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Let D be an integral domain and X an indeterminate over D. It is well known that
(a) D is quasi-Prüfer (i.e., its integral closure is a Prüfer domain) if and only if each
upper to zero Q in D�X� contains a polynomial g ∈ D�X� with content cD�g� = D; (b)
an upper to zero Q in D�X� is a maximal t-ideal if and only if Q contains a nonzero
polynomial g ∈ D�X� with cD�g�

v = D. Using these facts, the notions of UMt-domain
(i.e., an integral domain such that each upper to zero is a maximal t-ideal) and quasi-
Prüfer domain can be naturally extended to the semistar operation setting and studied
in a unified frame. In this article, given a semistar operation � in the sense of Okabe–
Matsuda, we introduce the �-quasi-Prüfer domains. We give several characterizations
of these domains and we investigate their relations with the UMt-domains and the
Prüfer v-multiplication domains.

Key Words: Prüfer domain; Prüfer v-multiplication domain; Quasi-Prüfer domain; Star and semistar
operation; UMt-domain; Upper to zero.
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INTRODUCTION AND BACKGROUND RESULTS

Gilmer and Hoffmann characterized Prüfer domains as those integrally closed
domains D, such that the extension of D inside its quotient field is a primitive
extension (Gilmer and Hoffmann, 1975, Theorem 2). (Relevant definitions and
results are reviewed in the sequel.) Primitive extensions are strictly related with
relevant properties of the prime spectrum of the polynomial ring. In particular,
from the previous characterization it follows that a Prüfer domain is an integrally
closed quasi-Prüfer domain (i.e., an integral domain such that each prime ideal
of the polynomial ring contained in an extended prime is extended; see Ayache
et al., 1996) (Fontana et al., 1997, Section 6.5). A quasi-Prüfer domain D can be
characterized by the fact that each upper to zero Q in D�X� contains a polynomial
g ∈ D�X� with content cD�g� = D (Theorem 1.1). On the other hand, a “weaker”
version of the last property can be used for characterizing upper to zero that are
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UPPERS TO ZERO AND PRÜFER-LIKE DOMAINS 165

maximal t-ideals in the polynomial ring. Recall that D is called a UMt-domain (UMt
means “upper to zero is a maximal t-ideal”) if every upper to zero in D�X� is a
maximal t-ideal (Houston and Zafrullah, 1989, Section 3) and this happens if and
only if each upper to zero in D�X� contains a nonzero polynomial g ∈ D�X� with
cD�g�

v = D (Fontana et al., 1998, Theorem 1.1). Using the previous observations,
the notions of UMt-domain and quasi-Prüfer domain can be naturally extended
to the semistar operation setting and studied in a unified frame. More precisely,
given a semistar operation � in the sense of Okabe–Matsuda (Okabe and Matsuda,
1994), we introduce in a natural way the �-quasi-Prüfer domains and semistar
analog of other relevant notions like primitive extension and incomparability (INC)
property. We give several characterizations of the �-quasi-Prüfer domains, and we
investigate their relations with the UMt-domains and the Prüfer v-multiplication
domains (Griffin, 1967).

More precisely, let � be a semistar operation on an integral domain D with
quotient field K. Among other things, we prove that D is a �f -quasi-Prüfer domain
if and only if D ⊆ K is a �f -primitive extension, if and only if D is a �f -INC-domain,
if and only if each overring R of D is a ��f ��-quasi-Prüfer domain, where � � D ↪→ R
is the canonical embedding, if and only if every prime ideal of Na�D	 �f � is extended
from D, if and only if Na�D	 �f � is a quasi-Prüfer domain, if and only if the integral
closure of Na�D	 �f � is a Prüfer domain, if and only if DP is a quasi-Prüfer domain,
for each quasi-�f -maximal ideal P of D. Moreover, we show that if � is a (semi)star
operation, then D is a �f -quasi-Prüfer domain if and only if D is a t-quasi-Prüfer
domain and each �f -maximal ideal of D is a t-ideal (equivalently, �̃f = w).

We also show that this general approach sheds new light on some delicate
aspects of the classical theories. In particular, we give a contribution to the open
problem of whether the integral closure of a UMt-domain is a PvMD by showing
that D is a UMt-domain if and only if the w-closure D̃ of D is a PvMD, and
the w-operations on D and D̃ are related by �wD��̃ = wD̃, where �̃ � D ↪→ D̃ is the
canonical embedding. Moreover, among other results, we provide a positive answer
to a Zafrullah’s conjecture on the local-global behaviour of the UMt domains
(Zafrullah, 2000, p. 452).

Let D be an integral domain with quotient field K. Let F�D� denote the set
of all nonzero D-submodules of K and let F�D� be the set of all nonzero fractional
ideals of D, i.e., E ∈ F�D� if E ∈ F�D� and there exists a nonzero d ∈ D with
dE⊆D. Let f �D� be the set of all nonzero finitely generated D-submodules of K.
Then, obviously f �D� ⊆ F�D� ⊆ F�D�.

Following Okabe and Matsuda (1994), a semistar operation on D is a map � �
F�D� → F�D�	 E �→ E�, such that, for all x ∈ K, x �= 0, and for all E	 F ∈ F�D�, the
following properties hold:

��1� �xE�� = xE�;
��2� E ⊆ F implies E� ⊆ F�;
��3� E ⊆ E� and E�� �= �E��� = E�.

Recall that, given a semistar operation � on D, for all E	 F ∈ F�D�, the
following basic formulas follow easily from the axioms:

�EF�� = �E�F�� = �EF��� = �E�F���
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166 CHANG AND FONTANA

�E + F�� = �E� + F�� = �E + F��� = �E� + F���


�E � F�� ⊆ �E� � F �� = �E� � F� = �E� � F��	 if �E � F� �= 0


�E ∩ F�� ⊆ E� ∩ F� = �E� ∩ F���	 if E ∩ F �= �0�


cf. for instance Fontana and Huckaba (2000, Theorem 1.2 and p. 174).
A (semi)star operation is a semistar operation that, restricted to F�D�, is a star

operation (in the sense of Gilmer, 1972, Section 32). It is easy to see that a semistar
operation � on D is a (semi)star operation if and only if D� = D.

If � is a semistar operation on D, then we can consider a map �f � F�D� →
F�D� defined, for each E ∈ F�D�, as follows:

E�f �= ⋃
�F� �F ∈ f �D� and F ⊆ E�


It is easy to see that �f is a semistar operation on D, called the semistar operation
of finite type associated to �. Note that, for each F ∈ f �D�, F� = F�f . A semistar
operation � is called a semistar operation of finite type if � = �f . It is easy to see that
��f �f = �f (that is, �f is of finite type).

If �1 and �2 are two semistar operations on D, we say that �1 ≤ �2 if E
�1 ⊆ E�2 ,

for each E ∈ F�D�. This is equivalent to say that �E�1��2 = E�2 = �E�2��1 , for each
E ∈ F�D�. Obviously, for each semistar operation � defined on D, we have �f ≤ �.
Let dD (or, simply, d) be the identity (semi)star operation on D, clearly d ≤ �, for all
semistar operation � on D.

We say that a nonzero ideal I of D is a quasi-�-ideal if I� ∩D = I , a quasi-�-
prime if it is a prime quasi-�-ideal, and a quasi-�-maximal if it is maximal in the set
of all proper quasi-�-ideals. A quasi-�-maximal ideal is a prime ideal. It is possible
to prove that each proper quasi-�f -ideal is contained in a quasi-�f -maximal ideal.
More details can be found in Fontana and Loper (2003, p. 4781). We will denote
by QMax��D� (resp., QSpec��D�) the set of the quasi-�-maximal ideals (resp., quasi-
�-prime ideals) of D. When � is a (semi)star operation the notion of quasi-�-ideal
coincides with the “classical” notion of �-ideal (i.e., a nonzero ideal I such that
I� = I).

The �-dimension of D, denoted by dim��D�, is defined by the supremum of
�n �P1 � P2 � · · · � Pn is a chain of quasi-�-prime ideals of D�. Thus, when � is a
semistar operation of finite type and D is not a field, dim��D� = 1 if and only if each
quasi-�-maximal ideal of D has height-one.

If � is a set of prime ideals of an integral domain D, then the semistar
operation �� defined on D as follows:

E�� �= ⋂
�EDP �P ∈ ��	 for each E ∈ F�D�	

is called the spectral semistar operation associated to �. A semistar operation � of an
integral domain D is called a spectral semistar operation if there exists a subset � of
the prime spectrum of D, Spec�D�, such that � = ��.

When � �= QMax�f �D�, we set �̃ �= ��, i.e.,

E�̃ �= ⋂{
EDP �P ∈ QMax�f �D�

}
	 for each E ∈ F�D�
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A semistar operation � is stable if �E ∩ F�� = E� ∩ F�, for each E	 F ∈
F�D�. Spectral semistar operations are stable (Fontana and Huckaba, 2000,
Lemma 4.1 (3)). In particular, �̃ is a semistar operation stable and of finite type
(Fontana and Huckaba, 2000, Corollary 3.9).

By vD (or, simply, by v) we denote the v-(semi)star operation defined as
usual by Ev �= �D � �D � E��, for each E ∈ F�D�. By tD (or, simply, by t) we
denote �vD�f the t-(semi)star operation on D and by wD (or just by w) the stable
semistar operation of finite type associated to vD (or, equivalently, to tD), considered
by Wang and MacCasland (1997) (cf. also Glaz and Vasconcelos, 1977); i.e.,
wD �= ṽD = t̃D. Clearly wD ≤ tD ≤ vD. Moreover, it is easy to see that for each
(semi)star operation � of D, we have � ≤ vD and �f ≤ tD (cf. also Gilmer, 1972,
Theorem 34.1(4)).

If I ∈ F�D�, we say that I is �-finite if there exists J ∈ f �D� such that J� = I�.
It is immediate to see that if �1 ≤ �2 are semistar operations and I is �1-finite, then
I is �2-finite. In particular, if I is �f -finite, then it is �-finite. The converse is not
true and it is possible to prove that I is �f -finite if and only if there exists J ∈ f �D�,
J ⊆ I , such that J� = I� (Fontana and Picozza, 2005, Lemma 2.3).

If I is a nonzero ideal of D, we say that I is �-invertible if �II−1�� = D�.
From the definitions and from the fact that QMax�f �D� = QMax�̃�D� (Fontana and
Loper, 2003, Corollary 3.5(2)) it follows easily that an ideal I is �̃-invertible if and
only if I is �f -invertible. If I is �f -invertible, then I and I−1 are �f -finite (Fontana
and Picozza, 2005, Proposition 2.6).

Let R be an overring of an integral domain D, let � � D ↪→ R be the canonical
embedding and let � be a semistar operation of D. We denote by �� the semistar
operation of R defined by E�� �= E�, for each E ∈ F�R��⊆ F�D��. Let ∗ be a semistar
operation of R and let ∗� be the semistar operation on D defined by E∗� �= �ER�∗,
for each E ∈ F�D�. It is not difficult to see that �∗��f = �∗f �� and if � is a semistar
operation of finite type (resp., a stable semistar operation) of D then �� is a semistar
operation of finite type (resp., a stable semistar operation) of R (cf. for instance
Fontana and Loper, 2001b, Proposition 2.8 and Picozza, 2004, Propositions 2.11
and 2.13).

1. QUASI-PRÜFER DOMAINS

Let D be an integral domain with quotient field K, and let X be a nonempty
set of indeterminates over K. For each polynomial f ∈ K�X �, we denote by cD�f�
(or, simply, c�f�) the content on D of the polynomial f , i.e., the (fractional) ideal of
D generated by the coefficients of f . For each fractional ideal J of D�X �, with J ⊆
K�X �, we denote by cD�J� (or, simply, c�J�) the (fractional) ideal �cD�f� � f ∈ J� of D.
Obviously, for each ideal J in D�X �, J ∩D ⊆ cD�J� and �J ∩D��X � ⊆ J ⊆ cD�J��X �.

Taking the properties of prime ideals in polynomial extensions of Prüfer
domains as a starting point, the quasi-Prüfer notion was introduced in Ayache et al.
(1996) for arbitrary rings (not necessarily domains). As in Fontana et al. (1997,
p. 212), we say that D is a quasi-Prüfer domain if for each prime ideal P of D, if
Q is a prime ideal of D�X � with Q ⊆ P�X �, then Q = �Q ∩D��X �. It is well known
that an integral domain is a Prüfer domain if and only if it is integrally closed and
quasi-Prüfer (Gilmer, 1972, Theorem 19.15).
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168 CHANG AND FONTANA

Consider now the following condition:

(qP′) if Q is a prime ideal of D�X � with cD�Q� � D, then Q = �Q ∩D��X �.

It is clear that D satisfies (qP′) if and only if D is a quasi-Prüfer domain.
Therefore, an integrally closed domain D is a Prüfer domain if and only if D satisfies
(qP′).

Let D ⊆ R be an extension of integral domains, and let P be a prime ideal of
D. We say that D ⊆ R satisfies INC at P if whenever Q1 and Q2 are prime ideals
of R such that Q1 ∩D = P = Q2 ∩D, then Q1 and Q2 are incomparable. If D ⊆ R
satisfies INC at every prime ideal of D, D ⊆ R is said an INC-extension. The domain
D is an INC-domain if, for each overring R of D, D ⊆ R is an INC-extension.

An element u ∈ R will be said to be primitive over D if u is a root of a
primitive polynomial on D (i.e., a nonzero polynomial f ∈ D�X� with cD�f� = D).
The extension D ⊆ R is called a primitive extension (or, a P-extension; Gilmer and
Hoffmann, 1975) if each element of R is primitive over D.

A nonzero prime ideal Q in the polynomial ring D�X� is called an upper to
zero (McAdam’s terminology) if Q ∩D = �0�. Let P �= Q ∩D; if Q = P�X�, then Q
is called an extended prime of D�X� (more details can be found in Houston, 2006).

Recall that Gilmer and Hoffmann characterized Prüfer domains as those
integrally closed domains D, such that the embedding of D inside its quotient field is
a P-extension (Gilmer and Hoffmann, 1975, Theorem 2), and that in Dobbs (1980)
characterized P-extensions in terms of INC-domains. The natural link between
quasi-Prüfer domains and primitive extensions is recalled in the following theorem,
where we collect several useful characterizations of quasi-Prüfer domains (cf. also
the very recent survey article by Houston, 2006).

Theorem 1.1. Let D be an integral domain with quotient field K, let X be an
indeterminate over D, and let � �= �g ∈ D�X� � cD�g� = D� be the set of primitive
polynomials over D. Then the following statements are equivalent:

(1) D is a quasi-Prüfer domain;
(1′) D satisfies (qP′) for one indeterminate;
(2) Each upper to zero in D�X� contains a polynomial g ∈ D�X� with cD�g� = D;
(3) If Q is an upper to zero in D�X�, then cD�Q� = D;
(4) D ⊆ K is a primitive extension;
(5) D is an INC-domain;
(6) The integral closure of D is a Prüfer domain;
(7) Each overring of D is a quasi-Prüfer domain;
(8) Each prime ideal of D�X�� is extended from D;
(9) D�X�� is a quasi-Prüfer domain;

(10) The integral closure of D�X�� is a Prüfer domain;
(11) DM is a quasi-Prüfer domain, for each maximal ideal M of D.

Proof. �1� ⇔ �4� ⇔ �5� ⇔ �6� ⇔ �7� and �9� ⇔ �10� by Fontana et al. (1997,
Corollary 6.5.14). Moreover, �3� ⇔ �6� by Anderson et al. (1989, Theorem 2.7).

�2� ⇔ �3�,�1� ⇔ �11� and �1� ⇒�1′� are clear.
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UPPERS TO ZERO AND PRÜFER-LIKE DOMAINS 169

�1′� ⇒ �3� If Q is an upper to zero, then Q �= �Q ∩D��X�, and thus, by �1′�,
cD�Q� = D.

�6� ⇔ �10� Let D be the integral closure of D, and let � �= �h ∈
D�X� � cD�h� = D�. Then it is clear that D�X�� = D�X�� . Moreover, D�X�� coincides
with the integral closure of D�X�� (Atiyah and Macdonald, 1969, Chapter 5,
Proposition 5.12 and Exercise 9). Finally, recall that D is a Prüfer domain if and
only if D�X�� is a Prüfer domain (Gilmer, 1972, Theorem 33.4).

�1′� ⇒ �8� Let � be a prime ideal of D�X�� . Then � = QD�X�� for some
prime ideal Q of D�X�. Since � � D�X�� , Q ∩ � = ∅; hence c�Q� � D. So, by �1′�,
Q = �Q ∩D��X�. Thus � = �Q ∩D�D�X�� .

�8� ⇒ �1′� Let Q be prime ideal of D�X� such that c�Q� � D. Then Q ∩ � =∅
and thus QD�X�� is a prime ideal of D�X�� . Therefore, by (8), �Q ∩D�D�X�� =
QD�X�� , and hence Q = �Q ∩D��X�. �

In view of the extensions to the case of semistar operations, we introduce the
following notation. Let � be a semistar operation on D, if � � �= �g ∈ D�X� � g �= 0
and cD�g�

� = D��, then we set Na�D	 �� �= D�X�� � . The ring of rational functions
Na�D	 �� is called the �–Nagata domain of D. When � = d the identity (semi)star
operation on D, � d = � (the multiplicative set of D�X� introduced in Theorem 1.1)
and we set simply Na�D� instead of Na�D	 d� = D�X�� . Note that Na�D� coincides
with the classical Nagata domain D�X� (cf. for instance Gilmer, 1972, Section 33;
Nagata, 1962, Chapter I, §6 p. 18).

Recall from Fontana and Loper (2003, Propositions 3.1 and 3.4) that:

(a) � � = � �f = � �̃ = D�X�\ ∪ �P�X� �P ∈ QMax�f �D�� is a saturated multiplica-
tively closed subset of D�X�;

(b) Na�D	 �� = Na�D	 �f � = Na�D	 �̃� = ⋂
�DP�X� �P ∈ QMax�f �D��;

(c) QMax�f �D� = �M ∩D �M ∈ Max�Na�D	 ����;
(d) E�̃ = E ·Na�D	 �� ∩ K, for each E ∈ F�D�.

Remark 1.2. (a) It is well known that an upper to zero Q in D�X� is a maximal
t-ideal if and only if Q contains a nonzero polynomial g ∈ D�X� with cD�g�

t�=
cD�g�

v� = D (Houston and Zafrullah, 1989, Theorem 1.4). Recall that D is called
a UMt-domain if every upper to zero in D�X� is a maximal t-ideal (Houston and
Zafrullah, 1989, Section 3). An overring R of D is called t-linked to D if, for each
nonzero finitely generated ideal I of D, �D � I� = D implies �R � IR� = R (cf. for
instance Dobbs et al., 1989, 1990). Recall that UMt-domains can be characterized
by weaker (t-) versions of some of the statements of Theorem 1.1, since the following
statements are equivalent:

�1t� D is a UMt-domain;
�2t� Each upper to zero in D�X� contains a nonzero polynomial g ∈ D�X� with

cD�g�
t = cD�g�

v = D;
�3t� If Q is an upper to zero in D�X�, then cD�Q�t = D;
�7t� Each t-linked overring to D is a UMt-domain;
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170 CHANG AND FONTANA

�8t� Each prime ideal of Na�D	 t� is extended from D;
�11t� DP is a quasi-Prüfer domain, for each maximal t-ideal P of D.

For the proof see Fontana et al. (1998, Theorem 1.1) and Chang and Zafrullah
(2006, Theorem 2.6 (1)⇔(8)).

(b) Note that if P ⊆ Q are two primes ideals in a UMt-domain with P �= �0�
and if Q is a prime t-ideal, then P is also a prime t-ideal (Fontana et al., 1998,
Corollary 1.6).

(c) With the notation introduced just before this remark, one of the
arguments in the proof of (6)⇔(10) in Theorem 1.1 shows that, for any integral
domain D, the integral closure of Na�D� is Na�D�.

(d) Recall that an integral domain D is called a Prüfer v-multiplication domain
(for short, PvMD) if each nonzero finitely generated ideal of D is t-invertible or,
equivalently, if �FF−1�t = D, for each F ∈ f �D� (Griffin, 1967). It is known that a
domain D is an integrally closed domain and a UMt-domain if and and only if D
is a PvMD (Houston and Zafrullah, 1989, Proposition 3.2). But Zafrullah (2000,
p. 452) mentioned a problem that seems to be still open: Is the integral closure of
a UMt-domain a PvMD? We will give some contributions to this problem in the
following Corollaries 2.17 and 2.18.

A related question is the following: If the integral closure D of an integral
domain D is a PvMD what can be said about the UMt-ness of D ? An answer to
this question was recently given by Chang and Zafrullah (2006, Remark 2.7) where
they provide an example of a non-UMt domain with the integral closure which is a
PvMD.

Using the notion of UMt-domain (recalled in the previous remark), we have
further characterizations of a quasi-Prüfer domain (cf. Theorem 1.1):

Corollary 1.3. The following statements are equivalent for an integral domain D:

(1) D is a quasi-Prüfer domain;
(12) Each overring of D is a UMt-domain;
(13) D is a UMt-domain and each maximal ideal of D is a t-ideal;
(14) D is a UMt-domain and d = w.

In particular, in a quasi-Prüfer domain every nonzero prime ideal is a t-ideal.

Proof. �1� ⇔ �12� by Fontana et al. (1998, Corollary 3.11) and Theorem 1.1
(�1� ⇔ �6�).

�1� ⇒ �13� If Q is an upper to zero in D�X�, then Q contains a nonzero
polynomial g ∈ D�X� with cD�g� = D (Theorem 1.1 (�1� ⇒ �2�)). Clearly cD�g�

t = D,
and thus D is a UMt-domain (Remark 1.2 (a) or Houston and Zafrullah, 1989,
Theorem 1.4). Let M be a maximal ideal of D. If Mt = D, there is a polynomial
0 �= h ∈ M�X� such that cD�h�

t = D. It is easy to see that hD�X�M�X� ∩D = �0�. In
this situation, there exists an upper to zero Q′ in D�X� such that hD�X� ⊆ Q′ ⊆ M�X�
(De Souza Doering and Lequain, 1982, Lemma 1.1 (b)). Hence Q′ (and thus M�X�)
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contains a nonzero polynomial g′ with cD�g
′� = D by Theorem 1.1 (�1� ⇒ �2�), thus

D�X� = cD�g
′�D�X� ⊆ M�X�, a contradiction. Therefore Mt � D, hence M is a t-ideal.

�13� ⇒ �1� Let Q be an upper to zero in D�X�. Since we are assuming that
D is a UMt-domain, then Q is a maximal t-ideal of D�X�, and hence Q contains a
polynomial 0 �= g ∈ D�X� with cD�g�

t = cD�g�
v = D (Houston and Zafrullah, 1989,

Theorem 1.4). Furthermore, by assumption, if M is a maximal ideal of D, then
cD�g� � M since M is a t-ideal. Hence cD�g� = D, and thus D is a quasi-Prüfer
domain by Theorem 1.1 (�2� ⇒ �1�).

�13� ⇒ �14� Note that from (13) it follows easily that Max�D� = Maxt�D�.
Thus d = d̃ = t̃ = w.

�14� ⇒ �13� Under the present assumption Max�D� = Maxw�D�, and it is
known that Maxw�D� = Maxt�D� (cf. for instance Fontana and Loper, 2003,
Corollary 3.5 (2)).

The last statement is an easy consequence of the fact that a quasi-Prüfer
domain is a UMt-domain and of Remark 1.2 (b). �

Remark 1.4. (a) From the previous Corollary 1.3 (�1� ⇔ �13�), we easily deduce
that the condition �11t� in Remak 1.2 (a), that characterizes the UMt-domains, is
equivalent to the following:

�11′t� DP is a UMtDP
- domain and PDP is a maximal tDP

-ideal of DP , for each
maximal tD-ideal P of D.

(Cf. also Fontana et al., 1998, Theorem 1.5 and Houston, 2006, Theorem 3.13.)
This result provides a positive answer to the following Zafrullah’s conjecture
(Zafrullah, 2000, p. 452): An integral domain D is a UMtD-domain if and only if DM

is a UM tDM
-domain, for each maximal ideal M of D, and D is well behaved (i.e., a

domain such that prime t-ideals of the domain extend to prime t-ideals in the rings
of fractions of D).

As a matter of fact, the “only if part,” on which the conjecture was based,
was already proved in Fontana et al. (1998, Propositions 1.2 and 1.4); the “if part”
follows from the equivalence of �11′t� with �1t� of Remark 1.2 (a).

(b) Note that the condition (12) in the previous Corollary 1.3 can be stated
in the following equivalent form:

�12′� D is a UMt-domain and each overring of D is t-linked to D.

(Cf. Dobbs et al., 1992, Theorem 2.4.)

(c) In relation with (14) of Corollary 1.3, we recall that the domains for
which d = w were introduced and studied in Mimouni (2005) under the name of
DW-domains (cf. also Picozza and Tartarone, 2008 for further information on these
domains). A DW-domain D can be characterized by the property that each overring
R of D is t-linked to D (cf. Dobbs et al., 1989, 1992, Theorem 2.6; Mimouni, 2005,
Proposition 2.2).
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172 CHANG AND FONTANA

Corollary 1.5. Let D be a quasi-Prüfer domain. Then dim�D� = dimw�D� =
dimt�D� = dim�Na�D��.

Proof. This follows because, in the present situation, d = w, every nonzero prime
ideal of D is a t-ideal (Corollary 1.3) and each prime ideal of Na�D� is extended
from D by Theorem 1.1 (�1� ⇒ �8�). �

Remark 1.6. Note that even in the Prüfer domain case, it might happen that
dim�D��= dimt�D�� � dimv�D�. For instance take a nondiscrete valuation domain.
In this case, the maximal ideal is not a v-ideal.

2. �-QUASI-PRÜFER DOMAINS AND UPPERS TO ZERO

Let � be a semistar operation on an integral domain D. We want to introduce
a semistar analog to the notion of quasi-Prüfer domain and to the related notion of
UMt-domain.

We say that an integral domain D is a �-quasi-Prüfer domain if the following
property holds:

(�qP) if Q is a prime ideal in D�X� and Q ⊆ P�X�, for some P ∈ QSpec��D�, then
Q = �Q ∩D��X�.

It is clear from the definition that the d-quasi-Prüfer domains are exactly the
quasi-Prüfer domains.

Lemma 2.1. Let � be a semistar operation on an integral domain D. The following
statements are equivalent:

(i) D is a �-quasi-Prüfer domain;
(ii) Let Q be an upper to zero in D�X�, then cD�Q� �⊆ P, for each P ∈ QSpec��D�;
(iii) Let Q be an upper to zero in D�X�, then Q �⊆ P�X�, for each P ∈ QSpec��D�;
(iv) DP is a quasi-Prüfer domain, for each P ∈ QSpec��D�.

Proof. (i) ⇒ (iii) follows immediately from the definition.

(iii) ⇒ (ii) If Q is an upper to zero then by assumption Q �⊆ P�X�, for all
P ∈ QSpec��D�. Then c�Q� �⊆ P, for each P ∈ QSpec��D�, since Q ⊆ cD�Q��X�.

(ii) ⇒ (i) Assume that Q is a prime ideal in D�X� such that �Q ∩D��X� � Q ⊆
P�X�, for some P ∈ QMax��D�. Then we can find an upper to zero Q1 in D�X� such
that Q1 ⊆ Q (De Souza Doering and Lequain, 1982, Theorem A). Thus cD�Q1� ⊆
cD�Q� ⊆ P, for some P ∈ QSpec��D�, and this contradicts the present hypothesis.

(i) ⇒ (iv) Let P ∈ QSpec��D�. In order to show that DP is a quasi-Prüfer
domain, we prove the condition �1′� of Theorem 1.1. If Q is a prime ideal of DP�X�
with cDP

�Q� � DP , then cDP
�Q� ⊆ PDP , and hence Q ⊆ PDP�X�. So Q ∩D�X� ⊆

P�X�, and by (i) we have Q ∩D�X� = �Q ∩D��X�. Hence Q = �Q ∩DP��X�. Thus DP

is a quasi-Prüfer domain.

(iv) ⇒ (i) Let Q be a prime ideal of D�X� such that Q ⊆ P�X� for some
P ∈ QSpec��D�. Then QDP�X� ⊆ PDP�X�, and hence QDP�X� = �QDP�X� ∩DP��X�
by (iv). Thus Q = �QDP�X� ∩DP��X� ∩D�X� = �Q ∩D��X�. �
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Since a quasi-�-ideal is also a quasi-�f -ideal, it is clear that �f -quasi-Prüfer
implies �-quasi-Prüfer. Recall that every quasi-�f -ideal is contained in a quasi-�f -
maximal ideal and each quasi-�f -maximal ideal is a prime ideal (Fontana and Loper,
2003, Lemma 2.3). Therefore, the set QSpec�f �D� is always nonempty. On the other
hand QSpec��D� can be empty and in this case the notion of �-quasi-Prüfer domain
can be very weak.

Note also that, when � is a semistar operation of finite type, in the condition
(�qP) and in the properties (ii), (iii), and (iv) of the previous Lemma 2.1 we can
replace QSpec��D� with QMax��D�, obtaining equivalent statements.

Example 2.2. Example of a �-quasi-Prüfer domain which is not a �f -quasi-Prüfer
domain.

Let W be a 1-dimensional nondiscrete valuation domain with maximal ideal
N and residue field k �= W/N . Let Z be an indeterminate over W . Passing to the
Nagata’s ring V �= W�Z�, it is well-known that V is also a 1-dimensional nondiscrete
valuation domain, with maximal ideal M �= N�Z� and residue field k�Z� (cf. Gilmer,
1972, Theorem 33.4; Huckaba, 1988, Theorem 14.1 and Corollary 15.2). Let � �

V → V/N = k�Z� be the canonical projection and let D = �−1�k�. Clearly, D is
an integrally closed 1-dimensional pseudo-valuation domain with maximal ideal
M and with associated valuation overring V = �M � M� (Hedstrom and Houston,
1978a, Theorem 2.10). Note that V has no divisorial primes, since M is not finitely
generated (Gilmer, 1972, Exercise 12, p. 431) and that the t-operation on a valuation
domain coincides with d the identity (semi)star operation. Let � � D ↪→ V be the
canonical embedding, and let � �= �vV �

� be the semistar operation on D defined by
E� �= �EV�vV , for each E ∈ F�D�. Note that � is not of finite type and more precisely
it is not difficult to see that

�f = ��vV �
��f = ��vV �f �

� = �tV �
� = �dV �

� �Picozza	 2004	Proposition 2
13�


Therefore E�f = EV , for each E ∈ F�D�. In particular, M is a (quasi-)�f -maximal
ideal of D. Note that D is not a �f -quasi-Prüfer domain since, if X is an
indeterminate over D, dim�D�X�� = 3, because there exists an upper to zero Q

in D�X� contained in M�X� (Hedstrom and Houston, 1978b, Theorem 2.5 and
Remark 2.6). On the other hand, D is trivially a �-quasi-Prüfer domain, since D does
not possess quasi-�-prime ideals, because M� = �MV�vV = MvV = V .

Because of the previous observations and Example 2.2, we consider with a
special attention the case of �f -quasi-Prüfer domains.

Lemma 2.3. Let � be a semistar operation on an integral domain D. The following
statements are equivalent:

(1�f ) D is a �f -quasi-Prüfer domain;
(2�f ) Each upper to zero in D�X� contains a nonzero polynomial g ∈ D�X� with

c�g�� =D�;
(3�f ) If Q is an upper to zero in D�X�, then c�Q��f = D�.
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174 CHANG AND FONTANA

Proof. �1�f � ⇔ �3�f � follows from Lemma 2.1 because the property Q �⊆ P�X�, for
all P ∈ QMax�f �D� is equivalent to cD�Q��f = D� (since each proper quasi-�f -ideal
is contained in a quasi-�f -maximal).

�3�f � ⇒ �2�f � is obvious.

�2�f � ⇒ �1�f � Let Q be a prime ideal in D�X� such that Q ⊆ P�X�, for some
P ∈ QSpec�f �D�. Assume �Q ∩D��X� � Q. Then we can find an upper to zero Q1

in D�X� such that Q1 ⊆ Q (De Souza Doering and Lequain, 1982, Theorem A). By
assumption, there exists a nonzero polynomial g ∈ Q1 such that cD�g�

� = D�, hence
in particular cD�Q1�

�f = D� and so cD�Q��f = D�. This implies that Q �⊆ P�X�, for all
P ∈ QSpec�f �D�, and this contradicts the assumption. �

Corollary 2.4. Let �	 �1 and �2 be semistar operations on an integral domain D.

(a) Assume that �1 ≤ �2. If D is a �1-quasi-Prüfer domain, then D is a �2-quasi-Prüfer
domain.

(b) D is a t-quasi-Prüfer domain if and only if D is a UMt-domain.
(c) D is a �f -quasi-Prüfer domain if and only if D is a �̃-quasi-Prüfer domain.

Proof. (a) and (b) follow easily from Lemma 2.3 (�1�f � ⇔ �2�f �) and from
Remark 1.2 (a). For (c) note also that cD�g�

� = D� if and only cD�g� �⊆ P for
all P ∈ QMax�f �D� and that QMax�f �D� = QMax�̃�D� (Fontana and Loper, 2003,
Lemma 2.3 (1) and Corollary 3.5 (2)). �

Remark 2.5. For � = v, we have observed in Corollary 2.4 (b) that the t-quasi-
Prüfer domains coincide with the UMt-domains, i.e., the domains such that each
upper to zero in D�X� is a maximal tD�X�-ideal. There is no immediate extension to
the semistar setting of the previous characterization, since in the general case we do
not have the possibility to work at the same time with a semistar operation (like the
t-operation) defined both on D and on D�X�.

At this point it is natural to formulate the following question.

Question. Given a semistar operation of finite type � on D, is it possible to define
in a canonical way a semistar operation of finite type �D�X� on D�X�, such that D is
a �-quasi-Prüfer domain if and only if each upper to zero in D�X� is a quasi-�D�X�-
maximal ideal?1

However, we want to mention that Okabe and Matsuda (1992, Definition 2.10)
introduced a star-operation analog of the notion of UMt-domain: Given a star
operation ∗ on an integral domain D, they call D a ∗-UMT ring if each upper to zero
contains a nonzero polynomial g ∈ D�X� with cD�g�

∗ = D. This notion coincides
with the notion of ∗f -quasi-Prüfer domain introduced above, in the more general
setting of the semistar operations (Lemma 2.3).

1Added in Proofs: This problem was solved by the authors in case of a stable semistar operation
of finite type. The corresponding article “Uppers to zero and semistar operations in polynomial rings”
is now published in Journal of Algebra 318:484–493 (2007).
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The next goal is to extend to the case of general �f -quasi-Prüfer domains the
characterizations given in Theorem 1.1. For this purpose, we need to extend some
definitions to the semistar setting.

Let D ⊆ R be an extension of integral domains and let � be a semistar
operation on D. We will say that R is a �-INC-extension of D if whenever Q1 and
Q2 are nonzero prime ideals of R such that Q1 ∩D = Q2 ∩D and �Q1 ∩D�� � D�,
then Q1 and Q2 are incomparable. We also say that D is a �-INC-domain if each
overring of D is a �-INC-extension of D. Moreover, we say that an element u ∈ R is
�-primitive over D if u is a root of a nonzero polynomial g ∈ D�X� with cD�g�

� = D�.
Note that the notion of d-primitive (respectively, d-INC) extension coincides

with the “classical” notion of primitive (respectively, INC) extension. It is obvious
that the notions of �-primitive and �f -primitive coincide, while �f -INC-extension
implies �-INC-extension. The converse is not true as it will be shown in the
following example.

Example 2.6. Example of a �-INC extension which is not a �f -INC extension.
Let D	V	M and � be as in Example 2.2. It is easy to see that D is not a �f -INC

domain. For instance, if R �= �−1�k�Z��, then M is a prime ideal also in R and all
the maximal ideals of R and the prime (non maximal) ideal M of R have the same
trace in D, that is M . Since M is a (quasi-)�f -maximal ideal of D, D ↪→ R is not
a �f -INC extension. On the other hand D is vacuously a �-INC domain (the only
nonzero prime of D is M and M� ∩D = D).

Lemma 2.7. Let D be an integral domain with quotient field K and let P be a prime
ideal of D. For u ∈ K, D ⊆ D�u� satisfies INC at P if and only if there exists 0 �= g ∈
D�X� such that cD�g� � P and g�u� = 0.

Proof. Let I be the kernel of the canonical surjective homomorphim D�X� →
D�u�	 X �→ u. It is known that D ⊆ D�u� � D�X�/I satisfies INC at P if and only if
cD�I� � P (Papick, 1983, Proposition 2.0). Suppose cD�I� � P. Choose a ∈ cD�I�\P.
Since a ∈ cD�I�, then there exist a finite family of polynomials f1	 
 
 
 	 fk ∈ I such
that a ∈ cD�f1�+ cD�f2�+ · · · + cD�fk�. Let g �= f1 + Xn1+1f2 + Xn1+n2+2f3 + · · · +
Xn1+n2+···+nk−1+k−1fk, where ni is the degree of fi. Then g ∈ I , a ∈ cD�g�, and g�u� = 0.
Since a � P, then cD�g� � P. Conversely, if g�u� = 0, then g ∈ I , and hence cD�g��P
implies cD�I��P. �

Recall from Remark 1.2 (a) that an overring R of D is called t-linked to D if
for each nonzero finitely generated ideal I of D, �D � I� = D implies �R � IR� = R.

Remark 2.8. The notion of t-linked overring can be characterized in several
ways. In particular, the following statements are equivalent (Dobbs et al., 1989,
Proposition 2.1):

(i) R is a t-linked overring to D;
(ii) For each nonzero finitely generated ideal I of D, ItD = D implies �IR�tR = R;
(iii) For each prime (or maximal) tR-ideal Q of R, �Q ∩D�tD � D.

In case that � is a semistar operation on D, we need the following (relativized)
extension of the notion of t-linkedness. We say that an overring R of D is t-linked to
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�D	 �� if, for each nonzero finitely generated ideal I of D, I� = D� implies �IR�tR = R

(El Baghdadi and Fontana, 2004, Section 3). Therefore, the notion of “R is t-linked
to �D	 tD�” coincides with the “classical” notion of “R is t-linked to D”.

We collect in the following lemma some characterizations of the t-linkedness
in the semistar setting.

Lemma 2.9. Let � be a semistar operation on an integral domain D with quotient
field K and let R be an overring of D. The following statements are equivalent:

(i) R is a t-linked overring to �D	 ��;
(if ) R is a t-linked overring to �D	 �f �;
(ĩ) R is a t-linked overring to �D	 �̃�;
(ii) For each nonzero ideal I of D, I�f = D� implies �IR�tR = R;
(iii) For each prime (or maximal) tR-ideal Q of R, �Q ∩D��f � D�;
(iv) For each proper tR-ideal J of R, �J ∩D��f � D�;
(v) R = R�̃�= R · Na�D	 �� ∩ K�.

Proof. (i) ⇔ �if � ⇔ �ĩ� because, for a nonzero finitely generated ideal I of D, I� =
D� is equivalent to say that I �⊆ P, for all P ∈ QMax�f �D� = QMax�̃�D�.

The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) are consequences of El Baghdadi and
Fontana (2004, Proposition 3.2).

(iii) ⇒ (v) From the assumption it follows that, for each maximal t-ideal
Q of R, there exists a quasi-�f -maximal ideal P of D containing Q ∩D and
thus DP ⊆ RD\P ⊆ RQ. Therefore, R ⊆ R�̃ = ⋂

�RDP �P ∈ QMax�f �D�� ⊆ ⋂
�RQ �Q ∈

MaxtR �R�� = R.

(v) ⇒ (iii) Let Q be a prime t-deal of R such that �Q ∩D��f = D�. Therefore,
there exists a nonzero finitely generated ideal I ⊂ Q ∩D such that I�f = D�. In
particular, we have IR�X� ∩ � �f �= ∅ and so �IR��̃ = IR ·Na�D	 �� ∩ K = IR�X�� �f ∩
K = R�X�� �f ∩ K = R�̃ = R. On the other hand, IR ⊆ Q and so �IR�tR ⊆ QtR = Q.
Moreover, if we denote by � the canonical embedding of D into R, then ∗ �= ��̃�� is
a (semi)star operation of finite type on R, since R = R�̃ = R∗. Therefore, ∗ ≤ tR and
so we get a contradiction, since R = �IR��̃ = �IR�∗ ⊆ �IR�tR ⊆ Q � R. �

Remark 2.10. Given a star operation ∗ on D, the property (v) of Lemma 2.9
is used in Chang (2006, p. 224) for giving the definition “R is ∗-linked to D”
(terminology used in that article). That notion coincides with the notion of “R is
t-linked to �D	 ∗�” (terminology used here) (cf. Chang, 2006, Proposition 3.2).

Note also that, from the previous Lemma 2.9, we obtain again in particular
the equivalences stated in Remark 2.8.

As a consequence of the previous Lemma 2.9, we deduce immediately the
following two corollaries.

Corollary 2.11. Let R be an overring of an integral domain D with quotient field K.
Then R is a t-linked overring to D if and only if R = RwD�= R ·Na�D	 vD� ∩ K�.
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For the next statement, we need to recall the notion of �-valuation overring
(a notion due essentially to Jaffard, 1960, p. 46, see also Halter-Koch, 1998,
Chapters 15 and 18). For a domain D and a semistar operation � on D, we say that
a valuation overring V of D is a �-valuation overring of D provided F� ⊆ FV , for
each F ∈ f �D�. Note that, by definition, the �-valuation overrings coincide with the
�f -valuation overrings. Recall that the �-closure of D, defined by

Dcl∗ �= ⋃
��F� � F �� �F ∈ f �D��

is an integrally closed overring of D and, more precisely, Dcl∗ = ⋂
�V �V is a

�-valuation overring of D�. Finally, recall that a valuation overring V of D is
a �̃-valuation overring of D if and only if V is an overring of DP , for some
P ∈ QMax�f �D�. For more details on this subject and for the proofs of the results
recalled above, see Okabe and Matsuda (1992), Halter-Koch (1997, 1998), Fontana
and Loper (2001a, Proposition 3.2 and Corollary 3.6, 2003, Theorem 3.9).

Corollary 2.12. Let � be a semistar operation on an integral domain D, and let V be
a valuation overring of D. The following statements are equivalent:

(i) V is a t-linked overring to �D	 ��;
(ii) V = V �̃;
(iii) V is a �̃-valuation overring to D.

Proof. Note that the t-operation on V coincides with the d-operation and so
(ii) ⇔ (iii) by El Baghdadi et al. (2004, Lemma 2.7). The equivalence (i) ⇔ (ii) is a
particular case of Lemma 2.9 (i) ⇔ (v). �

Remark 2.13. In relation with the previous corollary note that, given a semistar
operation � on an integral domain D, it is known that each overring R of D is
t-linked to �D	 �� if and only if each valuation overring V of D is t-linked to �D	 ��
(cf. El Baghdadi and Fontana, 2004, Theorem 3.9; Picozza and Tartarone, 2008,
Theorem 2.15).

Lemma 2.14. Let � be a semistar operation on an integral domain D. Then the
following statements are equivalent:

(i) D ⊆ K is a �f -primitive extension (or, a �-primitive extension);
(ii) D is a �f -INC-domain;
(iii) Each t-linked overring to �D	 �� is a �f -INC extension of D;
(iv) For each quasi-�f -prime (or quasi-�f -maximal) ideal P of D, DP ⊆ K is a

primitive extension;
(v) For each quasi-�f -prime (or quasi-�f -maximal) ideal P of D, DP is an

INC-domain;
(vi) For each quasi-�f -prime (or quasi-�f -maximal) ideal P of D, DP is a quasi-Prüfer

domain.

Proof. (i) ⇒ (iv) Let P be a nonzero quasi-�f -prime ideal of D. By assumption,
if 0 �= u ∈ K, then there is a polynomial 0 �= g ∈ D�X� such that cD�g�

� = D� and
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178 CHANG AND FONTANA

g�u� = 0. Clearly, g ∈ DP�X� and cD�g� � P. So cDP
�g� = cD�g�DP = DP , and thus u

is primitive over DP .

(iv) ⇒ (i) Let 0 �= u ∈ K, and let I be the (nonzero) ideal of D generated
by the polynomials f ∈ D�X� such that f�u� = 0. If cD�I�

�f = D�, there are
nonzero polynomials f1	 f2	 
 
 
 	 fk ∈ D�X� such that fi�u� = 0, for each i, and
�cD�f1�	 cD�f2�	 
 
 
 	 cD�fk��

� = D�. Let g �= f1 + Xn1+1f2 + Xn1+n2+2f3 + · · · +
Xn1+n2+···+nk−1+k−1fk, where ni is the degree of fi. Then, clearly, g�u� = 0 and
cD�g� = �cD�f1�	 cD�f2�	 
 
 
 	 cD�fk��, thus cD�g�

� = D�. So u is �-primitive over
D. In order to conclude, it remains to show that c�I��f = D�. Assume that, for
each P ∈ QMax�f �D�, DP is a primitive extension, thus there is a polynomial
0 �=h ∈ DP�X� such that h�u� = 0 and cDP

�h� = DP . Let 0 �= s ∈ D\P with sh ∈ D�X�.
Then cD�sh� � P (otherwise DP = sDP = scDP

�h� = cDP
�sh� = cD�sh�DP ⊆ PDP , a

contradiction). Clearly, sh ∈ I and so cD�I� � P for all P ∈ QMax�f �D�. Therefore,
cD�I�

�f = D�.
The equivalences (iv) ⇔ (v) ⇔ (vi) follow from Theorem 1.1 (�1� ⇔ �4� ⇔ �5�).

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (v) Let P be a quasi-�f -prime of D, let R be an overring of DP , and let
Q1 and Q2 are prime ideals of R such that Q1 ∩DP = Q2 ∩DP , we want to show that
Q1 and Q2 are incomparable. Let I be a nonzero finitely generated ideal of D with
I� = D�. Note that I � P, since P is a quasi-�f -ideal, and hence DP = IDP ⊆ IR ⊆ R,
and so IR = R. Thus �IR�tR = R and hence R is t-linked to �D	 ��. By assumption, R
is a �f -INC extension of D and Q1 ∩D = Q2 ∩D ⊆ P, with P�f � D�f = D�, hence
Q1 and Q2 are incomparable.

(v) ⇒ (ii) Let R be an overring of D, and let Q1 � Q2 be prime ideals of R
such that Q2 ∩D is contained a quasi-�f -prime P of D. We want to show that Q1 ∩
D � Q2 ∩D. If we consider the extension DP ↪→ RD\P we have Q1RD\P � Q2RD\P �
RD\P and DP is an INC-domain, by assumption. Hence Q1RD\P ∩DP � Q2RD\P ∩DP ,
and thus Q1 ∩D = Q1RD\P ∩D � Q2RD\P ∩D = Q2 ∩D. �

In Theorem 1.1 we gave several characterizations of quasi-Prüfer domains.
The main goal of this section is to give a semistar analog characterization theorem
for �f -quasi-Prüfer domains, completing the work initiated in Lemma 2.1. We start
with a lemma that extends to the semistar integral closure the semistar operation
versions of the Cohen–Seidenberg properties GU, INC, and LO (Kaplansky, 1974,
p. 28). (See Chang, 2006, Corollary 4.2; Chang and Zafrullah, 2006, Corollary 1.4;
or Wang, 2004, Theorem 3.3 for the star operation versions.)

Lemma 2.15. Let � be a semistar operation on an integral domain D with quotient
field K. Let D be the integral closure of D (in K). Set D̃ �= �D��̃, where �̃ is the
stable semistar of finite type of D associated to �, and let �̃ � D ↪→ D̃ be the canonical
embedding. Set ∗ �= ��̃��̃.

(a) D̃ coincides with the �̃-closure of D (i.e., D̃ = ⋃
��F �̃ � F �̃� � F ∈ f �D��).

(b) The inclusion �̃ � D ↪→ D̃ verifies the properties �̃-INC, �̃-LO (i.e., for each quasi-
�̃-prime ideal P of D there exists a ∗-prime of D̃ such that Q ∩D = P), and �̃-GU
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(i.e., if P ⊆ P ′ are quasi-�̃-prime ideals of D and if Q is a ∗-prime of D̃ such that
Q ∩D = P, then there exists a ∗-prime Q′ of D̃ such that Q′ ∩D = P ′ and Q ⊆ Q′).

Proof. (a) It is known from Fontana et al. (2003, Example 2.1(c.2)) and
Fontana and Loper (2003, Proposition 4.3) that �D��̃ = Dcl�̃ = ⋃

��F �̃ � F �̃� � F ∈
f �D��, which is an integrally closed overring of D (and D).

(b) Let P be a quasi-�̃-prime ideal of D. Consider the prime ideal PD�X�� �̃ and
the integral extension D�X�� �̃ ↪→ D�X�� �̃ . By lying-over, we can find a prime ideal �
inD�X�� �̃ such that� ∩D�X�� �̃ = PD�X�� �̃ . SetQ �= � ∩ D̃ ⊆ D�X�� �̃ ∩ K = �D��̃ =
D̃. It is easy to see thatQ is a prime ideal of D̃ such thatQ∗ = Q�̃ = Q andQ ∩D = P.
Similar arguments prove that �̃ � D ↪→ D̃ verifies �̃-INC and �̃-GU. �

A domain D is called a Prüfer �-multiplication domain (for short, P�MD) if each
nonzero finitely generated ideal is �f -invertible (cf. for instance Fontana et al., 2003
and, for the case of the star operations, Houston et al., 1984). When � = v we have
the classical notion of PvMD (cf. for instance Griffin, 1967; Kang, 1989; Mott and
Zafrullah, 1981); when � = d, where d is the identity (semi)star operation, we have
the notion of Prüfer domain (Gilmer, 1972, Theorem 22.1). It is obvious that the
notions of P�MD and P�fMD coincide and it is known that they also coincide with
the notion of P�̃MD (Fontana et al., 2003, Proposition 3.3). Moreover, when � is a
(semi)star operation then D is a P�MD if and only if D is a PvMD and �̃ = t (and
so �̃ = �f = t = w) (Fontana et al., 2003, Proposition 3.4). Examples of PvMDs that
are not P�MDs (for some (semi)star operation � on D) are given in Fontana et al.
(2003, Example 3.4).

Theorem 2.16. Let � be a semistar operation on an integral domain D with quotient
field K. Let D be the integral closure of D (in K). Then the following statements are
equivalent;

�1�f � D is a �f -quasi-Prüfer domain;
�4�f � D ⊆ K is a �f -primitive extension;
�5�f � D is a �f -INC-domain;

�6�̃� Set D̃ = �D��̃ and let �̃ � D ↪→ D̃ be the canonical embedding, then D̃ is a
P��̃��̃MD;

�7�f � Each overring R of D is a ��f ��-quasi-Prüfer domain, where � � D ↪→ R is the
canonical embedding;

�8�f � Every prime ideal of Na�D	 �f � is extended from D;
�9�f � Na�D	 �f � is a quasi-Prüfer domain;

�10�f � The integral closure of Na�D	 �f � is a Prüfer domain;
�11�f � DP is a quasi-Prüfer domain, for each quasi-�f -maximal ideal (or, quasi-�f -

prime ideal) P of D.

Moreover, if we assume that � is a (semi)star operation on D, then the previous
conditions are also equivalent to the following:

�12�f � Each t-linked overring to �D	 �f � is a t-quasi-Prüfer domain (or a UMt-domain)
and each �f -maximal ideal of D is a t-ideal;
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180 CHANG AND FONTANA

�13�f � D is a t-quasi-Prüfer domain (or a UMt-domain) and each �f -maximal ideal of
D is a t-ideal;

�14�f � D is a t-quasi-Prüfer domain (or a UMt-domain) and �̃f = w.

Proof. �1�f � ⇒ �4�f � Let 0 �= u ∈ K, and let � �= X − u. Then Q� �= �K�X� ∩D�X�

is a prime ideal of D�X� (since � ∈ K�X� is irreducible) and Q� is an upper to zero.
So, by assumption, there is a 0 �= g ∈ Q� such that cD�g�

� = D�. Note that g ∈ Q� ⊆
�K�X�, so g = �h for some h ∈ K�X�. Hence g�u� = ��h��u� = ��u�h�u� = 0, and
thus u is �-primitive over D.

The equivalences �4�f � ⇔ �5�f � ⇔ �11�f � are proven in Lemma 2.14 ((i) ⇔
(ii) ⇔ (vi)).

�11�f � ⇒ �1�f � Let � ∈ D�X� be a nonzero polynomial of D�X�, irreducible
in K�X�, and let Q� �= �K�X� ∩D�X�. Note that Q� is a prime ideal of D�X�, Q� is
an upper to zero and all upper to zero in D�X� are of this form Kaplansky (1974,
Theorem 36). It is easy to see that, for each quasi-�f -maximal ideal P of D, the
ideal Q�	P �= �K�X� ∩DP�X� is a prime ideal of DP�X� such that Q�	P ∩DP = �0� and
Q�	P ∩D�X� = Q�. Since DP is quasi-Prüfer, Q�	P contains a polynomial h ∈ DP�X�
such that cDP

�h� � PDP (Theorem 1.1 �1� ⇒ �2�). Choose s ∈ D\P with sh ∈ D�X�.
Note that sh ∈ Q�	P ∩D�X� = Q� and that scD�h� = cD�sh� � P, because cDP

�sh� �
PDP . Since the last property holds for each quasi-�f -maximal ideal P of D, then
cD�Q��

�f = D�. We conclude that D is a �f -quasi-Prüfer domain by Lemma 2.3.

�1�f � ⇒ �8�f � Suppose that D is a �f -quasi-Prüfer domain, and let � be a
prime ideal of Na�D	 ��. Then there is a prime ideal Q of D�X� such that � =
QNa�D	 �� = QD�X�� � and so Q ∩ � � = ∅. Let P �= Q ∩D. If P�X� � Q, pick q ∈
Q\P�X�, and let Q1 be an upper to zero in D�X� such that q ∈ Q1 ⊆ Q (De Souza
Doering and Lequain, 1982, Theorem A). Since D is a �f -quasi-Prüfer domain and
Q1 is an upper to zero, there is a nonzero polynomial g ∈ Q1 such that cD�g�

� = D�,
and hence g ∈ � � ∩Q, a contradiction. So Q = P�X�, and thus � = PNa�D	 ��.

�8�f � ⇒ �1�f � Suppose that D is not a �f -quasi-Prüfer domain. By Lemma 2.3
(�1�f � ⇔ �2�f �) then there is an upper to zero Q in D�X� such that Q ∩ � � = ∅. Hence
QD�X�� � = QNa�D	 �� is a proper prime ideal of Na�D	 ��. Note that QNa�D	 �� �=
PNa�D	 �� for all nonzero prime ideals P of D, since Q is an upper to zero. This
fact contradicts the assumption �8�f �.

�9�f � ⇔ �10�f � follows from Theorem 1.1 (�1� ⇔ �6�).

�9�f � ⇒ �11�f � Let P be a quasi-�f -maximal ideal of D. Then PNa�D	 ��

is a maximal ideal of Na�D	 �� (Fontana and Loper, 2003, Proposition 1.3 (3)).
Hence Na�DP� = DP�X�PDP�X�

= �D�X�� � �PD�X��� = Na�D	 ��PNa�D	�� (cf. also Fontana
and Loper, 2003, Theorem 3.8). Since we are assuming that Na�D	 �� is quasi-
Prüfer, then Na�D	 ��PNa�D	�� = Na�DP� is quasi-Prüfer and thus DP is a quasi-Prüfer
domain (by Theorem 1.1 (�9� ⇒ �1�).

�11�f � ⇒ �9�f � Let Q ∈ Max�Na�D	 ���. We know that Q = PNa�D	 ��, for
some P ∈ QMax�f �D� and that Na�D	 ��Q = Na�DP� (Fontana and Loper, 2003,
Proposition 1.3). Therefore, if DP is quasi-Prüfer, then Na�D	 ��Q = Na�DP� is
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quasi-Prüfer (Theorem 1.1 �1� ⇒ �9�). Thus Na�D	 �� is quasi-Prüfer (Theorem 1.1
�11� ⇒ �1�).

�1�f � ⇒ �7�f � Let R be an overring to �D	 �f � and, for simplicity of notation,
set ∗ �= ��f ��. The property �7�f � holds if we show that RQ is a quasi-Prüfer
domain for all Q ∈ QMax∗�R�, since we already proved that �1�f � ⇔ �11�f �. Note
that the prime ideal P �= Q ∩D is such that P ⊆ P�f ∩D ⊆ Q�f ∩D = �Q�f ∩ R� ∩
D = �Q∗ ∩ R� ∩D = Q ∩D = P. Since P is a quasi-�f -prime ideal of D and, by
assumption, D is a �f -quasi-Prüfer domain, then DP is quasi-Prüfer (by �1�f � ⇒
�11�f �). Therefore RQ , which is an overring of DP , is also quasi-Prüfer (Theorem 1.1
�1� ⇒ �7�).

�7�f � ⇒ �1�f � is trivial.

�1�f � ⇒ �6�̃� We already proved that �1�f � is equivalent to �9�f �. Therefore,
we can assume that Na�D	 �f � �= Na�D	 �̃� by Fontana and Loper, 2003, Corollary
3.7) is a quasi-Prüfer domain, i.e., the integral closure Na�D	 �̃� of Na�D	 �̃� in
K�X� is a Prüfer domain. Note that Na�D	 �̃� = D�X�� �̃ , where � �̃ = � �f = �g ∈
D�X� � g �= 0 and cD�g�

�̃ = D�̃�. For the sake of simplicity, set ∗ �= ��̃��̃. Clearly ∗
is a stable (semi)star operation of finite type on D̃. Moreover, Na�D̃	 ∗� = D̃�X��̃ ,
where �̃ �= � ∗ = �h ∈ D̃�X� � h �= 0 and cD̃�h�

∗ = D̃�. Since it is clear that � �̃ is also
a multiplicative set in D̃�X� and that � �̃ ⊆ �̃ , then Na�D	 �̃� ⊆ Na�D̃	 ∗� and so
Na�D̃	 ∗� is a Prüfer domain (Gilmer, 1972, Theorem 26.1). By Fontana et al. (2003,
Theorem 3.1 (i)⇔(iii)), this is equivalent to say that D̃ is a P∗MD.

�6�̃� ⇒ �10�f � With the notation used in the proof of �1�f � ⇒ �6�̃�, the present

hypothesis is equivalent to assume that Na�D̃	 ∗� is a Prüfer domain. The conclusion
will trivially follow if we show that Na�D	 �̃� = Na�D̃	 ∗�, i.e., D�X�� �̃ = D̃�X��̃ .

Note that � �̃ = D�X�\⋃�P�X� � P ∈ QMax�̃�D��, �̃ = D̃�X�\⋃�Q�X� � Q ∈
Max∗�D̃��, and D�X�� �̃ ⊆ D̃�X��̃ . By Lemma 2.15 (b) the natural embedding �̃ �

D ↪→ D̃ verifies �̃-LO, �̃-INC and �̃-GU. It is not difficult to see that a prime ideal
Q of D̃ belongs to Max∗�D̃� if and only if Q ∩D belongs to QMax�̃�D�.

As a matter of fact, let Q be a prime ideal in D̃. Assume that P �= Q ∩D ∈
QMax�̃�D�. By �̃-LO we can assume that Q is a ∗-prime in D̃. Let M ∈ Max∗�D̃�,
such that M � Q. By �̃-INC we have M ∩D � Q ∩D = P. Therefore, M ∩
D ⊆ �M ∩D��̃ ∩D = �M�̃ ∩D�̃� ∩D ⊆ �M�̃ ∩ D̃� ∩D = �M∗ ∩ D̃� ∩D = M ∩D and
so we reach a contradiction (i.e., P is not in QMax�̃�D�). Conversely, let Q ∈
Max∗�D̃� and assume that P �= Q ∩D � P ′, for some prime ideal P ′ of D such that
P ′ = P ′ �̃ ∩D ∈ QMax�̃�D�. By �̃-GU, there exists a ∗-prime ideal Q′ of D̃ such that
Q′ ∩D = Q and Q � Q′ and this is a contradiction.

From the fact that a prime ideal Q of D̃ belongs to Max∗�D̃� if and only if
Q∩D belongs to QMax�̃�D�, we deduce that the ideals of D�X� that are maximal
with the property of being disjoints from � �̃ are the ideals ��Q ∩D��X� � Q ∈
Max∗�D̃��. From this fact it follows easily that D�X�� �̃ = D̃�X��̃ .

�13�f � ⇔ �14�f � The second part of condition �13�f � implies that Max�f �D� =
Maxt�D� and so �̃ = w. Conversely, if �̃ = w, then Max�f �D� = Max�̃�D� =
Maxw�D� = Maxt�D�, and so each quasi-�f -ideal maximal of D is a t-ideal.
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182 CHANG AND FONTANA

�1�f � ⇒ �13�f � Under the present assumptions �f is a (semi)star operation
of finite type on D, then �f ≤ t (essentially by Gilmer, 1972, Theorem 34.1 (4)).
Therefore, if D is a �f -quasi-Prüfer domain, then D is also a t-quasi-Prüfer domain
(Corollary 2.4 (a)). Let P be a �f -maximal ideal of D. Since we already proved that
�1�f � ⇒ �11�f �, then DP is a quasi-Prüfer domain. By Corollary 1.3 ((1)⇒(13)) PDP

is a t-ideal in DP and thus P = PDP ∩D is a t-ideal of D (Kang, 1989, Lemma 3.17).

�13�f � ⇒ �10�f � Since each �f -maximal ideal of D is a t-ideal, then necessarily
Max�f �D� = Maxt�D� and hence � � = � �f = � t = � v. Thus Na�D	 �� = Na�D	 v�
and Na�D	 v� has Prüfer integral closure by Fontana et al. (1998, Theorem 2.5), since
D is an UMt-domain (=t-quasi-Prüfer domain).

�1�f � ⇒ �12�f � Let R be a t-linked overring to �D	 �f �, then R = R�̃

(Lemma 2.9 ((i) ⇒ �v�)). Let � � D ↪→ R be the canonical embedding, then ��̃�� is a
(semi)star operation of finite type on R. Since D is a �f -quasi-Prüfer domain or,
equivalently, a �̃-quasi-Prüfer domain (Corollary 2.4 (c)) then, by �1�f � ⇔ �7�f �, R is
a ��̃��-quasi-Prüfer domain. Since in the present situation ��̃�� ≤ tR then R is also a
tR-quasi-Prüfer domain. Moreover, we already proved that �1�f � ⇒ �13�f � thus each
�f -maximal ideal of D is a t-ideal.

�12�f � ⇒ �13�f � is trivial. �

Let � be a semistar operation on an integral domain D. Recall that a P�MD
D can be characterized by the fact that DP is a valuation domain for each P ∈
QMax�f �D� (Fontana et al., 2003, Theorem 3.1). Thus, since a valuation domain
is trivially quasi-Prüfer, a P�MD is a �f -quasi-Prüfer domain by Theorem 2.16
(�1�f � ⇔ �11�f ��. This fact generalizes the well known property that a PvMD is a
UMt domain (Corollary 2.4 (b)). However, a P�MD need not be integrally closed
(cf. Fontana et al., 2003, Example 3.10), while being a PvMD is equivalent to being
an integrally closed UMt domain (Houston and Zafrullah, 1989, Proposition 3.2).
The next corollary gives an appropriate generalization of the previous result to the
case of semistar operations.

Corollary 2.17 (Fontana et al., 2003, Theorem 3.2). Let � be a semistar operation
on an integral domain D with quotient field K. Then the following statements are
equivalent:

(i) D is a P�MD;
(ii) D is a �f -quasi-Prüfer domain and DP is integrally closed for all P ∈ QMax�f �D�;
(iii) D is a �f -quasi-Prüfer domain and D�̃ is integrally closed.

Proof. The implication (i) ⇒ (ii) was already proved just before the statement of
Corollary 2.17.

(ii) ⇒ (iii) This follows from Kaplansky (1974, Theorem 52) because D�̃ =⋂
�DP � P ∈ QMax�f �D�� and each DP is integrally closed, by assumption.

(iii) ⇒ (i) Let � � D ↪→ D�̃ be the canonical embedding and set ∗ �= ��̃��
(thus E∗ = E�̃ for all E ∈ F�D�̃� �⊆ F�D�). Then Na�D	 �f � = Na�D	 �̃� = Na�D�̃	 ∗�
(Fontana and Loper, 2003, Corollary 3.5). On the other hand Na�D�̃	 ∗� is integrally
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closed, because D�̃ is integrally closed by assumption, and Na�D	 �f � is quasi-Prüfer
domain by Theorem 2.17 (�1�f � ⇔ �9�f �). Putting these two pieces of information
together, we deduce that Na�D	 �f � is a Prüfer domain and thus D is a P�fMD (or,
a P�MD) by Fontana et al. (2003, Theorem 3.1). �

The following corollary follows immediately from Theorem 2.16 (�1�f �⇔�6�̃�)
and from Fontana et al. (2003, Proposition 3.4).

Corollary 2.18 (cf. Wang, 2004, Theorem 4.2). Let D be an integral domain with
quotient field K. Set D̃ = �D�wD and let �̃ � D ↪→ D̃ be the canonical embedding. The
following statements are equivalent:

(i) D is a UMtD-domain;
(ii) D̃ is a P�wD��̃MD;
(iii) D̃ is a PvD̃MD and �wD��̃ = wD̃ = tD̃. �

We have already mentioned in Remark 1.2(d) the interesting open problem of
establishing whether the integral closure of a UMt-domain is a PvMD. For a negative
answer to this problem, we need examples of integral domainsD such that the integral
closureD is not t-linked toD (Remark 1.2(a)). This is not an easy task, even in a general
situation. Note that the integral closure D is t-linked to D if D is one-dimensional
(Dobbs et al., 1989, Corollary 2.7) or if D is quasi-coherent (e.g., D is Noetherian)
(Dobbs et al., 1989, Corollary 2.14(a)). A first class of examples of integral domains of
dimension≥ 3 such that the integral closureD is not t-linked toD was given in Dobbs
et al. (1992, Example 4.1). The 2-dimensional case was left open in that article. A
first example in dimension two was given by Dumitrescu (2001), using the A+ XB�X�
constructions. We give next another example of this type.

Example 2.19. A quasi-local strong Mori non-Noetherian 2-dimensional UMt-
domain D such that D is not t-linked to D, but still D is a PvDMD.

For this purpose, we use a construction due to Heinzer et al. (1970, Example
2.10). Let K be a field, X	 Y indeterminates over K, let V be the X-adic valuation ring
of K�X	 Y�, i.e., V �= K�Y��X��X�, and let MX �= XK�Y��X��X� be the maximal ideal
of V (hence V = K�Y�+MX). Also, let D1 �= K�X	 Y��X	Y�, M1 �= �X	 Y�K�X	 Y��X	Y�,
kT �= K�Y + 1

Y
� � K�Y�, and set T �= kT +MX and D �= T ∩D1. Note that if we

consider the Krull overring R �= D1�1/X� =
⋂
�D1P1

� P1 �= �MX ∩D1� with P1 height
1 prime ideal of D1� of D (and of D1) (Fossum, 1973, Corollary 1.5 and Proposition
3.15), then we also have D = R ∩ T (and (D1 = R ∩ V ).

(a) T is a 1-dimensional Noetherian pseudo-valuation domain (or, PVD)
with maximal ideal MX and associate valuation overring V . Moreover, the integral
closure T of T coincides with V .

Note that kT ↪→ K�Y� is a finite extension, since Y is a root of the
polynomial Z2 − ��Y 2 + 1�/Y�Z + 1 in the indeterminate Z with coefficients in kT .
The conclusion follows from Hedstrom and Houston (1978a, Theorem 3.1 and
Corollary 3.4).

(b) Let Q �= MX ∩D = XK�X	 Y��X	Y� = MX ∩D1. Then D1 � V = �D1�Q and
that D and D1 have a common prime ideal, i.e., Q. In particular, the map H1 �→H �=
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184 CHANG AND FONTANA

H1 ∩D establishes a 1-1 correspondence betweeen the prime ideals of D1 not
containingQ and the prime ideals ofD not containingQ and, moreover,DH = �D1�H1

.
For the remaining localization of D at the prime Q, we have DQ = T � �D1�Q.

After remarking that Q is a common ideal of D and D1, the first part follows
from the general properties of the pullback diagrams (Fontana, 1980, Claim (c) in
the proof of Theorem 1.4). The last statement is proved in Heinzer et al. (1970,
Lemma, p. 152).

(c) D is a quasi-local domain with maximal ideal M �= M1 ∩D, with
complete integral closure equal to D1 and dim�D� = 2.

The first part of the statement is proved in Heinzer et al. (1970, Example 2.10,
p. 152). The reamining part follows from the fact that D and D1 have Q as common
ideal (Gilmer, 1972, Lemma 26.5) and from the fact that dim�D1� = 2.

(d) D is a strong Mori domain with dimt�D� = 1,
Let �1 �= �P1 ∈ D1 � P1 is a height 1 prime ideal of D1, P1 �= Q� (resp., � �=

�P ∈ D � P is a height 1 prime ideal of D, P �= Q�). From (b) and from the
presentations D = �

⋂
�DP � P ∈ ��� ∩DQ = �

⋂
�D1P1

� P1 ∈ �1�� ∩DQ = �
⋂
�D1P1

�
P1 ∈ �1�� ∩ T � �

⋂
�D1P1

� P1 ∈ �1�� ∩ V = �
⋂
�D1P1

� P1 ∈ �1�� ∩D1Q = D1 we
deduce that D is a Mori domain (in particular, t = v) (Barucci and Gabelli, 1987,
Construction 4.1 and Theorem 4.3). Obviously, all the height 1 prime ideals of
D are t-ideals of D, but the maximal ideal M is not a t-ideal (or a v-ideal) of
D (Barucci and Gabelli, 1987, Theorem 4.3 (f)). Henceforth dimt�D� = 1 and
Maxt�D� = �P ∈ Spec�D� � ht�P� = 1�. Furthermore, note that DP is Noetherian
for all P ∈ Maxt�D� and each nonzero element of D lies in only finitely many
maximal t-ideals of D (because this property holds in D1) (Barucci and Gabelli,
1987, Theorem 4.3 (a)). Therefore, by Wang and MacCasland (1999, Theorem 1.9),
D is a strong-Mori domain (i.e., D verifies the acc on the w-ideals, see Wang and
MacCasland, 1997) and, clearly, D = ⋂

�DP � P ∈ Maxt�D�� = Dw.

(e) D is a UMt-domain.
By (d) dimt�D� = 1, then D is a UMt-domain by Chang and Zafrullah (2006,

Corollary 3.2 (�6� ⇒ �1�)).

(f) The integral closure D of D coincides with �W1 ∩W2�+Q, where W1 �=
K�Y��Y� and W2 �= K� 1

Y
�� 1

Y �
. Therefore, D � D1, D/Q = W1 ∩W2 is a semi-quasi-local

PID with two maximal ideals and D1/Q = W1.
The first part of the statement is proved in Heinzer et al. (1970, Example 2.10,

p. 152). The remaining part is an easy consequence of the first part (Kaplansky,
1974, Theorem 107).

The following three statements are immediate consequences of (f):

(g) D is semi-quasi-local with two maximal M1 and M2 such that M1 ∩
D = M2 ∩D = M and ht�M1� = ht�M2� = 2. Moreover, DM1

/QDM1
= W1 and

DM2
/QDM2

= W2;

(h) The only prime ideals of D containing X (i.e., the prime ideal Q = XD1)
are M1, M2, and, obviously, Q;

(i) D and D have a common prime ideal Q, then—as in point (b)—the map
H �→ H �= H ∩D establishes a 1-1 correspondence betweeen the prime ideals of
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D not containing Q and the prime ideals of D not containing Q and, moreover,
DH =DH . Furthermore, as a consequence of (a) and (b), DQ = V ;

(j) D � �D�wD = D1. Therefore, D is not t-linked to D (Lemma 2.9 ((i) ⇒ (v)))
and D is not Noetherian.

As already remarked in Heinzer et al. (1970, Example 2.10, p. 152),
we have �D�wD = ⋂

�D ·DP � P ∈ Maxt�D�� = DD\Q ∩ �
⋂
�DD\P � P ∈ ��� = V ∩

�
⋂
�D1P1

� P1 ∈ �1�� = V ∩ R = D1 (cf. also Chang and Zafrullah, 2006, Theorems
1.3 and 3.1). The claim that D is not Noetherian is a consequence of the fact that
D �= D1 and that, by (c), D1 is the complete integral closure of D.

Set A �= W1 ∩W2, B �= W1, and let �1, �2 be the maximal ideals of A, with
A�1

= W1 and A�2
= W2 (cf. (f)). By the previous considerations, we have the

following pullback diagrams of canonical homomorphisms:

D −−−−→ D/Q	
	

D −−−−→ D/Q A	
	

	
D1 = �Q � Q� −−−−→ D1/Q B


(k) D is a PvDMD.

We claim that for each prime t-ideal � of A either A� is a valuation domain
and BA\� is a field or there exists a finitely generated ideal � of A, � ⊆ � such that �A �
�� ∩ A� = A. As a matter of fact, by (f), A is a PID with Max�A� = ��1	�2�, then
the set of prime t-ideals of A coincides with Max�A�. Clearly, A�2

= W2 and BA\�2
=

�W1�A\�2
is the quotient field of B (and of A). On the other hand, A�1

= W1 = BA\�1
,

but if �1 = �A, then �A � �A� ∩ A�A = �−1A ∩ A�A = A, since A ∩ �A�A = �A. Now
the statement follows from Houston and Taylor (2007, Theorems 4.8 and 5.2).

Remark 2.20. (a) With the notation of Theorem 2.16, let D
�

↪→ D, D
j
↪→ D̃ and

D
�̃

↪→ D̃ be the canonical embeddings and so �̃ = j � �. Note that the statement �6�̃�
is equivalent to each of the following:

�6′ �̃� D̃ is a PvD̃MD and ��̃��̃ = wD̃ = tD̃;

�6�̃� D is a P��̃��MD;

�6
′
�̃� D is a P�vD̃�

jMD and ��̃��̃ = wD̃ = tD̃.
The equivalence �6�̃� ⇔ �6′ �̃� follows immediately from Fontana et al. (2003,

Proposition 3.4), since ��̃��̃ is a (semi)star operation on D̃.

�6�̃� ⇒ �6�̃� Set

� �̃ = �g ∈ D�X� � g �= 0 and cD�g�
�̃ = D�̃ = D̃�	

� � = � ��̃�� = �� ∈ D�X� � � �= 0 and cD���
��̃�� = D

��̃�� = D̃�	

�̃ � = � ��̃��̃ = �h ∈ D̃�X� � h �= 0 and cD̃�h�
��̃��̃ = D̃�
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186 CHANG AND FONTANA

Clearly, � �̃ ⊆ � ⊆ �̃ , in particular, D�X�� �̃ ⊆ D�X�� ⊆ D̃�X��̃ . On the other hand,
Na�D	 ��̃��� = D�X�� and Na�D̃	 ��̃��̃� = D̃�X��̃ . Recall that in the proof �6�̃� ⇒
�10�f � of Theorem 2.16, we have shown that D�X�� �̃ = D̃�X��̃ . Therefore, in

particular, Na�D	 ��̃��� = Na�D̃	 ��̃��̃�. Henceforth, if �6�̃� holds then Na�D	 ��̃��� �=
Na�D̃	 ��̃��̃�� is a Prüfer domain and so D is a P��̃��MD (Fontana et al., 2003,
Theorem 3.1 (i)⇔(iii))).

�6�̃� ⇒ �6�̃� By assumption and by Fontana et al. (2003, Theorem 3.1
(i)⇔(iii))) Na�D	 ��̃��� is a Prüfer domain, and then obviously each overring of
Na�D	 ��̃��� is a Prüfer domain. In particular, Na�D̃	 ��̃��̃� is a Prüfer domain and
thus �6�̃� holds again by (Fontana et al., 2003, Theorem 3.1 (i) ⇔ (iii))).

�6
′
�̃� ⇔ �6�̃� Note that, for each E ∈ F�D�, we have

E��̃�� = E�̃ = ⋂
�EDP � P ∈ QMax�̃�D�� = �ED̃���̃��̃ = E���̃��̃�

j




Therefore ��̃�� = ���̃��̃�
j . Henceforth, it is straightforward that �6

′
�̃� ⇒ �6�̃� after

recalling that ��vD̃�
j�f = �tD̃�

j . Conversely, if �6�̃� holds, we know already that ��̃��̃ =
wD̃ = tD̃ (by the fact that �6�̃� ⇒ �6′ �̃�) and that ��̃�� = ���̃��̃�

j = �tD̃�
j = ��vD̃�

j�f .

(b) Let D be a �f -quasi Prüfer domain. If D is t-linked to �D	 ��, then D is
a PvDMD, since in this case D = D̃ (Lemma 2.9 and Theorem 2.16). On the other
hand, if D is not t-linked to �D	 ��, then D is a P��̃��MD (by (a)) and, since in this
case ��̃�� is not a (semi)star operation on D, we may not deduce that D is a PvDMD.
However, in the previous Example 2.19, even if D is not t-linked to �D	 tD�, we do
have that D is a PvDMD because for H ∈ MaxtD �D� such that H �∈ QMax�wD�� �D�,
we still have that DH is a valuation domain.

(c) Note that, if we replace �f with � in the conditions �4�f �, �8�f �, �9�f �,
�10�f �, and �14�f � stated in Theorem 2.16, we obtain:

�4�� D ⊆ K is a �-primitive extension;
�8�� Every prime ideal of Na�D	 �� is extended from D;
�9�� Na�D	 �� is a quasi-Prüfer domain;

�10�� The integral closure of Na�D	 �� is a Prüfer domain;
�14�� D is a t-quasi-Prüfer domain (or a UMt-domain) and �̃ = w.

It is trivial from the definitions that the previous conditions coincide with the
analogous conditions stated for �f in Theorem 2.16.

A natural question arises from this observation: Is it possible to find suitable
characterizations of the �-quasi-Prüfer domains, by “weakening” the remaining
conditions in Theorem 2.16?

(d) Recall that Houston and Zafrullah have recently introduced the UMv-
domains, i.e., the integral domains D, such that each upper to zero is a maximal
vD�X�-ideal of D�X�. It is known that UMv-domains are characterized by the fact
that, for each upper to zero P, cD�P�

vD = D and ��P � P� =� D�X� � P−1 (Houston
and Zafrullah, 2005, Theorem 2.2). On the other hand, if D is a UMv-domain and
if P is a vD-prime ideal of D, then the integral closure of DP is a Prüfer domain
(Houston and Zafrullah, 2005, Theorem 3.6), i.e., DP is a quasi-Prüfer domain by
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Theorem 1.1 ((1)⇔(6)). Therefore, by Lemma 2.1 ((iv)⇒(i)), a UMv-domain is a
v-quasi-Prüfer domain.

Note also that a UMv-domain is not necessarily a t-quasi-Prüfer domain
(=UMt-domain). To see this, let D be a v-domain (i.e., an integral domain such that
each nonzero finitely generated ideal is v-invertible, see Gilmer, 1972, Theorem 34.6)
which is not a PvMD (cf. Gilmer, 1972, Exercise 5, p. 425 and also Dieudonné, 1941;
Heinzer, 1981; Heinzer and Ohm, 1972). A ring of this type must admit an upper to
zero which is a maximal v-ideal but not a maximal t-ideal, since it is an integrally
closed UMv domain which is not a UMt-domain (Remark 1.2(d) and Houston and
Zafrullah, 2005, Theorem 3.3 ((1)⇔(2))). This example also shows that a v-quasi-
Prüfer domain need not be a vf -quasi-Prüfer domain (cf. Example 2.2).

Question. Is it possible to find a v-quasi-Prüfer domain which is not a UMv-
domain?

(e) Houston and Zafrullah (2005, Proposition 4.6) proved that D is a UMt-
domain if and only if each upper to zero of the form �aX + b�K�X� ∩D�X�, where
0 �= a, b ∈ D, is a maximal t-ideal of D�X� or, equivalently, each upper to zero of
the form �aX + b�K�X� ∩D�X�, where 0 �= a, b ∈ D, contains a nonzero polynomial
g with cD�g�

t = D (Houston and Zafrullah, 1989, Theorem 1.4).
A similar characterization holds for �f -quasi-Prüfer domains. More precisely,

given a semistar operation � on an integral domain D, the following are equivalent:

�1�f � D is a �f -quasi-Prüfer domain;
�2′�f � Each upper to zero in D�X� of the form �aX + b�K�X� ∩D�X� contains a

nonzero polynomial g with cD�g�
� = D�;

�2
′′
�f
� For each nonzero h ∈ D�X�, there exists 0 �= g ∈ hK�X� ∩D�X� with cD�g�

� =
D�;

�1�f �⇔�2′�f � By using the equivalence �1�f �⇔�4�f � of Theorem 2.16 and the
previous point (a), it is enough to show that Q �= �aX + b�K�X� ∩D�X� contains a
nonzero polynomial g with cD�g�

� = D� if and only if u = − b
a
is �-primitive over D.

For the “only if” part, let 0 �= g ∈ Q such that cD�g�
� = D�. Clearly, g = �aX +

b�h, for some h ∈ K�X�. Then g�u� = (
a
(− b

a

)+ b
)
h�u� = 0, thus u is �-primitive

over D. For the “if” part, suppose that u �= − b
a
� is �-primitive over D. Then there

exists a nonzero polynomial g ∈ D�X� such that cD�g�
� = D and g�u� = 0. Therefore,

in K�X� we have g = �aX + b�h+ r, where h ∈ K�X� and r is a constant in K. Since
g�u� = 0, we have r = 0, and thus g ∈ Q = �aX + b�K�X� ∩D�X�.

The implication �2
′′
�f
�⇒�2�f � is obvious.

�2�f �⇒�2
′′
�f
� Let hK�X� = �1�2 
 
 
 �nK�X�, where �i ∈ D�X� is irreducible in

K�X�, for 1 ≤ i ≤ n. Since Qi �= �iK�X� ∩D�X� is an upper to zero, then we can find
0 �= gi ∈ Qi such that cD�gi�

� = D�. Then g �= g1g2 
 
 
 gn ∈ hK�X� ∩D�X� and it is
not difficult to see that cD�g�

� = D�.

(f) Note that, from the equivalence �1�f � ⇔ �6�̃� in Theorem 2.16 (or, from
Corollary 2.17), we deduce that if � is a (semi)star operation on D, then D is
an integrally closed �f -quasi-Prüfer domain if and only if D is a P�̃MD (or,
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188 CHANG AND FONTANA

equivalently, a P�MD). This result generalizes the statement on PvMDs recalled in
Remark 1.2 (d).

Corollary 2.21. With the notation of Theorem 2.16, we have that �1�f � is equivalent to

�12′�f � Each t-linked overring R to �D	 �f � is a tR-quasi-Prüfer domain and each ��̃��-
maximal ideal of R is a tR-ideal, where � � D ↪→ R is the canonical embedding.

Proof. �1�f � ⇒ �12′�f � Note that from the proof �1�f � ⇒ �12�f � of the previous
Theorem 2.16 , we deduce, without assuming that � is a (semi)star operation on D,
that R is a ��̃��-quasi-Prüfer domain. Henceforth R is also a tR-quasi-Prüfer domain
since ��̃�� is a (semi)star operation of finite type on R. Now applying the implication
�1�f � ⇒ �12�f � to R and to the (semi)star operation ��̃��, since R is trivially t-linked
to �R	 ��̃���, we have in particular that each ��̃��-maximal ideal of R is a tR-ideal.

�12′�f � ⇒ �11�f � If P ∈ QMax�f �D� = QMax�̃�D�, then clearly �DP�
�̃ =⋂

�DPDM � M ∈ QMax�f �D�� = DP and so DP is t-linked to �D	 �f � (Lemma 2.9
((v) ⇒ (i))). Therefore, by assumption, DP is a tDP

-quasi-Prüfer domain. Moreover,
clearly PDP is a maximal ��̃��-ideal of DP and so it is a tDP

-ideal of DP . Then DP is
a quasi-Prüfer domain by Corollary 1.3 (�13� ⇒ �1�). �

Corollary 2.22. If D is a �f -quasi-Prüfer domain, then:

(a) If P is a nonzero prime ideal of D and if P�f �= D� (e.g., if P is a quasi-�f -prime
ideal of D), then P = P�f = Pt;

(b) dim�̃�D� = dim�f �D� = dimt�D� = dimt�Na�D	 ��� = dim�Na�D	 ���.

Proof. (a) It suffices to show that P is a t-ideal. Let Q be a quasi-�f -maximal
ideal of D containing P. Then DQ is a quasi-Prüfer domain (Theorem 2.16 (�1�f � ⇒
�11�f �)), and since PDQ is a proper prime ideal of DQ, PDQ is a prime t-ideal in
DQ (Corollary 1.3), and hence P = PDQ ∩D, is a t-ideal of D (Kang, 1989, Lemma
3.17(1)).

(b) Note that dim�f �D� = dimt�D� by (1) and dimt�Na�D	 ��� =
dim�Na�D	 ��� by Corollary 1.3 and Theorem 2.16 (�1�f � ⇒ �9�f �). Recall that
M ∈ Max�Na�D	 ��� if and only if M ∩D ∈ QMax�f �D� (Fontana and Loper,
2003, Proposition 3.1(5)). Since each prime ideal of Na�D	 �� is extended from
D (Theorem 2.16 (�1�f � ⇒ �8�f �)), we have dim�f �D� = dim�Na�D	 ���. The first
equality follows from the fact that the notions of �f -quasi-Prüfer domain and �̃-
quasi-Prüfer domain coincide (Corollary 2.4 (c)) and from the fact that Na�D	 �̃� =
Na�D	 �f � = Na�D	 ��. �

It is well known that if M is a maximal t-ideal of D�X�, then either M ∩D =
�0� or M = �M ∩D��X� (Houston and Zafrullah, 1989, Proposition 1.1) and I is a
t-ideal of D if and only if I�X� is a t-ideal of D�X� (Kang, 1989, Corollary 2.3). Thus
dimt�D� ≤ dimt�D�X�� ≤ 2dimt�D�� (cf. also Houston, 1994, p. 169; Wang, 2005,
Section 3).

Recall that Kang proved that if D is a PvMD then dimt�D� = dim�Na�D	 v��
(Kang, 1989, Theorem 3.22). The following corollary extends Kang’s result to the
UMt-domains.
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Corollary 2.23. Let D be a UMt-domain which is not a field and let X be
an indeterminate over D. Then dimw�D� = dimt�D� = dimt�D�X�� = dimt�Na�D	 v�� =
dim�Na�D	 v��.

Proof. As we already remarked in general dimt�D� ≤ dimt�D�X��. Let Q be a
maximal t-ideal of D�X�. If Q ∩D = �0�, then obviously ht�Q� = 1 ≤ dim�Na�D	 v��.
If Q ∩D �= �0�, then Q = �Q ∩D��X� and hence Q ∩ � v = ∅. Therefore QNa�D	 v� �=
Na�D	 v� and so ht�Q� ≤ dim�Na�D	 v��, hence dimt�D�X�� ≤ dim�Na�D	 v��. The
conclusion follows easily from Corollary 2.22(b). �

Remark 2.24. (a) Note that, for a UMt-domain, Wang (1999, Theorem 2.6)
proved already the equality dimw�D� = dim�Na�D	 v��.

(b) It is clear that, in general, dimt�D� ≤ dimw�D�, since each t-ideal is also
a w-ideal and it is easy to see that (in the non UMt-domain case) it can happen
that dimt�D� �= dimw�D�. For instance, let R be a quasi-local factorial domain of
dimension 3 with maximal idealM . Set F �= R/M and let � � R → F be the canonical
homomorphism. Assume that k is a proper subfield of F , set D �= �−1�k� and let
Q is a prime ideal of D and R such that ht�Q� = 2. Clearly, since R is a UFD and
M = �D � R�, thenM = MvD = MwD � MwR = MtR = MvR = R and Q = QwD � QtR =
QvR = R (note thatQ = QwD , sinceMaxwD�D� = Max�D� and sowD coincides with the
identity (semi)star operation on D). Let I ⊆ Q be a nonzero finitely generated ideal
of D with �R � �R � I�� = �R � �R � IR�� = R or, equivalently, �R � I� = R. Hence �D �
I� ⊆ �R � I� = R = �M � M� = �D � M� ⊆ �D � I� and so �D � I� = R. Therefore IvD =
�D � �D � I�� = �D � R� = M and soM = IvD ⊆ QtD ⊆ MtD = M . HenceforthQtD = M .
Therefore, we have dimt�D� = 2 � dim�D� = dimw�D� = 3.

(c) It is well known that an integral domain D is Prüfer domain (resp.,
PvMD), if and only if each nonzero two generated ideal of D is invertible (resp.,
t-invertible) (Gilmer, 1972, Theorem 22.1) (resp., Malik et al., 1988, Lemma 1.7). In
case ∗ is a star operation of finite type, it is known that D is P∗MD if and only
if each (nonzero) two generated ideal of D is ∗-invertible (Houston et al., 1984,
Theorem 1.1). It is natural to ask whether a similar result holds in the semistar
setting. Let � be a semistar operation on an integral domain D. Recall that, in
Fontana and Picozza (2005, Theorem 2.3), it is shown that for I ∈ f �D�, I is �f -
invertible if and only if IDQ is principal, for each P ∈ QMax�f �D�. Moreover, it is
well known that, for a local domain, the following properties are equivalent (Gilmer,
1972, Theorem 22.1):

(i) Every nonzero finitely generated ideal is principal;
(ii) Every two generated is principal;
(iii) R is a valuation domain.

On the other hand, D is a P�MD if and only if DP is a valuation domain, for each
P ∈ QMax�f �D� (Fontana et al., 2003, Theorem 3.1). Therefore, by the previous
considerations it follows that D is a P � MD if and only if each (nonzero) two
generated ideal of D is �f -invertible.
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