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Let D be an integral domain with quotient field K. A semistar
operation ∗ on D, introduced in 1994 by A. Okabe and R. Matsuda
[Math. J. Toyama Univ. 17 (1994), 1–21; MR1311837 (95k:13027)], is
a closure operation on the set F (D) of nonzero D-submodules of K
that satisfies (xE)∗ = xE∗ for each 0 6= x ∈K and each E ∈ F (D). For
any P ∈ Spec(D), the semistar operation ∗DP , denoted simply by ∗P ,
on the localization DP is obtained from ∗ by E∗P := E∗ for each E ∈
F (DP ) (⊆ F (D)). On the other hand, let Θ be a nonempty subset
of Spec(D) and let {∗P | P ∈ Θ} be a family of semistar operations,
where ∗P is a semistar operation on DP . Then the authors define ∧(:=
∧Θ) as the semistar operation on D given by E∧ :=

⋂
{(EDP )∗P | P ∈

Θ} for each E ∈ F (D).
In this paper, the authors conduct a local-global study of semis-

tar operations by exploring conditions under which certain properties
relevant to semistar operations transfer by way of the above induced
semistar operations. In particular, they show that the finite type,
spectral, stable, a.b., and e.a.b. properties on a semistar operation ∗
each directly transfer to the induced semistar operation ∗P for any
P ∈ Spec(D). The authors also demonstrate that D is a Prüfer ?-
multiplication domain if and only if each of its localizations DP is
a Prüfer ∗P -multiplication domain. In addition, the authors provide
a nice study of the relationship between the Nagata rings Na(D, ∗)
and Na(DP , ∗P ), and the relationship between the Kronecker func-
tion rings Kr(D, ∗) and Kr(DP , ∗P ). They show, amongst other re-
sults, that Na(D, ∗) =

⋂
{Na(DP , ∗P ) | P ∈ Spec(D)} and Kr(D, ∗) =⋂

{Kr(DP , ∗P ) | P ∈ Spec(D)}. In the final section of the paper, the
authors demonstrate that if D =

⋂
{DP | P ∈ Θ} has finite character

and each ∗P , P ∈ Θ, is of finite type (respectively, stable), then ∧Θ
inherits the finite type (respectively, stable) property. They also show
that if each ∗P , P ∈Θ, is a spectral e.a.b. (respectively, a.b.) semistar
operation, then ∧Θ inherits the e.a.b. (respectively, a.b.) property un-
der suitable conditions on {∗P | P ∈Θ}. Andrew J. Hetzel (1-LA2)
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