Proposition 2.1]).

Proposition 2. Let ⋆ be a nontrivial semistar operation on an integral domain D.

Set N ⋆ := N ⋆
D := {h ∈ D[X ] | h 6= 0 and c(h)⋆ = D⋆} and

Na(D, ⋆) := D[X ]N⋆ .

Then,

(1) N ⋆ is a saturated multiplicative subset of D[X ] and N ⋆ = N ⋆
f = D[X ]r⋃

{Q[X ] | Q ∈ QMax⋆f (D)}.

(2) Max(Na(D, ⋆)) = {Q[X ]N⋆ | Q ∈ QMax⋆f (D)} and QMax⋆f (D) coincides

with the canonical image in Spec(D) of Max (Na(D, ⋆)).

(3) Na(D, ⋆) =
⋂
{DQ(X) | Q ∈ QMax⋆f (D)}.

(4) For each E ∈ F (D), E⋆̃ = ENa(D, ⋆) ∩K. �

Let ⋆ be a semistar operation on D. If F is in f (D), we say that F is ⋆–eab

(respectively, ⋆–ab) if (FG)⋆ ⊆ (FH)⋆ implies that G⋆ ⊆ H⋆, with G, H ∈ f (D),

(respectively, with G, H ∈ F (D)).

An operation ⋆ is said to be eab (respectively, ab ) if each F ∈ f (D) is ⋆–eab

(respectively, ⋆–ab). An ab operation is obviously an eab operation. We note

that if ⋆ is an eab semistar operation then ⋆
f

is also an eab semistar operation,

since they agree on all finitely generated ideals. Let ⋆ be a semistar operation of

finite type, then ⋆ is an eab semistar operation if and only if ⋆ is an ab semistar

operation. In this situation, we say that ⋆ is an (e)ab semistar operation. In

particular, from the previous result it follows that the notions of ⋆–eab semistar

operation and ⋆
f
–(e)ab semistar operation coincide [12, Lemma 3 and Proposition

4].

Given an arbitrary semistar operation ⋆ on an integral domain D, it is possible

to associate to ⋆, an eab semistar operation of finite type ⋆a of D, called the ab

semistar operation associated to ⋆, defined as follows:

F ⋆a := ∪{((FH)⋆ : H) | H ∈ f(D)}, for each F ∈ f (D) ,

and, in general,

E⋆a := ∪{F ⋆a | F ⊆ E , F ∈ f (D)}, for each E ∈ F (D),

[10, Definition 4.4]. Note that if ⋆ is an (e)ab semistar operation of finite type then

⋆ = ⋆a, and conversely [10, Proposition 4.5]. More information on the operation

⋆a, introduced for ideal systems in [25, page 41] (see also Lorenzen’s original paper

[27]) can be found in [30], [31], [17], [18], and [9].

Let ⋆ be a semistar operation on D and let V be a valuation overring of D. We

say that V is a ⋆–valuation overring of D if, for each F ∈ f(D) , F ⋆ ⊆ FV (or

equivalently, ⋆f ≤ ⋆{V }. Note that a valuation overring V of D is a ⋆–valuation

overring of D if and only if V ⋆f = V . More details of semistar valuation overrings

can be found in [9], [10] (cf. also [25], [17] and [20]).
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Proposition 3. [10, Proposition 3.3, Theorem 3.11, Theorem 5.1, Corollary 5.2,

Corollary 5.3], [9, Theorem 3.5]. Let ⋆ be any semistar operation defined on an

integral domain D with quotient field K and let ⋆a be the ab semistar operation

associated to ⋆. Set

Kr(D, ⋆) := {f/g | f, g ∈ D[X ] \ {0} and there exists h ∈ D[X ] \ {0}

such that (c(f)c(h))⋆ ⊆ (c(g)c(h))⋆ } ∪ {0} .

Then, we have:

(1) Kr(D, ⋆) is a Bézout domain with quotient field K(X) , called the Kronecker

function ring of D with respect to the semistar operation ⋆ .

(2) Na(D, ⋆) ⊆ Kr(D, ⋆) .

(3) Kr(D, ⋆) = Kr(D, ⋆a) .

(4) E⋆a = EKr(D, ⋆) ∩K , for each E ∈ F (D) .

(5) Kr(D, ⋆) =
⋂
{V (X) | V is a ⋆–valuation overring of D} .

(6) If F := (a0, a1, . . . , an) ∈ f (D) and f(X) := a0 + a1X + . . . + anX
n ∈

K[X ] , then:

FKr(D, ⋆) = f(X)Kr(D, ⋆) = c(f)Kr(D, ⋆) . �

When ⋆ = d, the d–valuation overrings of D are just the valuation overrings of

D. In this case, we set:

Kr(D) := Kr(D, d) =
⋂

{V (X) | V is a valuation overring of D} .

Moreover, if we denote by bD (or, simply, by b) the ab semistar operation of finite

type (dD)a then, for each E ∈ F (D),

Eb = EKr(D) ∩K =
⋂

{EV | V is a valuation overring of D} .

Remark 4. Recall that a Prüfer domain D can be characterized by the fact that

each F ∈ f(D) is invertible. Since an invertible ideal is always a v–ideal (and,

in particular, a t–ideal), then the following are equivalent [14, Theorem 24.7 and

Theorem 34.1(4)]:

(i) D is a Prüfer domain;

(ii) D is integrally closed and d = b;

(iii) D is integrally closed and d = t.

2. Results

Let D be an integral domain with quotient field K, let X be an indeterminate

overK. We start with some basic facts. Note that some of the statements contained

in the following result were also proved in [29, Proposition 2.1] and, in the star

operation setting, in [23, Propositions 2.1 and 2.2].

Lemma 5. Given a semistar operation ⊛ on D[X ], for each E ∈ F (D) set:

E⊛0 := (E[X ])⊛ ∩K .

Then:

(1) ⊛0 is a semistar operation on D called the semistar operation canonically

induced by ⊛ on D. In particular, if ⊛ is a (semi)star operation on D[X ],

then ⊛0 is a (semi)star operation on D.
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(2) (E⊛0 [X ])⊛ = (E[X ])⊛ for all E ∈ F (D).

(3) (⊛
f
)0 = (⊛0)f .

(4) If ⊛ is a semistar operation of finite type (respectively, stable), then ⊛0 is

a semistar operation of finite type (respectively, stable).

(5) If ⊛′ and ⊛′′ are two semistar operations on D[X ] and ⊛′ ≤ ⊛′′, then

⊛′
0 ≤ ⊛′′

0 .

(6) (⊛̃)0 = ⊛̃0 .

(7) (dD[X])0 = dD, (wD[X])0 = wD, (tD[X])0 = tD, (vD[X])0 = vD, and

(bD[X])0 = bD.

Proof. (1) Set ⋆ := ⊛0. It is easy to see that, if E ∈ F (D), then E ⊆ E⋆ and if

E1, E2 ∈ F (D) with E1 ⊆ E2, then E⋆
1 ⊆ E⋆

2 . Moreover:

(E⋆)
⋆
= (((E[X ])⊛ ∩K)[X ])⊛ ∩K

⊆ ((E[X ])⊛[X ] ∩K[X ])⊛ ∩K

= ((E[X ])⊛ ∩K[X ])⊛ ∩K

⊆ ((E[X ])⊛)
⊛
∩K = (E[X ])⊛ ∩K = E⋆ .

Thus (E⋆)
⋆
= E⋆. Moreover, for each nonzero z ∈ K, we have:

zE⋆ = z((E[X ])⊛ ∩K)

= (z(E[X ])⊛ ∩ zK) = (z(E[X ])⊛ ∩K)

= (zE[X ])⊛ ∩K = (zE)
⋆
.

In particular, if (D[X ])⊛ = D[X ], then D⋆ = (D[X ])⊛ ∩K = D[X ] ∩K = D.

(2) Note that E[X ] ⊆ E⊛0 [X ] = ((E[X ])⊛ ∩ K)[X ] ⊆ (E[X ])⊛ ∩ K[X ] ⊆

(E[X ])⊛. Therefore, (E[X ])⊛ ⊆ (E⊛0 [X ])⊛ ⊆ ((E[X ])⊛)⊛ = (E[X ])⊛.

(3) Let z ∈ E
(⊛

f
)0 . Then there exists F ∈ f(D[X ]) such that F ⊆ E[X ] and

z ∈ F⊛ ∩K. Let I := cD(F ). Clearly, I ∈ f(D), I ⊆ E and F ⊆ I[X ] ⊆ E[X ].

Therefore, z ∈ F⊛ ∩ K ⊆ (I[X ])⊛ ∩ K = I⊛0 , and so z ∈ E(⊛0)f . Conversely, if

z ∈ E(⊛0)f , then z ∈ I⊛0 = (I[X ])⊛ ∩K for some I ∈ f(D), I ⊆ E. This implies

that z ∈ E
(⊛

f
)0 .

(4) The “finite type part” is a particular case of (3). The “stable part” is a

straightforward consequence of the definitions.

(5) is straightforward.

(6) Clearly, (⊛̃)0 ≤ ⊛̃0 , since (⊛̃)0 ≤ ⊛0 by (5) and (⊛̃)0 is a stable operation

of finite type by statement (4). Let a ∈ E ⊛̃0 with E ∈ F (D). Then, there exists a

nonzero finitely generated ideal J of D such that J⊛0 = D⊛0 and aJ ⊆ E. On the

other hand, (J [X ])⊛ = (J⊛0 [X ])⊛ = (D⊛0 [X ])⊛ = (D[X ])⊛ by (2). Since J [X ] is

a nonzero finitely generated ideal of D[X ], (J [X ])⊛ = (D[X ])⊛ and aJ [X ] ⊆ E[X ],

then a ∈ (E[X ])⊛̃ and so a ∈ (E[X ])⊛̃ ∩K = E(⊛̃)0 .

(7) The statement for the d–operations is trivial. For the w–, t–, and v–

operation, it is an easy consequence of the following equalities [22, Proposition

4.3] for all fractional ideals E ∈ F (D):

(E[X ])vD[X] = EvD [X ], (E[X ])tD[X] = EtD [X ], (E[X ])wD[X] = EwD [X ] .

(Note that if E ∈ F (D)\F (D), then E[X ] ∈ F (D[X ])\F (D[X ]), and so EvD [X ] =

K[X ] and (E[X ])vD[X] = K(X), however (E[X ])vD[X] ∩K = K = EvD .)
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We want to prove next that

(E[X ])bD[X] = EbD [X ], for all E ∈ F (D) .

We use the fact that EbD =
⋃
{(EI : I) | I ∈ f(D)} (respectively, (E[X ])bD[X] =⋃

{(E[X ]F : F ) | F ∈ f(D[X ])}) (see [39, page 349] and [16, Section 19.3]). Let

z ∈ EbD [X ] (⊆ K[X ]). Then z ∈ (EI : I)[X ] = (E[X ]I[X ] : I[X ]) for some I ∈

f(D), and so, in particular, z ∈
⋃
{(E[X ]F : F ) | F ∈ f(D[X ])}. Conversely, let

z ∈
⋃
{(E[X ]F : F ) | F ∈ f(D[X ])} (⊆ K[X ]). Then zF ⊆ E[X ]F , and so (by [14,

Theorem 28.1]) there exists a positive integer m such that cD(z)(cD(z)mcD(F )) =

cD(z)m+1cD(F ) = cD(z)mcD(zF ) ⊆ cD(z)mcD(E[X ]F ) ⊆ cD(z)mcD(E[X ])cD(F )

= E(cD(z)mcD(F )), where cD(z)mcD(F ) ∈ f(D). Therefore, cD(z) ⊆ EbD and

thus z ∈ cD(z)[X ] ⊆ EbD [X ]. �

Remark 6. Note that the equality (E[X ])bD[X] = EbD [X ], for all E ∈ F (D)

proved in (7) of Lemma 5, is equivalent to each of the following equalities:

E[X ]Kr(D[X ], bD[X]) ∩K(X) = (EKr(D, bD) ∩K)[X ] = EKr(D, bD) ∩K[X ] ,⋂
{E[X ]W | W valuation overring of D[X ]} =

(
⋂
{EV | V valuation overring of D})[X ] .

Remark 7. Given an arbitrarymultiplicative subset S ofD[X ], Chang and Fontana

in [4] investigated the map E 7→ ED[X ]S ∩ K, defined for all E ∈ F (D), show-

ing that it gives rise to a semistar operation ⋆ on D, having the properties that

D⋆ = R := D[X ]S ∩ K, and that R is t-linked to (D, ⋆) (i.e., for each nonzero

finitely generated ideal I of D, I⋆ = D⋆ implies (IR)tR = R [6, Section 3]; or,

equivalently, R = R⋆̃ [5, Lemma 2.9].) One of the main results of the paper by

Chang and Fontana [4, Theorem 2.1] is recalled below, since it is strictly linked to

the theme of the present work.

Note that, to a multiplicative subset S of D[X ], we can associate the semistar

operation ⊛S on D[X ] defined by A⊛S := AS =
⋃
{(A : J) | J ideal of D[X ], J ∩

S 6= ∅} = AD[X ]S , for all A ∈ F (D[X ]) [7, Proposition 2.10]. Therefore, by

Lemma 5, we obtain immediately that the map E 7→ ED[X ]S ∩K =: E	S , defined

for all E ∈ F (D), gives rise to a semistar operation 	S on D coinciding with (⊛S)0.

Clearly, if S := D[X ] \
⋃
{Q | Q ∈ Spec(D[X ]) and Q ∩ S = ∅} is the saturation of

the multiplicative set S, then ⊛S = ⊛S and so, in particular, 	S = 	S .

In order to deepen our knowledge of the semistar operation 	S , we need a

definition of a stronger version of saturation. Set:

S♯ := D[X ] \
⋃

{P [X ] | P ∈ Spec(D) and P [X ] ∩ S = ∅}.

It is clear that S♯ is a saturated multiplicative set of D[X ] and that S♯ contains the

saturation of S, i.e., S♯ ⊇ S ⊇ S. We call S♯ the extended saturation of S in D[X ]

and a multiplicative set S of D[X ] is called extended saturated if S = S♯. Clearly,

in general, ⊛S♯ ≥ ⊛S (= ⊛S). However, it can be shown that (⊛S♯)0 = (⊛S)0. For

this, let

∆ := ∆(S) := {P ∈ Spec(D) | P [X ] ∩ S = ∅} ;

obviously, ∆(S) = ∆(S♯). Let ∇ := ∇(S) be the set of the maximal elements of

∆(S). Then, by [4, Theorem 2.1], we have:
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(a) 	S is stable and of finite type, i.e., 	S = 	̃S .

(b) The extended saturation S♯ of S coincides with N	S := {g ∈ D[X ] |

g 6= 0 and cD(g)	S = D	S} and 	S = 	S♯ .

(c) If S is extended saturated, then Na(D,	S) = D[X ]S .

(d) QMax	S (D) = ∇(S). In particular, 	S coincides with the spectral semis-

tar operation associated to ∇(S), i.e.,

E	S =
⋂

{EDP | P ∈ ∇(S)} , for all E ∈ F (D) .

(e) 	S is a (semi)star operation on D if and only if S ⊆ N vD := {g ∈ D[X ] |

g 6= 0 and cD(g)vD = D} or, equivalently, if and only if D =
⋂
{DP | P ∈

∇(S)}.

(f) The map S 7→ 	S establishes a 1-1 correspondence between the extended

saturated multiplicative subsets of D[X ] (respectively, extended saturated

multiplicative subsets of D[X ] contained in N vD ) and the set of the stable

semistar (respectively, (semi)star) operations of finite type on D.

(g) Let S be an extended saturated multiplicative set ofD[X ]. Then, Na(D, vD) =

D[X ]S if and only if S = N vD .

(h) Let R := D	S and let ι : D → R be the canonical embedding. The overring

R is t-linked to (D,	S) and S ⊆ N vR := {g ∈ R[X ] | g 6= 0 and cR(g)
vR =

R} (i.e., (	S)ι is a (semi)star operation on R). Moreover (	S)ι = wR

if and only if the extended saturation S♯R := R[X ] \
⋃
{Q[X ] | Q ∈

Spec(R) and Q[X ] ∩ S = ∅} of the multiplicative set S in R[X ] coincides

with N vR .

From Remark 7(f), we deduce that each semistar operation ⋆ on D which is

stable and of finite type is equal to (⊛S)0 = 	S for a unique extended saturated

multiplicative set S of D[X ]. More precisely,

Corollary 8. Let ⋆ be a finite type stable semistar operation on an integral domain

D with field of quotients K and let X be an indeterminate over K. Let S(⋆) :=

N ⋆ := {g ∈ D[X ] | cD(g)⋆ = D⋆}. Then,

(1) S(⋆) is an extended saturated multiplicative set of D[X ] and, more precisely,

S(⋆) = D[X ] \
⋃
{Q[X ] | Q ∈ QMax⋆f (D)} with S(⋆)♯ = D[X ] \

⋃
{P [X ] |

P ∈ Spec(D) and P [X ] ∩ S(⋆) = ∅} = S(⋆).

(2) ⋆ = 	S(⋆) = (⊛S(⋆))0 and S(⋆) is unique among the extended saturated

multiplicative set S of D[X ] for which 	S = ⋆.

Proof. (1) Clearly, S(⋆) = D[X ] \
⋃
{Q[X ] | Q ∈ QMax⋆f (D)} since, for 0 6= g ∈

D[X ], cD(g)⋆ = cD(g)⋆f = D⋆ if and only if cD(g) 6⊆ Q for allQ ∈ QMax⋆f (D) and,

for each prime ideal Q of D, cD(g) 6⊆ Q if and only if g 6∈ Q[X ]. Moreover, clearly,⋃
{Q[X ] | Q ∈ QMax⋆f (D)} ⊆

⋃
{P [X ] | P ∈ Spec(D) and P [X ] ∩ S(⋆) = ∅}. On

the other hand, if P ∈ Spec(D) and P [X ] ∩ S(⋆) = ∅, this means that P [X ] ⊆⋃
{Q[X ] | Q ∈ QMax⋆f (D)} and so

⋃
{P [X ] | P ∈ Spec(D) and P [X ] ∩ S(⋆) =

∅} ⊆
⋃
{Q[X ] | Q ∈ QMax⋆f (D)}.

(2) Note that, by assumption, ⋆ = ⋆̃ and so, for each E ∈ F (D), E⋆̃ =

ENa(D, ⋆)∩K = ED[X ]N⋆ ∩K = ED[X ]S(⋆)∩K [11, Proposition 3.4]. Therefore,
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if ⊛S(⋆) is the finite type stable semistar operation on D[X ] defined by the flat

overring D[X ]S(⋆), i.e., A
⊛S(⋆) := AS(⋆) = AD[X ]S(⋆) for all A ∈ F (D[X ]), then

⋆ = (⊛S(⋆))0 = 	S(⋆). The uniqueness follows from Remark 7(f). �

Note that from E⊛0 = (E[X ])⊛ ∩K, by tensoring with the D-algebra D[X ], we

have E⊛0 [X ] = (E[X ])⊛ ∩K[X ], for all E ∈ F (D). Moreover, it may happen that

E⊛0 [X ] ( (E[X ])⊛ for some E ∈ F (D). For instance, this happens if E⊛0 = K and

if K[X ] is not a ⊛–overring of D[X ] (i.e., if K[X ] ( K[X ]⊛). An explicit example

is given by ⊛ = vD[X]; in this case K(vD[X])0 [X ] = K[X ] ( (K[X ])vD[X] = K(X).

Another example (even in case of finite type stable semistar operations) is given

next by using Corollary 8.

Example 9. Let P be a given nonzero prime ideal of an integral domain D. Let

∆ := {P} and set ⋆ := ⋆∆, i.e., ⋆ is the finite type stable semistar operation

defined by E⋆ := EDP , for all E ∈ F (D). Clearly, QMax⋆∆(D) = {P}. Thus,

S(⋆) := D[X ] \ P [X ] and ⋆ = ⋆̃ = 	S(⋆) = (⊛S(⋆))0, by Corollary 8 (2). (Note

that A⊛S(⋆) = AD[X ]P [X] = ADP (X) for each A ∈ F (D[X ]).) On the other

hand, for each E ∈ F (D), E⋆[X ] = EDP [X ] ( ED[X ]P [X] = E[X ]DP (X) =

(E[X ])⊛S(⋆) (even if E⋆[X ] = EDP [X ] = (EDP (X) ∩ K)[X ] = E[X ]DP (X) ∩

K[X ] = (E[X ])⊛S(⋆) ∩K[X ]).

In order to better investigate this situation, we introduce the following defini-

tions. A semistar operation ⊛ on the polynomial domain D[X ] is called an ex-

tension (respectively, a strict extension) of a semistar operation ⋆ defined on D if

E⋆ = (E[X ])⊛ ∩K (respectively, E⋆[X ] = (E[X ])⊛) for all E ∈ F (D). Clearly, a

strict extension is an extension. By Lemma 5, a semistar operation ⊛ on D[X ] is

an extension of ⋆ := ⊛0.

Given two semistar operations ⊛′ and ⊛′′ on the polynomial domain D[X ],

we say that they are equivalent over D, for short ⊛′ ∼ ⊛′′, (respectively, strictly

equivalent over D, for short⊛′ ≈ ⊛′′) if (E[X ])⊛
′

∩K = (E[X ])⊛
′′

∩K (respectively,

(E[X ])⊛
′

= (E[X ])⊛
′′

) for each E ∈ F (D).

Clearly, two extensions (respectively, strict extensions) ⊛′ and ⊛′′ onD[X ] of the

same semistar operation defined on D are equivalent (respectively, strictly equiva-

lent). In particular, we have:

⊛
′ ≈ ⊛

′′ ⇒ ⊛
′ ∼ ⊛

′′ ⇔ ⊛
′
0 = ⊛

′′
0 .

We will see that the converse of the first implication above does not hold in general.

In order to construct some counterexamples, we need a deeper study of the problem

of “raising” semistar operations from D to D[X ]; i.e., given a semistar operation ⋆

on D, finding all the semistar operations ⊛ on D[X ] such that ⋆ = ⊛0.

Recall that, given a family of semistar operations {⋆λ | λ ∈ Λ} on an integral

domain D, the semistar operation ∧⋆λ on D is defined for all E ∈ F (D) by setting:

E∧⋆λ :=
⋂

{E⋆λ | λ ∈ Λ} .

The following statement is a straightforward consequence of the definitions.
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Proposition 10. (1) Let ⋆ be a semistar operation on an integral domain D.

Given a family of semistar operations {⊛λ | λ ∈ Λ} on D[X ] that are ex-

tensions (respectively, strict extensions) of ⋆, then ∧⊛λ is also an extension

(respectively, a strict extension) of ⋆.

(2) Given a family of semistar operations {⊛λ | λ ∈ Λ} of D[X ], suppose

that ⊛λ′ ∼ ⊛λ′′ (respectively, ⊛λ′ ≈ ⊛λ′′) for all λ′, λ′′ ∈ Λ, then ∧⊛λ is

equivalent (respectively, strictly equivalent) to ⊛λ for each λ ∈ Λ.

From the previous proposition, we deduce that, if a semistar operation on D

admits an extension (respectively, a strict extension) to D[X ], then it admits a

unique minimal extension (respectively, a unique minimal strict extension).

At this point, it is natural to ask the following questions:

(Q1) Given a semistar operation ⋆ defined on D, is it possible to find “in a

canonical way” an extension (respectively, a strict extension) of ⋆ on D[X ]?

(Q2) Given an extension ⊛ on D[X ] of a semistar operation ⋆ defined on D. Is

it possible to define a strict extension ⊛′ on D[X ] of ⋆ (and thus ⊛′ ∼ ⊛) ?

(In the statement of the previous question, we do not require that ⊛′ ≈ ⊛,

since this condition would imply that the extension ⊛ on D[X ] was already

a strict extension of ⋆.)

In the remaining part of this paper, we start the investigation of questions (Q1)

and (Q2), by considering semistar operations on D defined by families of overrings.

In this particular, but rather important setting, we will provide positive answers to

both questions.

Let T := {Tλ | λ ∈ Λ} be a nonempty set of overrings of D, and let E∧T :=⋂
λ ETλ for each E ∈ F (D). Then ∧T is a semistar operation on D, and ∧T is

(semi)star if and only if D =
⋂

λ Tλ. It is easy to see that, for each E ∈ F (D) and

for each λ ∈ Λ,

E∧T Tλ = ETλ ,

(see [1, Theorem 2] for further details in the star operation case). If T = {K} (re-

spectively, {D}) then obviously ∧{K} (respectively, ∧{D}) is the trivial semistar op-

eration eD (= ⋆{K}) (respectively, the identity (semi)star operation dD (= ⋆{D})).

In case T = ∅, we also set ∧∅ := eD.

Note that, for each Tλ, ETλ =
⋂
{(ETλ)M | M ∈ Max(Tλ)} =

⋂
{E(Tλ)M | M ∈

Max(Tλ)}; hence E∧T =
⋂

λ (
⋂
{E(Tλ)M | M ∈ Max(Tλ)}). If T is nonempty,

replacing the family T = {Tλ | λ ∈ Λ} with the family {(Tλ)M | λ ∈ Λ, M ∈

Max(Dλ)}, without loss of generality, whenever convenient for the context, we can

assume that each Tλ in the family of overrings T is a quasi-local domain.

If T ′ and T ′′ are two families of overrings of D, then clearly:

∧T ′

∧
∧T ′′ = ∧T ′∪T ′′ .

Let T = {Tλ | λ ∈ Λ} be a family of overrings of an integral domain D with

quotient field K. Let X be an indeterminate over K and denote by Tλ(X) the
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Nagata ring of Tλ. For each A ∈ F (D[X ]), we set:

A(∧T ) :=
⋂

λ ATλ(X) ,

A〈∧T 〉 := A(∧T ) ∩ AK[X ] ,

A[∧T ] := ∩λATλ[X ] .

Clearly, A[∧T ] ⊆ A〈∧T 〉 ⊆ A(∧T ) for all A ∈ F (D[X ]), hence [∧T ] ≤ 〈∧T 〉 ≤

(∧T ). Moreover, if T is nonempty, (D[X ])〈∧T 〉 ⊆ K[X ], but 1/(1 + X) ∈⋂
λ Tλ(X) = (D[X ])(∧T ). Hence, (D[X ])〈∧T 〉 ( (D[X ])(∧T ) and so 〈∧T 〉 � (∧T ).

Proposition 11. Let T = {(Tλ,Mλ)} be a family of overrings of an integral

domain D with quotient field K. Set (T ) := {Tλ(X) | λ ∈ Λ}, 〈T 〉 := {Tλ(X) |

λ ∈ Λ} ∪ {K[X ]}, and [T ] := {Tλ[X ] | λ ∈ Λ}. Then,

(1) (∧T ), 〈∧T 〉, and [∧T ] are semistar operations on D[X ] and, more pre-

cisely,

(∧T ) = ∧(T ), 〈∧T 〉 = ∧〈T 〉, and [∧T ] = ∧[T ] .

Moreover, if we consider the set U := {K[X ]} consisting of the unique

overring K[X ] of D[X ], then:

〈∧T 〉 = (∧T )
∧

∧U (= ∧(T )

∧
∧U ) .

(2) The following are equivalent:

(i) ∧T is a (semi)star operation on D,

(ii) 〈∧T 〉 is a (semi)star operation on D[X ],

(iii) [∧T ] is a (semi)star operation on D[X ].

(3) If T is not empty and T 6= {K}, then [∧T ] � 〈∧T 〉.

(4) For each E ∈ F (D),

(E[X ])[∧T ] = E∧T [X ] = (E[X ])〈∧T 〉 and (E[X ])(∧T ) = E∧T (X) .

(5) For each E ∈ F (D),

E∧T = (E[X ])[∧T ] ∩K = (E[X ])〈∧T 〉 ∩K = (E[X ])(∧T ) ∩K .

(6) If T is a finite family of overrings of D, then ∧T is a semistar operation

of finite type on D.

(7) If each overring T ∈ T is a flat overring of D, then ∧T is a stable semistar

operation on D.

Proof. (1) is obvious and (2) is straightforward, since it is easy to see that
⋂
{Tλ[X ] |

λ ∈ Λ} = (
⋂
{Tλ | λ ∈ Λ}) [X ] and

⋂
{Tλ(X) | λ ∈ Λ} = (

⋂
{Tλ | λ ∈ Λ}) (X).

(3) Without loss of generality, we can assume that Tλ is local with nonzero

maximal ideal Mλ and we can take the (maximal) ideal (Mλ, 1 +X) of Tλ[X ]. Set

Q := (Mλ, 1+X)∩D[X ]. Then, Q[∧T ] ( Q〈∧T 〉 (for Q[∧T ]∩D[X ] ⊆ (Mλ, 1+X)∩

D[X ] = Q ( D[X ] and, on the other hand, sinceMλ 6= (0) and Q(∧T ) = D[X ](∧T ),

then Q〈∧T 〉 ∩D[X ] = Q(∧T ) ∩QK[X ] ∩D[X ] = D[X ](∧T ) ∩D[X ] = D[X ]).

(4) is straightforward and (5) is a trivial consequence of (4).

(6) Clearly, for each T ∈ T , the operation ∧{T} (defined by A∧{T} := AT , for

all A ∈ F (D), i.e., ∧{T} = ⋆{T}) is a semistar operation of finite type on D. Let

T := {T1, T2, ..., Tn} and let z ∈ A∧T . Then, z ∈ FiTi, for some Fi ⊆ A, Fi ∈ f (D)
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and for each 1 ≤ i ≤ n. Set F := F1 + F2 + ...+ Fn, clearly F ∈ f(D) and F ⊆ A

and z ∈ FTi for all i, thus z ∈ F∧T .

(7) Let A,B ∈ F (D). Since Tλ is flat, (A ∩ B)Tλ = ATλ ∩ BTλ [3, Chapter 1,

§2, N. 6]. The conclusion is now straightforward. �

From Proposition 11, we deduce immediately the following:

Corollary 12. With the notation of Proposition 11, assume that T is nonempty

and T 6= {K}, then we have:

(1) [∧T ], 〈∧T 〉, and (∧T ) (respectively, [∧T ] and 〈∧T 〉) are distinct exten-

sions (respectively, distinct strict extensions) of ∧T .

(2) [∧T ] ∼ 〈∧T 〉 ∼ (∧T ) and, moreover, [∧T ] ≈ 〈∧T 〉, but neither [∧T ] nor

〈∧T 〉 are strictly equivalent to (∧T ).

Example 13. Let W := {Wλ | λ ∈ Λ} be a family of valuation overrings of D

and let ∧W be the ab semistar operation on D defined by the family of valuation

overrings W of D (i.e., E∧W :=
⋂
{EW | W ∈ W} for all E ∈ F (D)) [10,

Proposition 3.7(1)]. In this case,

(a) (∧W) is an ab semistar operation on D[X ] defined by the family of valua-

tion overrings W(X) := {Wλ(X) | λ ∈ Λ} of D[X ] and (by [10, Corollary

3.8]) for each A ∈ F (D[X ]),

A(∧W ) =
⋂

λ

AWλ(X);

(b) for each E ∈ F (D),

E(∧W)0 = (E[X ])(∧W) ∩K = (
⋂

λ EWλ(X)) ∩K

=
⋂

λ(EWλ(X) ∩K) =
⋂

λ EWλ

= E∧W ;

(c) for each F ∈ f(D),

F (∧W)0 = F∧W = FKr(D,∧W ) ∩K.

In particular, by (b), Lemma 5(2) and [12, Proposition 9]

(∧W)0,f = (∧W)f,0 = (∧W)a,0 = ∧W,a = ∧W,f

(where (∧W)0,f (respectively, (∧W)f,0; (∧W)a,0 ; ∧W,a; ∧W ,f) denotes

the semistar operation of finite type on D associated to (∧W)0 (respec-

tively, the semistar operation on D canonically induced by (∧W)f ; the

semistar operation on D canonically induced by (∧W)a; the ab semistar

operation on D associated to ∧W ; the semistar operation of finite type on

D associated to ∧W).

Example 14. (1) The identity (semi)star operation dD on an integral domain D,

is defined by the family of a single overring D := {D} of D, i.e., dD = ∧D . Set

[dD] := [∧D] , 〈dD〉 := 〈∧D〉 , (dD) := (∧D) .

Clearly, if D is not a field, dD[X] = [dD] � 〈dD〉 � (dD) and 〈dD〉 (and [dD]) is

a (semi)star operation on D[X ], but in general (dD) is not a (semi)star operation
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on D[X ]. Moreover, 〈dD〉, (dD) (and [dD]) are stable semistar operations of finite

type, since 〈dD〉 is defined by the two flat overrings D(X) and K[X ] of D[X ] and

(dD) is defined by a unique flat overring D(X) of D[X ] (Proposition 11((6) and

(7))).

(2) As observed above, the trivial semistar operation eD on an integral domain

D, with quotient field K, is defined by the family of a single overring K := {K} of

D, i.e., eD = ∧K. Set

[eD] := [∧K] , 〈eD〉 := 〈∧K〉 , (eD) := (∧K) .

Clearly, [eD] = 〈eD〉 � (eD) = eD[X], where [eD] (= 〈eD〉) is the stable semistar

operation of finite type on D[X ] defined by the flat overring K[X ], i.e., [eD] =

〈eD〉 = ∧{K[X]} (= ⋆{K[X]}).

We study now the important case in which the family of valuation overrings W

of D coincides with the family of all valuation overrings of D.

Proposition 15. Let V be the family of all valuation overrings of an integral

domain D with quotient field K. Note that ∧V coincides with bD (the b–operation

on D; see Section 1). Set

[bD] := [∧V] , 〈bD〉 := 〈∧V〉 , (bD) := (∧V) .

(1) [bD], 〈bD〉, and (bD) are semistar operations on D[X ] with [bD] ≤ 〈bD〉 ≤

(bD). If D is integrally closed then [bD] and 〈bD〉 are (semi)star operations

on D[X ]. In general, (bD) is not a (semi)star operation on D[X ] even if

D is integrally closed (or, equivalently, even if bD is a (semi)star operation

on D).

(2) If D 6= K, i.e. if D has at least one nontrivial valuation overring, then

[bD], 〈bD〉, and (bD) (respectively, [bD] and 〈bD〉) are distinct extensions

(respectively, distinct strict extensions) of bD.

(3) 〈bD〉 and (bD) are ab semistar operations such that

[bD] ≤ [bD]a = bD[X] ≤ 〈bD〉 ≤ (bD)

and, in general, [bD] is not an eab semistar operation.

Proof. (1) and (2) follow from Proposition 11((1), (2) and (3)) and Corollary 12.

(3) Clearly, (bD) is an ab semistar operation on D[X ], since it is defined by the

family of valuation overrings V(X) := {V (X) | V ∈ V}.

Moreover, if U := {K[X ]} and U ′ := {K[X ]M | M ∈ Max(K[X ])}, then

clearly ∧U = ∧U ′ . Therefore, 〈bD〉 = 〈∧V〉 = (∧V)
∧
∧U = ∧V(X)

∧
∧U ′ and,

hence 〈bD〉 is also an ab semistar operation on D[X ].

Note that bD[X] ≤ 〈bD〉 because V(X)
⋃
U ′ is a subset of the family of all

valuation overrings of D[X ].

Let W be a valuation overring of D[X ] with maximal ideal N . Two cases are

possible. IfW∩K = K, thenK[X ] ⊆ W , and henceW = K[X ]M for some maximal

ideal M of K[X ]. Next, if W ∩K ( K, then V := W ∩K is a valuation overring

of D with nonzero maximal ideal n, and so W is a valuation overring of V [X ]. If

W 6= V (X) = V [X ]n[X] the maximal ideal N of W must contract on a maximal
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ideal of V [X ] upper to the maximal ideal n of V , i.e., N ∩V [X ] ) n[X ]. Therefore,

we have necessarily that V [X ] ⊂ W ⊆ V (X). From the previous observations, we

easily deduce that [bD]a = bD[X].

We next construct an integral domain D such that [bD] is not an eab semistar

operation. Let D := R+ TC[[T ]], i.e., D is a pseudo-valuation domain with canoni-

cally associated valuation overring V := C[[T ]] and quotient field K := C((T )). Since
R ⊂ C is a finite field extension the valuation overrings of D are just V and K,

thus it is straightforward to see that that dD � bD = ∧{V } and

dD[X] � [bD] = ∧{V [X], K[X]} ≤ bD[X] ≤ 〈bD〉 = ∧{V (X), K[X]} � (bD) = ∧{V (X)}

(Proposition 11(3)). Moreover, [bD] is not an eab semistar operation on D[X ],

because if [bD] (= ∧{V [X], K[X]} = ⋆{V [X]}) was an eab semistar operation on

D[X ], since it is of finite type, then bD[X] = (dD[X])a ≤ [bD] ≤ bD[X], i.e. ⋆{V [X]} =

[bD] = bD[X], which is a contradiction since V [X ] is not a Prüfer domain. �

In the next result, we provide another application of Proposition 11.

Proposition 16. Let ⋆ be a semistar operation of an integral domain D with

quotient field K and let X be an indeterminate over K. Set M := M(⋆) := {DQ |

Q ∈ QMax⋆f (D)}. It is well known that, in this case, ∧M coincides with ⋆̃, the

stable semistar operation of finite type associated to ⋆. Set

(⋆̃) := (∧M) , 〈⋆̃〉 := 〈∧M〉 , and [⋆̃] := [∧M] .

(1) For each A ∈ F (D[X ]),

A[⋆̃] =
⋂
{ADQ[X ] | Q ∈ QMax⋆f (D)} ,

A〈⋆̃〉 = ANa(D, ⋆) ∩ AK[X ] , and A(⋆̃) = ANa(D, ⋆) .

(2) [⋆̃], 〈⋆̃〉, and (⋆̃) are stable semistar operations of D[X ]; moreover, 〈⋆̃〉 and

(⋆̃) are also of finite type. Therefore,

〈⋆̃〉 = 〈⋆̃〉
f
= 〈̃⋆̃〉 , (⋆̃) = (⋆̃)

f
= (̃⋆̃) .

(3) For each E ∈ F (D),

(ED[X ])[⋆̃] = E⋆̃[X ] = (ED[X ])〈⋆̃〉 and (ED[X ])(⋆̃) = ENa(D, ⋆) ;

and so

E⋆̃ = (ED[X ])[⋆̃] ∩K = (ED[X ])〈⋆̃〉 ∩K = (ED[X ])(⋆̃) ∩K .

Proof. (1) and (2). Note that the semistar operation [⋆̃] (respectively, 〈⋆̃〉; (⋆̃))

on D[X ] is defined by the family of flat overrings {DQ[X ] | Q ∈ QMax⋆f (D)}

(respectively, {DQ(X) | Q ∈ QMax⋆f (D)}∪{K[X ]}; {DQ(X) | Q ∈ QMax⋆f (D)})

of D[X ] and so is a stable semistar operation of D[X ]. The first equality in (1)

is a transcription of the definition. The last two equalities in (1) are consequence

of the fact that
⋂
{ADQ(X) | Q ∈ QMax⋆f (D)} = ANa(D, ⋆) (Proposition 2(2)

or [11, Proposition 3.1(3)]). Finally, it is easy to see that (⋆̃) (respectively, 〈⋆̃〉 )

is a (stable) semistar operation of finite type, since it is defined by a unique flat

overring of D[X ], i.e., Na(D, ⋆) (respectively, by two flat overrings of D[X ], i.e.,

Na(D, ⋆) and K[X ]) (Proposition 11((6) and (7)).
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(3) is an application of Proposition 11((4) and (5)). �

It is natural to ask if, eventually, [⋆̃] 6= [⋆̃]
f
. The answer to this question is

negative (i.e., [⋆̃] is also a semistar operation of finite type (and stable)). In order

to show this fact, we deepen the study of the semistar operation [⋆̃] defined on

D[X ].

Proposition 17. Let D, X, ⋆ and [⋆̃] be as in Proposition 16. Then, for all

A ∈ F (D[X ]),

A[⋆̃] =
⋃
{(A : F ) | F ∈ f (D) and F ⋆̃ = D⋆̃}

=
⋃
{(A : H) | H ∈ f(D), H ⊆ D, and H ⋆̃ = D⋆̃} .

In particular, [⋆̃] is a (stable) semistar operation of finite type on D[X ] and so

[⋆̃] = [⋆̃]
f
= [̃⋆̃] .

Proof. Set A1 :=
⋃
{(A : F ) | F ∈ f (D) and F ⋆̃ = D⋆̃} and A2 :=

⋃
{(A : H) |

H ∈ f(D), H ⊆ D, and H ⋆̃ = D⋆̃}. Clearly, A2 ⊆ A1.

We start by showing that A1 ⊆ A[⋆̃]. Note that F ⋆̃ = D⋆̃ if and only if FDQ =

DQ for all Q ∈ QMax⋆f (D) = QMax⋆̃(D). If z ∈ A1, then zF ⊆ A for some

F ∈ f (D) and F ⋆̃ = D⋆̃, hence z ∈ zDQ[X ] = zFDQ[X ] ⊆ ADQ[X ] for all

Q ∈ QMax⋆f (D) and so z ∈ A[⋆̃].

Now, we show that A[⋆̃] ⊆ A2. Let z ∈ A[⋆̃] =
⋂
{ADQ[X ] | Q ∈ QMax⋆f (D)}

and set I := {d ∈ D | dz ∈ A}. It is easy to see that I is an ideal of D (depending

on A and z) and moreover I 6⊆ Q, i.e., IDQ = DQ for all Q ∈ QMax⋆f (D). Since

I ⋆̃ = D⋆̃, we can find H ∈ f(D) withH ⊆ I andH ⋆̃ = D⋆̃. Therefore zH ⊆ zI ⊆ A

and so z ∈ A2.

The last statement follows easily from Proposition 16(2) and from the fact that,

if z ∈ A[⋆̃] =
⋃
{(A : F ) | F ∈ f(D) and F ⋆̃ = D⋆̃}, then zF0 =: G0 ⊆ A for

some F0 ∈ f(D), with F ⋆̃
0 = D⋆̃, and so G0 ∈ f (D), and z ∈ (G0 : F0) ⊆ G

[⋆̃]
0 ⊆

A
[⋆̃]

f . �

From Corollaries 8 and 12 and from Propositions 16 and 17, we easily obtain the

following:

Corollary 18. Let ⋆, ⋆̃, D, K, X, [⋆̃], 〈⋆̃〉, and (⋆̃) be as in Proposition 16.

Let S(⋆) and ⊛S(⋆) be as in Corollary 8. Assume that DQ ( K for some Q ∈

QMax⋆f (D).

(1) [⋆̃], 〈⋆̃〉, and (⋆̃) (respectively, [⋆̃], and 〈⋆̃〉) are distinct finite type stable

semistar extensions to D[X ] (respectively, distinct finite type stable semis-

tar strict extensions) of ⋆̃. Moreover, (⋆̃) is the unique finite type stable

semistar extension to D[X ] of ⋆̃ defined by an extended saturated multi-

plicative set of D[X ], i.e., (⋆̃) = ⊛S(⋆), where S(⋆) = N ⋆ := {g ∈ D[X ] |

cD(g)⋆ = D⋆}.

(2) [⋆̃] ∼ 〈⋆̃〉 ∼ (⋆̃) and, moreover, [⋆̃] ≈ 〈⋆̃〉, but neither [⋆̃] nor 〈⋆̃〉 are strictly

equivalent to (⋆̃). �
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Remark 19. G. Picozza [33] has studied a different approach for the extension to

the polynomial ring D[X ] of a semistar operation defined on an integral domain D.

First, he proves the following [33, Propositions 3.1 and 3.2].

(a) Let F be a localizing system of ideals of D and set:

F [X ] := {J ideal of D[X ] | J ⊇ I[X ] for some ideal I of F} .

(a.1) F [X ] is a localizing system on D[X ].

(a.2) F [X ] = {J ideal of D[X ] | J ∩D ∈ F}.

(a.3) If F is a localizing system of finite type of D, then F [X ] is a localizing

system of finite type on D[X ]

Then, he uses some of the results by Fontana and Huckaba recalled in Proposition

1. More precisely, if F is a localizing system on D, Picozza considers the semistar

operation ⋆F [X] on D[X ] canonically associated to the localizing system F [X ] on

D[X ] introduced in (a). In particular, if F is the localizing system associated

to a given semistar operation ⋆ defined on D, i.e., F = F⋆, he considers the

stable semistar operation on D[X ] associated to the localizing system F⋆[X ]. Set

⋆[X ] := ⋆F⋆[X] (Picozza denotes by ⋆′ this semistar operation onD[X ] [33, Theorem

3.3]).

We are now in a position to compare the semistar operations on the polynomial

rings studied by Picozza and the semistar operation [⋆̃] introduced in Proposition

16. The following result improves [33, Proposition 3.4].

(b) Using the notation introduced above, then

[⋆̃] = ⋆̃[X ] = ⋆̃[X ]

= ⋆
f
[X ] = ⋆[X ]

f
.

It is clear that ⋆̃[X ] = ⋆
f
[X ], since:

F⋆
f = {I ideal of D | I⋆f = D⋆

f }

= {I ideal of D | I 6⊆ Q for all Q ∈ QMax⋆f (D)}

= {I ideal of D | I 6⊆ Q for all Q ∈ QMax⋆̃(D)}

= {I ideal of D | I ⋆̃ = D⋆̃}

= F ⋆̃ .

By Proposition 17, we know that A[⋆̃] =
⋃
{(A : H) | H ∈ f(D), H ⊆ D and H ⋆̃ =

D⋆̃} for all A ∈ F (D[X ]). On the other hand (by definition of a semistar operation

associated to a localizing system (Proposition 1(3)) and by (a.2)), we have A⋆̃[X] =⋃
{(A : J) | J ideal of D[X ] such that (J ∩ D)⋆̃ = D⋆̃} for all A ∈ F (D[X ]).

Therefore, if z ∈ A[⋆̃], then z ∈ (A : H) = (A : H [X ]) for some finitely generated

ideal H of D such that (H [X ] ∩D)⋆̃ = D⋆̃, thus z ∈ A⋆̃[X].

Conversely, let z ∈ A⋆̃[X]. Therefore, z ∈ (A : J) for some ideal J of D[X ] such

that (J ∩D)⋆̃ = D⋆̃. In this situation, we can find a finitely generated ideal H in

D such that H ⊆ J ∩D and H ⋆̃ = D⋆̃. Since H ⊆ J then (A : J) ⊆ (A : H), thus

z ∈ (A : H) and so z ∈ A[⋆̃].

From the previous results, we deduce:

(c) [dD] = dD[X ] = dD[X].

(d) [wD] = wD[X ] = tD[X ] ≤ wD[X] ≤ tD[X].
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The statement (c) is a straightforward consequence of (b), since dD = d̃D =

dD,f and the localizing system FdD [X ] = {D[X ]} = FdD[X] .

The equalities in (d) are obtained from (b) (and Proposition 16) by taking ⋆ = vD
(and so, ⋆̃ = wD and ⋆

f
= tD). Moreover, it is always true that the w–operation

is smaller than or equal to the t–operation. Finally, note that wD[X ] (respectively,

wD[X]) is the stable (semi)star operation of finite type on D[X ] canonically associ-

ated to the localizing system FwD [X ] = {J ideal of D[X ] | J ⊇ I[X ] with IwD =

D} (respectively, FwD[X] = {J ideal of D[X ] | JwD[X] = D[X ]}) [7, Theorem 2.10

(B)]. Since IwD = D implies that IwD [X ] = D[X ] and so also I[X ]wD[X] = D[X ]

(see the proof of Lemma 5(7)), then FwD [X ] ⊆ FwD[X] . From this, we conclude

that wD[X ] ≤ wD[X].

Note that, in (d), it may happen that [wD] = wD[X ] � wD[X] (e.g., by [33,

Remark 2], let Q be a prime ideal of D[X ] not extended from D and such that

Q ∩ D is a tD–maximal (= wD–maximal) ideal of D; since (Q ∩ D)[X ] ( Q and

(Q∩D)[X ] is a tD[X]–maximal (= wD[X]–maximal) ideal of D[X ] ([24, Proposition

1.1] and [9, Corollary 3.5 (2)]), then Q is not a wD[X]–(maximal) ideal, but clearly

Q is a [wD]–ideal).

Remark 20. (1) Using the techniques introduced in [4] and recalled in Remark

7, Sahandi [36, Theorem 2.1, Proposition 2.2 and Remark 2.3] has recently given

another description of the stable semistar operation [⋆̃].

Let D1 := D[X ], K1 := K(X), Y an indeterminate over K1 , and consider the

following subset of Spec(D
1
):

∆
1
:= ∆

1,⋆
:= {Q

1
∈ Spec(D

1
) | either Q

1
∩D = (0) or (Q

1
∩D)⋆f ( D⋆

f } .

Set

S♯
1
:= S♯

1,⋆
:= S♯(∆

1,⋆
) := D

1
[Y ] \

(⋃
{Q

1
[Y ] | Q

1
∈ ∆

1,⋆
}
)
.

Clearly, S♯
1
is an extended saturated multiplicative system of D

1
[Y ] and so we can

consider the stable semistar operation of finite type on D
1
, 	S♯

1
, defined by setting

for each A ∈ F (D1) = F (D[X ]):

A
	

S
♯
1 := AD1 [Y ]S♯

1
∩K1 .

We have already observed in Remark 19(b) that [⋆̃] is the unique stable semistar

operation on D
1
(= D[X ]) determined by the localizing system of finite type F

1
:=

F
1,⋆

:= F⋆
f [X ] = F ⋆̃[X ]. Moreover, the map σ : F

1
7→ S(F

1
) := D

1
[Y ] \

⋃
{P

1
[Y ] |

P1 6∈ F1} establishes a bijection between the set of the localizing systems of finite

type on D
1
and the extended saturated multiplicative systems of D

1
[Y ] and, under

this map, the corresponding associated stable semistar operations of finite type on

D
1
coincide [4, Corollary 2.2]. Since it is straightforward that ∆

1,⋆
coincides with

the set {P1 ∈ Spec(D1) | P1 6∈ F1,⋆}, then clearly S♯
1,⋆ corresponds canonically to F1,⋆

under σ. Therefore [⋆̃] coincides with 	S♯
1
. Moreover, we also have Na(D

1
, [⋆̃]) =

D
1
[Y ]S♯

1
or, equivalently, S♯

1
= {0 6= g

1
∈ D

1
[Y ] | cD

1
(g

1
)[⋆̃] = D[⋆̃]

1
} =: N [⋆̃]

1
[4,

Theorem 2.1((c) and (d))].

Let ∇1,⋆ be the set of the maximal elements of ∆1,⋆.
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It is easy to see that

∇
1,⋆

= {Q
1
∈ Spec(D

1
) | either Q

1
∩D = (0) and cD(Q

1
)⋆f = D⋆

f

or Q
1
∩D ∈ QMax⋆f (D)} ,

since a prime ideal Q
1
∈ Spec(D

1
) such that Q

1
∩D = (0) is not contained in any

ideal of the type Q[X ] with Q ∈ QMax⋆f (D) if and only if cD(Q
1
)⋆f = D⋆

f .

For the sake of simplicity, set ⋆
1
:= 	S♯

1
(= [⋆̃]). Then, by the previous remarks,

we can conclude that QMax⋆1 (D1) = ∇1,⋆ [4, Theorem 2.1(e)].

Putting together the previous information with Proposition 16(1), for all A ∈

F (D[X ]), we have:
⋂
{ADQ[X ] | Q ∈ QMax⋆f (D)} = A[⋆̃] =

⋂
{AD[X ]Q

1
| Q

1
∈ ∇

1,⋆
}

= AD[X,Y ]
N

[⋆̃]
1

∩K(X)

= ANa(D[X ], [⋆̃]) ∩K(X) .

In particular, for all E ∈ F (D),

ENa(D, ⋆) ∩K = E⋆̃ = E⋆̃[X ] ∩K

= (E[X ])[⋆̃] ∩K

= (ENa(D[X ], [⋆̃]) ∩K(X)) ∩K

= ENa(D[X ], [⋆̃]) ∩K .

(2) Like [⋆̃], also 〈⋆̃〉, and (⋆̃) are finite type stable semistar operations on D
1
:=

D[X ] (Propositions 16(2) and 17) then, for the following multiplicative subsets of

D
1
,

S♯
1
(〈⋆̃〉) := N 〈⋆̃〉

1
:= {0 6= g

1
∈ D

1
[Y ] | cD

1
(g

1
)〈⋆̃〉 = D〈⋆̃〉

1
} ,

S♯
1
((⋆̃)) := N (⋆̃)

1
:= {0 6= g

1
∈ D

1
[Y ] | cD

1
(g

1
)(⋆̃) = D(⋆̃)

1
} ,

and, for all A ∈ F (D[X ]), using also Proposition 16(1), we have:

A〈⋆̃〉 = AD[X,Y ]
N

〈⋆̃〉
1

∩K(X) = ANa(D[X ], 〈⋆̃〉) ∩K(X)

= ANa(D, ⋆) ∩AK[X ] ,

A(⋆̃) = AD[X,Y ]
N

(⋆̃)
1

∩K(X) = ANa(D[X ], (⋆̃)) ∩K(X)

= ANa(D, ⋆).

In particular, for all E ∈ F (D), we have:

ENa(D, ⋆) ∩K = E⋆̃ = E⋆̃[X ] ∩K = (E[X ])〈⋆̃〉 ∩K = ENa(D[X ], 〈⋆̃〉) ∩K

= (E[X ])(⋆̃) ∩K = ENa(D[X ], (⋆̃)) ∩K ,

with (E[X ])(⋆̃) = ENa(D, ⋆).

Note that, by the previous descriptions of 〈⋆̃〉 and (⋆̃), we have:

P1 ∈ QSpec〈⋆̃〉(D[X ]) ⇔ P1Na(D, ⋆) ∩ P1K[X ] ∩D[X ] = P1 ,

P1 ∈ QSpec(⋆̃)(D[X ]) ⇔ P1Na(D, ⋆) ∩D[X ] = P1 .

Since Na(D, ⋆) = D[X ]N⋆ , where N ⋆ := {g ∈ D[X ] | 0 6= g and cD(g)⋆ = D⋆},

then:

QSpec〈⋆̃〉(D[X ]) = {P1 ∈ Spec(D[X ]) | cD(P1)
⋆
f ( D⋆ or P1 ∩D = (0)} ,

QSpec(⋆̃)(D[X ]) = {P1 ∈ Spec(D[X ]) | cD(P1)
⋆
f ( D⋆} .



POLYNOMIAL EXTENSIONS OF STAR AND SEMISTAR OPERATIONS 19

Therefore, since Max(Na(D, ⋆)) = {Q[X ] | Q ∈ QMax⋆f (D)} [11, Proposition

3.1((2) and (3))], we can conclude that

QMax〈⋆̃〉(D[X ]) = {Q1 ∈ Spec(D[X ]) |Q1 = Q[X ] for some Q ∈ QMax⋆f (D)} ∪

{(0) 6= Q
1
∈ Spec(D[X ]) |Q

1
∩D = (0) and cD(Q

1
)⋆f = D⋆} ,

QMax(⋆̃)(D[X ]) = {Q1 ∈ Spec(D[X ]) |Q1 = Q[X ] for some Q ∈ QMax⋆f (D)} .

We already observed that the construction described in Remark 20(1) is a modi-

fication of a previous construction due to Chang and Fontana [4, Theorem 2.3].

More precisely, Chang and Fontana considered the following subset of Spec(D1):

∆′
1
:= ∆′

1,⋆
:= {Q1 ∈ Spec(D1) | either Q1 ∩D = (0) or

Q
1
= (Q

1
∩D)[X ] and (Q

1
∩D)⋆f ( D⋆} .

Then, they considered the following associated extended saturated multiplicative

system in D1 [Y ]:

S ′
1
:= S ′

1,⋆
:= S(∆′

1,⋆
) := D

1
[Y ] \

(⋃
{Q

1
[Y ] | Q

1
∈ ∆′

1,⋆
}
)

and the stable semistar operation of finite type of D
1
defined by

A
	S′

1,⋆ := AD
1
[Y ]S′

1
∩K

1
, for all A ∈ F (D

1
).

They proved that, when ⋆ is the v–operation (or the t–operation, or the w–operation)

onD, then 	S′
1,⋆

coincides with the w–operation ofD[X ] [4, Theorem 2.3(f)]. (Note

that, in that paper, the authors denoted the semistar operation	S′
1,⋆

ofD[X ] by [⋆];

we avoid now this notation, since we already use it here with a different meaning.)

Proposition 21. Let ⋆ be a semistar operation defined on an integral domain D.

Let ⋆′
1
:=	S′

1,⋆
be the stable semistar operation of finite type on D[X ] defined above

and let ⋆
1
be the semistar operation defined in Remark 20(1) (i.e., ⋆

1
:= 	S♯

1,⋆
= [⋆̃]).

(1) [⋆̃] = ⋆1 ≤ ⋆′
1
.

(2) ⋆′
1
= 〈⋆̃〉.

Proof. (1) follows easily from the fact that ∆1,⋆ ⊇ ∆′
1,⋆

or, equivalently, S♯
1
⊆ S ′

1
.

(2) We know that QMax⋆
′

1 (D
1
) = {Q

1
∈ Spec(D

1
) | Q

1
∩D = (0) and cD(Q

1
)⋆f =

D⋆} ∪ {Q[X ] | Q ∈ QMax⋆f (D)} [4, Theorem 2.3(e)]. On the other hand, by what

we observed in Remark 20(2),

QMax⋆
′

1 (D[X ]) = QMax〈⋆̃〉(D[X ]) ,

and so, since ⋆′
1
and 〈⋆̃〉 are both stable semistar operations of finite type, we

conclude that ⋆′
1
= 〈⋆̃〉. �

As a final remark (with the notation of the present paper), note that in [4,

Corollary 2.5(1)] the authors prove that D is a Prüfer ⋆–multiplication domain if

and only if D[X ] is a Prüfer 〈⋆̃〉–multiplication domain. On the other hand, it is

not true that D is a Prüfer ⋆–multiplication domain if and only if D[X ] is a Prüfer

[⋆̃]–multiplication domain (take, for instance, D a Prüfer domain, but not a field,

and ⋆ = dD, in this case [ d̃D] = [dD] = dD[X] and, obviously, D[X ] is not a Prüfer

domain). This fact justifies the terminology used in [4], where the authors call the
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semistar operation denoted here by 〈⋆̃〉 the stable semistar operation of finite type

canonically associated to ⋆.
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(1997).

[9] M. Fontana and K.A. Loper, A Krull-type theorem for the semistar integral closure of an

integral domain, AJSE (Arab J. Sci. Eng.) Theme Issue Commutative Algebra 26 (2001),

89–95.

[10] M. Fontana and K.A. Loper, Kronecker function rings: a general approach, in “Ideal Theo-

retic Methods in Commutative Algebra”, Lecture Notes in Pure Appl. Math., Marcel Dekker,

220 (2001), 189–205.

[11] M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings and related semistar

operations, Comm. Algebra 31 (2003), 4775–4801.

[12] M. Fontana and K.A. Loper, Cancellation properties in ideal systems: A classification of eab

semistar operations, J. Pure Appl. Algebra 213 (2009), 2095–2103.

[13] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12

(2005), 645-664.

[14] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

[15] S. Glaz and W.V. Vasconcelos, Flat ideals, II, Manuscripta Math. 22 (1977), 325-341.

[16] F. Halter-Koch, Ideal Systems, An Introduction to Multiplicative Ideal Theory, Marcel

Dekker, New York, 1998.

[17] F. Halter-Koch, Generalized integral closures, in “Factorization in Integral Domains” (D.D.

Anderson, Ed.), Lecture Notes in Pure Appl. Math., Marcel Dekker, 187 (1997), 349-358.

[18] F. Halter-Koch, Ideal systems, Monographs and Textbooks in Pure and Applied Mathematics,

vol. 211, Marcel Dekker Inc., New York, 1998.

[19] F. Halter-Koch, Localizing systems, module systems and semistar operations, J. Algebra 238

(2001), 723–761.

[20] F. Halter-Koch, Kronecker function rings and generalized integral closures, Comm. Algebra

31 (2003), 45–59.

[21] E. Hamann, E. Houston and J.L. Johnson, Properties of uppers to zero in R[X], Pacific J.

Math. 135 (1988), 65–79.



POLYNOMIAL EXTENSIONS OF STAR AND SEMISTAR OPERATIONS 21

[22] J.R. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18

(1980), 37–44.

[23] E. Houston, S. Malik, and J. Mott, Characterizations of ∗-multiplication domains, Canad.

Math. Bull. 27 (1984), 48–52.

[24] E. Houston and M. Zafrullah, On t–invertibility, II, Comm. Algebra 17 (1989), 1955–1969.
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[36] P. Sahandi, Semistar-Krull and valuative dimension of integral domains, Ricerche Mat. (to

appear).

[37] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), 357–377.

[38] F.G. Wang and R.L. MacCasland, On w-modules over strong Mori domains, Comm. Algebra

25 (1997), 1285–1306.

[39] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, New York, 1960

(new edition by Springer-Verlag, Berlin, 1991).
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