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INTRODUCTION

Let R be an integral domain and let M be an R-module. Then the trace
" ! Ž . 4of M is the ideal generated by the set fm f " Hom M, R and m " M .R

For an ideal I of R, the trace is simply the product of I and I#1. We call
an ideal J a trace ideal if J is the trace of some R-module. An elementary
result which will be used freely throughout this paper is that if J is a trace

#1 #1 Ž . $ %ideal, then JJ & J; i.e., J equals the ring J : J 6, Proposition 7.2 .
Thus the trace ideals of R are precisely those ideals J for which J#1

Ž . Žequals J : J . Such ideals are also referred to as being ‘‘strong’’; see, for
$ % .example, 3 . If R is a valuation domain and M is an R-module, then the

$ %trace of M is either R or a prime ideal of R 14, Proposition 2.1 .
Extracting the conclusion of this result, Fontana et al. give the following

Ždefinition: A domain R is said to satisfy the trace property or to be a TP
.domain if for each R-module M, the trace of M is equal to either R or a

$ % Ž $ %.prime ideal of R 14, p. 169 see also 1, Theorem 2.8 . Theorem 3.5 of
$ %14 gives a characterization of Noetherian TP domains. Namely, for a
Noetherian domain R, R is a TP domain if and only if R is one-
dimensional, has at most one non-invertible maximal ideal M, and, if such

#1 Ža maximal ideal exists, then M equals the integral closure of R or,
#1 Ž . . $ %equivalently, M & M : M is a Dedekind domain . In Section 2 of 17 ,

Gabelli shows that by replacing ‘‘integral closure’’ with ‘‘complete integral
closure,’’ the same list of conditions characterizes the class of Mori
domains which satisfy the trace property. Recall that a Mori domain is an
integral domain which satisfies the ascending chain condition on divisorial
ideals.
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$ %In 22 , Heinzer and Papick relaxed the requirement that each proper
trace ideal be a prime ideal to require only that each be a radical ideal,
thus creating the radical trace property and the class of RTP domains. For
Noetherian domains, they prove that if R is a Noetherian domain, then it
satisfies the radical trace property if and only if R is a TP domain forP

$ %each prime P 22, Proposition 2.1 . Gabelli extended this result to Mori
$ %domains 17, Theorem 2.14 .

For Prufer domains, there are results concerning the trace property in¨
$ % $ % Ž .14 and the radical trace property in 22 . The so-called !! property for
Prufer domains is involved in the positive results of both papers. Recall¨

Ž .that a Prufer domain R is said to satisfy ! if for any two distinct sets of¨
$ %maximal ideals MM and NN, " R " " R 19 . If, in addition,M " MM M N " NN N

Ž . Ž .each overring of R satisfies ! , then R is said to satisfy !! . There are two
$ %positive results concerning Prufer domains in 14 . The first is that if R is a¨

Ž .Prufer domain which satisfies !! , then R is a TP domain if and only if the¨
$ %non-invertible prime ideals are linearly ordered 14, Theorem 4.2 . The

second is that if R is a finite-dimensional Prufer domain, then R is a TP¨
Ž .domain if and only if R satisfies the !! property and the non-

$ %invertible prime ideals are linearly ordered 14, Theorem 4.6 . For the
$ %radical trace property, Theorem 2.7 of 22 states that the following are

equivalent for a Prufer domain R which satisfies acc on primes:¨

Ž .1 R has the radical trace property.
Ž .2 R has Noetherian spectrum.
Ž . Ž .3 R satisfies !! .
$ %In 20 an example is given of an almost Dedekind domain R with

exactly one non-invertible maximal ideal M. Since R is a discrete rankM
2 #1 Ž .one valuation domain, M " M. But since M & M : M & R, the same

Ž 2 .#1 2is true for M . Thus M is a trace ideal of R which is neither prime
$nor radical. Whence R is neither a TP nor an RTP domain 14, Example

%4.3; 22, p. 115 .
In Theorem 23, we show that if R is a Prufer domain, then the following¨

are equivalent:

Ž .1 R satisfies the radical trace property.
Ž . #12 For each primary ideal Q, either Q is invertible or QQ is a

prime ideal.
Ž . #13 For each primary ideal Q, if Q is a ring, then Q is prime.
Ž .4 Each branched prime is the radical of a finitely generated ideal.

$ %Using this result and Theorem 3 of 19 , we prove that every Prufer¨
Ž .domain with !! is an RTP domain.
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From the second and third equivalent statements in Theorem 23, we
extract the following definitions. We say that a domain R satisfies the

Ž .trace property for primary ideals and refer to R as a TPP domain if for
each primary ideal Q, either Q is invertible or QQ#1 is prime. We will
show that this is equivalent to the property that for each primary ideal Q,

#1 Ž .' 'either QQ & Q or Q is invertible and Q is maximal Corollary 8 . In
Theorem 4, we show that every RTP domain is a TPP domain. Moreover,
Theorems 3, 5, 7, 9, and 10 together with the statement and proof of
Lemma 32 lead us to conjecture that the two properties are equivalent. We

Ž .will refer to R as a PRIP domain or say that R has PRIP if for each
primary ideal Q, Q#1 a ring implies Q is prime. In Example 30 we give an
example of a Noetherian TP domain which is not a PRIP domain.

Ž . " !For two non-empty subsets B and C of a field K, B :C & x"K xC (
4B . Of course, for an ideal I of domain D, the commonly used notation for

Ž . #1D : I is ‘‘I .’’ To avoid confusion we shall reserve this notation exclu-
sively for the situation where the domain in question is R, a localization of
R, or a homomorphic image of R. For any other ring T we shall always

Ž .use T : I . For subsets, we use ‘‘) ’’ to denote proper subset and ‘‘( ’’ to
Žindicate subset with possible equality. For the most part, ) is used

whenever equality is not possible, but when the question of equality is not
.relevant, ( may appear even though equality is not possible.

1

The first two lemmas provide useful tools for our work. The first gives a
$ %slight generalization of Lemma 3.7 in 16 . Results similar to the second

$ % $ %are used in the proofs of Proposition 2.10 in 22 and Lemma 1.1 in 17 .

Ž $ %.LEMMA 0 cf. 16, Lemma 3.7 . Let R be an integral domain and let Q be
a primary ideal with radical P. If J is an ideal of R which contains Q and is

#1 Ž .not contained in P, then J ( Q : Q .

Ž . Ž .Proof. Let r " J * P. Then R : J Qr ( P. Hence R : J Q ( Q since Q
is P-primary and r # P.

LEMMA 1. Let R be an integral domain and let Q be a primary ideal of R
#1 #1'with Q & P. Let a " QQ * P and let I & aR + Q. Then I &

Ž #1 .#1 Ž #1 #1. Ž .QQ & QQ : QQ & Q : Q .

#1 Ž .Proof. Since I contains Q and is contained in QQ , we have Q : Q
#1 #1 #1 #1 #1Ž . Ž .( QQ : QQ & QQ ( I . Equality follows from Lemma 0.

Our first use of the above lemmas is to show that in an RTP domain,
non-maximal primes are divisorial.
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THEOREM 2. Let R be an RTP domain. Then each non-maximal prime
#1 Ž .ideal is di!isorial and for each such prime P, P & P : P .

Proof. Let P be a non-maximal prime ideal. First, we must have
Ž .P : P " R, for otherwise the combination of the radical trace property
and Lemma 1 implies that every ideal containing P is a radical ideal.
Hence, among other things, P cannot be invertible.

Assume PP#1 " P and let I & a2R + P where a " PP#1 * P. By
#1 Ž #1 .#1 Ž #1 #1. Ž .Lemma 1, we have I & PP & PP : PP & P : P . By RTP,

II#1 is a radical ideal and thus a & p + ua2 for some p " P and some
#1 Ž #1 .#1 Ž . #1u " I & PP . Whence p & a 1 # ua . As a " PP * P and u "

Ž #1 #1 #1 #1PP : PP , we have 1 # ua " P ) I ( PP . It follows that PP & R
Ž . #1and we have the contradictory statement that P : P & R. Hence, PP &

#1 Ž .P and P & P : P .
#1 #1 Ž . Ž .Since P "R, P is a proper ideal of R and P & P : P & P : P &! ! ! !

P#1. As above, by setting I & a2R + P for some a " P * P we arrive at a!
contradiction. Hence P & P .!

THEOREM 3. Let R be an integral domain. Then the following are equi!a-
lent.

Ž .1 R is an RTP domain.
Ž .2 For each multiplicati!e set S, R is an RTP domain.S

Ž .3 For each prime ideal P, R'P is an RTP domain.

Proof. Assume R is an RTP domain and let S be a multiplicative set.
Let I be an ideal of R, J" & IR IR#1, and J & J" , R. Then J" & JR soS S S
it suffices to show that J is a radical ideal of R. Let u " J#1. Then

Ž .u " R : J" . Hence uJ" ( J". Since uJ ( R and J" & JR , uJ ( J. As R isS S
an RTP domain, J must be a radical ideal.

Assume R is an RTP domain and let P be a non-maximal prime ideal of
R. Let I be an ideal of R properly containing P and let J" &
Ž .Ž . ŽI'P R'P : I'P . Then J" & J'P for some ideal J of R properly

.containing P . As above, it suffices to show that J is a radical ideal. Since
#1 Ž . #1J is contained in P : P , each element of J is well defined in R'P

#1 Ž . #1and J 'P ( R'P : J" . Hence for each u " J , uJ'P & uJ" ( J". Thus
uJ ( J. Since R is an RTP domain, J is a radical ideal.

For each ideal I of an RTP domain R, it is always the case that II#1

contains the radical of I. Thus for a P-primary ideal Q, P ( QQ#1.
Our next result establishes the first link between the radical trace

property and the trace property for primary ideals. Later we will show that
the two properties are equivalent for both Prufer domains and Mori¨
domains.
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THEOREM 4. Let R be an RTP domain and let Q be a P-primary ideal.
Then either QQ#1 & P or QQ#1 & R and P is maximal; i.e., R is a TPP
domain.

Ž .Proof. To begin, assume Q is invertible. Then Q : Q & R. Hence for
each ideal J containing Q and not contained in P, J#1 & R. Thus J must
be a radical ideal of R since R is an RTP domain. This implies that P is
maximal.

Now assume Q is not invertible. Let M be a prime containing Q. By
Theorem 3, R is an RTP domain. Hence, QR QR#1 is a radical ideal ofM M M
R . By the above, if QR is invertible, then M & P. It follows that if M isM M
minimal over QQ#1, then there can be no primes properly between P and
M. Thus we assume M is minimal over QQ#1 and not equal to P. Then
QR QR#1 & MR since R is an RTP domain. Furthermore, byM M M M

#1 #1 Ž . Ž .Lemma 1 we have IR & MR & MR : MR & QR : QR forM M M M M M
each ideal I containing Q and contained in M but not contained in P. In
particular, this would be true for the ideal I & a2R + P where a " M * P.
As in the proof of Theorem 2, the radical trace property guarantees the
existence of an element u " IR#1 and an element p " PR such thatM M

2 Ž . #1 Ž .a & ua + p. Hence p & a 1 # ua . As IR & MR : MR , 1 # ua isM M M
a unit of R which implies a " RP , a contradiction. Hence it must beM M

#1that QQ & P.

Before we present our next results, note that if Q is a primary ideal in a
#1 'TPP domain, then QQ always contains Q .

Our next result concerns domains with the trace property for primary
ideals. It provides more circumstantial evidence for the conjectured equiv-
alence of the radical trace property and the trace property for primary
ideals. For one-dimensional domains, it shows that the radical trace
property and the trace property for primary ideals are equivalent.

THEOREM 5. Let R be a TPP domain and let I be an ideal such that
#1 Ž .I & I : I . Then for each prime P minimal o!er I, IR & PR .P P

Proof. Let P be minimal over I and let Q & IR , R. Then Q#1 ( I#1
P

and, since R is a TPP domain, P ( QQ#1. Thus IR ( PR ( Q#1QR (P P P
#1I IR & IR .P P

COROLLARY 6. Let R be a one-dimensional integral domain. Then R is an
RTP domain if and only if R is a TPP domain.

As we have seen above in Theorem 3, the radical trace property is stable
under localizations and the formation of quotient rings. Our next three
results deal with establishing the same stability for the trace property for
primary ideals. We first show that if M is a prime ideal of a TPP domain
R, then R is a TPP domain.M
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THEOREM 7. Let R be a TPP domain and let M be a prime ideal of R.
Then R is a TPP domain.M

'Proof. Let Q be a primary ideal contained in M with Q & P. If
P & M, then there is nothing to prove since MR ( QQ#1R (M M
QR QR#1. Thus we may assume P " M. To complete the proof we shallM M
prove QR QR#1 & PR .M M M

Ž .If QR is invertible, then QR : QR & R . Hence, by Lemma 1,M M M M
JR#1 & R for each ideal J between Q and M that is not contained in P.M M
Thus J#1R & R as well. It follows that JJ#1R & JR for each suchM M M M
ideal J. But this last statement implies that every primary ideal between P
and M is prime. Thus it must be that QR is not invertible. Moreover, ifM
N is a prime ideal with P ) N ) M, then QR QR#1 must be contained inM M
NR for otherwise, QR will be an invertible ideal of R . Thus since ourM N N

#1 Ž .goal is to show QR QR & PR , we may assume ht M'P & 1.M M M
Ž . #1Since ht M'P & 1 and QR is not invertible, if QR QR " PR ,M M M M

then for some M-primary ideal J, QR QR#1 & JR . In fact, we mustM M M
have J & M, since JR JR#1 & JR and for each M-primary ideal I,M M M
M ( II#1. Let a " M * P and let I be the M-primary ideal obtained by
contracting the ideal a2R + QR into R. Then I " M but by Lemma 1,M M

#1 #1 #1 Ž . Ž .I R ( IR & MR & MR : MR & QR : QR . Since M (M M M M M M M
II#1, a & ua2 + q for some u " MR#1 and some q " QR . Hence q &M M
Ž .a 1 # ua . But, as in the proof of Theorem 4, a " M * P and 1 # ua is a

#1unit of R since ua " MR . Thus we must have QR QR & PR .M M M M M

The following corollary is derived from the proof of Theorem 7.

COROLLARY 8. Let R be an integral domain. Then R is a TPP domain if
#1 'and only if for each primary ideal Q, either QQ & Q or Q is in!ertible

'and Q is maximal.

THEOREM 9. Let R be an integral domain. Then the following are equi!a-
lent.

Ž .1 R is a TPP domain.
Ž .2 For each multiplicati!e set S, R is a TPP domain.S

Ž .3 For each prime ideal P, R'P is a TPP domain.

Proof. Assume R is a TPP domain.
We first show that R is a TPP domain for each multiplicative set S.S
Let S be a multiplicative set. That R is a TPP domain follows fromS

Theorem 7 and Corollary 8, since the primary ideals of R are all of theS
form QR for some primary ideal Q of R.S

Now let P ) N be a pair of prime ideals and let R & R'P. Let Q be an
N-primary ideal of R. Then Q is an N-primary ideal of R containing P
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#1 #1 #1Ž .and Q ( P & P : P . Thus we have N ) Q Q . There is nothing to
prove if N is maximal. Hence we may assume N is not maximal, in which
case QQ#1 & N.

#1Assume Q Q " N. Let M be a prime ideal which properly contains N
#1and let a " M * N be such that a " Q Q . As our goal is to show

#1Q Q & N, we may assume R is quasilocal with maximal ideal M since
R has TPP. Moreover, we may assume M is minimal over the idealM

2I & a R + Q. Thus I is an M-primary ideal of R. Since Q is a primary
#1 Ž . Ž .ideal of R, I ( Q : Q . If Q is invertible, then we have Q : Q & R.

#1 #1 #1Ž .Hence I & R. Since P ) Q ) I, I ) P : P . Therefore I & R and
I & M. Since R is quasilocal, this leads to the contradictory statement that

2a & a t + q for some t " R and some q " Q. Thus Q is not invertible.
Ž .Moreover, we must have ht M'N & 1. Since M is the maximal ideal of

#1R, Q Q is M-primary. Thus there is an M-primary ideal J containing Q
#1 #1 #1Ž . Ž .where J & Q Q . Thus J & J : J . It follows that J & J : J . Hence
#1 #1 Ž . Ž .J & M and Q Q & M. By Lemma 1, I & Q : Q & M : M . Since I is

#1 #1M-primary and I is a ring, I I & M. Following the same line of
reasoning as in the proof of Theorem 7, we obtain the contradictory

Ž . Žstatement that a & q' 1 # au " Q where as before u is an element of
Ž ..M : M .

THEOREM 10. Let R be an integral domain with TPP. Then each non-
maximal prime ideal of R is di!isorial and for each such prime P, P#1 &
Ž .P : P .

Proof. Let P be a non-maximal prime ideal of R. Since R has TPP,
#1 #1 Ž . $ % #1 Ž .PP & P. Thus P & P : P . By Proposition 2.2 of 25 , P & P : P .! !

Assume P is not divisorial. Since P is not maximal, there is an element
a " P * P such that the ideal I & a2R + P is a proper ideal of R. Since!

#1 Ž . #1 #1 Ž .P & P : P and P ) I ( P , I & P & P : P . Moreover, by! ! ! ! !
$ % #1 Ž #1 .#1 Ž #1 #1.Proposition 2.2 of 25 , I & II & II : II . By Theorem 5,

II#1R & NR for each prime N minimal over II#1. It follows thatN N
a & ba2't + p't for some b " I#1 and some t " R * N. Since P#1 &!

#1 Ž #1 .#1 Ž #1 #1. 2 2 #1I & II & II : II , ba " R and b a " II . Thus ba " N
Ž .and t # ba " R * N. Whence, a & p' t # ba " PR which is impossible.N

Therefore P is divisorial.

Our last result of this section shows that for Mori domains the radical
trace property and the trace property for primary ideals are equivalent.
Before proving this result, we recall some facts about Mori domains.

THEOREM 11. Let R be a Mori domain. Then
Ž .a For each ideal I of R, there is a finitely generated ideal J ( I such

that I & J . Moreo!er, if I " R, then I is contained in a maximal di!isorial! ! !
$ %ideal 27, Corollaire 1 .
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Ž . $ %b Each maximal di!isorial ideal is prime 5, Proposition 2.1 .
Ž . $c For each multiplicati!e set S, R is a Mori domain 28, Sect. 3,S

%Corollaire 1 .
Ž . Ž . $d If P is an in!ertible prime ideal of R, then ht P & 1 5, Theorem

%2.5 .
Ž . #1 #1e If I is an ideal of R such that I is a ring, then I is a Mori

$ %domain 29, page 11; 3, Corollary 11; 25, Proposition 2.2 .

The proof we pro!ide for our next theorem is almost identical to the proof
$ %Gabelli gi!es to establish Theorem 2.5 in 17 .

THEOREM 12. Let R be a Mori domain. Then R is an RTP domain if and
only if R has TPP.

Proof. Assume R has TPP. By Corollary 9, it suffices to show that R is
one-dimensional. Let M be a maximal ideal of R. Then R is a quasilocalM
Mori domain with TPP. Thus we may assume R is quasilocal. If M is

$ %invertible, then it has height one 5, Theorem 2.5 . Thus we may assume M
#1 Ž .is not invertible. Thus M & M : M . Let J ( M be a finitely generated

ideal with J & M . By Theorem 10, each non-maximal prime ideal of R is! !
divisorial. Hence J is M-primary. Let N be a maximal ideal of M#1. Since

$ % $ %R is quasilocal, M ( N 8, Lemma 5 or 4, p. 104 . Hence NJ is an
M-primary ideal of R and an ideal of M#1. If N is not invertible as an

#1 Ž #1 . Ž . Ž . #1ideal of M , then M : N & N : N ( NJ : NJ . But since M &
#1 Ž . Ž #1 . Ž #1 . Ž .J , we have R : NJ & J : N & M : N & NJ : NJ . Thus NJ &

M since R has TPP. But this implies J ( NJ which is impossible since J is
finitely generated. Hence each maximal ideal of M#1 is invertible. Since
M#1 is a Mori domain, invertible primes have height one and therefore

#1 $ % #1 Ž .M is a Dedekind domain 5, Theorem 2.5 . Thus M & M : M is
the complete integral closure of R. Whence for each non-zero ideal

Ž . Ž .I of R, I : I ( M : M . That M has height one now follows from
Theorem 10.

2

$ %The first two results of this section also appear in 24 .

Ž $ %.LEMMA 13 cf. 24, Proposition 2.1 . Let I be an ideal of an integral
domain R and let P be a minimal prime of I. If I#1 is a ring, then P#1 is a
ring.

Proof. Assume I#1 is a ring and let t " I#1 and r " I. Then t 2 r 2 &
2 #1 #1 #1'Ž .t r r " I since I is a ring. It follows that II ( I . Let s " P and

let p " P. Since P is minimal over I, there is an integer n - 1 and an
element r " R * P such that rpn " I. Thus since I#1 is a ring, s2nrpn "
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#1 Ž .2nII so that r sp " P. But since r # P and sp " R, we get sp " P.
#1 Ž .Therefore P & P : P is a ring.

Ž $ %.LEMMA 14 cf. 24, Theorem 3.4 . Let P and Q be a pair of prime ideals
#1 #1 Ž .#1of an integral domain R. If both P and Q are rings, then P , Q is a

ring.

#1 #1 #1 Ž . #1Proof. Assume P and Q are rings. Then P & P : P and Q &
Ž . $ %Q : Q since both are prime ideals 25, Proposition 2.3 . Let I & P , Q
and let t " I#1. Then for each p " P and each q " Q, tpq " R. Thus
tp " Q#1 and tq " P#1. Hence, tpr, tqr " I for each r " I. Thus t 2pr, t 2qr
" R and we have t 2 r " P#1 , Q#1. It follows that t 2 r 2 " I. Whence
tr " I since I is a radical ideal and tr " R.

$ %Theorem 3.3 of 15 states that if I is an ideal of a semi-normal domain
#1' 'Ž .R, then I : I is the largest subring of I . An obvious consequence of
Žthis theorem is the following useful lemma. The ‘‘semi-normal’’ version of

$ % .Lemma 15 is Corollary 3.4 of 15 .

LEMMA 15. Let R be an integrally closed domain and let I be an ideal of
#1#1 #1 ' ' 'Ž .R. Then I is a ring if and only if I & I & I : I .

Recall from above that a domain R is said to be a PRIP domain if for
each primary ideal Q, Q#1 a ring implies Q is prime. Our next five results
concern PRIP domains. All but one deal specifically with Prufer domains¨
which have PRIP. For an ideal I of a Prufer domain R, Huckaba and¨

#1 #1 Ž . Ž .Papick prove that I is a ring if and only if I & " R , " RP M# $

" 4 " 4where P is the set of minimal primes of I and M is the set of maximal# $
$ %ideals which do not contain I 25, Theorem 3.2 . We shall make frequent

use of this result. In particular, we use it repeatedly in the proof of our
next theorem. We shall also use the property that for an overring S of a
Prufer domain R, the prime and primary ideals of S are all extended from¨

$ %R 18, Theorem 26.1 .

THEOREM 16. Let R be a Prufer domain. If R has PRIP, then e!ery¨
o!erring has PRIP.

Proof. Let S be an overring of R and let J be a primary ideal of S.
'Since every prime ideal of S is extended from R, J & PS for some prime

Ž .P of R. Moreover, J & IS where I & J , R. Thus I is P-primary. If S : J
Ž . Ž . Ž $is a ring, then S : J & S : PS since S is integrally closed or by 25,

%. $ % Ž .Theorem 3.2 . Thus by 25, Theorem 3.2 , S : J ( S & R . Since J & IS,PS P
#1 Ž . Ž . #1 Ž $I & R : I ( S : J ( R . Hence I is a ring again by 25, TheoremP

%.3.2 . By PRIP I & P and therefore J & PS is a prime ideal.
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LEMMA 17. If R is a domain with PRIP and P is a non-maximal prime
ideal, then P#1 " R.

Proof. Let M be a maximal ideal which contains P. Since P is not
maximal there is a primary ideal Q between P and M which is not prime.

#1 #1 #1If P & R, then Q & R and QQ is not prime.

THEOREM 18. Let R be a Prufer domain with PRIP. Then e!ery non-¨
maximal prime is di!isorial and for each prime ideal P, P is a maximal ideal

Ž .of P : P .

Proof. Let P be a prime ideal of R. Since R is Prufer, P is a prime¨
Ž . Ž .ideal of P : P . If P is a maximal ideal, P : P & R. Thus we may assume

#1 Ž .P is not maximal. In this case P & P : P . Combining Theorem 16 and
Ž . #1Lemma 17, we get that if P is not maximal in P : P , then P "

Ž #1 . Ž 2 . $ %P : P & R : P . But by 12, Theorem 3.1 , this implies P is invertible
#1 #1 Ž .in P and hence maximal in P . Therefore P is maximal in P : P and

it follows that P & P .!

THEOREM 19. Let R be a Prufer domain with PRIP and let I be an ideal¨
for which I#1 is a ring. Then e!ery prime minimal o!er I extends to a maximal
ideal of I#1.

#1#1 #1 'Proof. Since R is integrally closed, I a ring implies I & I &
' ' 'Ž .I : I . Hence we may assume I & I . Let P be a prime minimal over

#1 #1 Ž . Ž . #1I. Since I is a ring, P & P : P by Lemma 13. Thus P : P & P (
#1 Ž . Ž . Ž .I & I : I . Since P is a maximal ideal of P : P , if it survives in I : I it

Ž . $ % #1will extend to a maximal ideal of I : I . But by Theorem 3.2 of 25 , I is
contained in R .p

Ž .For a prime ideal P of a domain R, let NN P be the set of maximal
ideals of R which do not contain P and let T & " R . It is alwaysN " NN ŽP . N
the case that Q#1 ( T for each P-primary ideal Q. Thus in the event that
P#1 & T , then Q#1 & T for each P-primary ideal Q.

LEMMA 20. Let R be a Prufer domain and let P be a branched prime¨
ideal. If R is either a TPP domain or a PRIP domain, then P#1 " T.

Proof. Assume P#1 & T. Since R is a Prufer domain the primary ideals¨
of P#1 are extended from R. In particular, QP#1 & Q for each P-primary

#1 #1 #1 Ž .ideal Q since PP & P. But if P & T , then Q & T & Q : Q . Thus if
#1R is either a TPP domain or a PRIP domain, then P " T.

The following lemma and its proof are extracted from the proof of
$ %Theorem 2.5 of 22 .
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LEMMA 21. Let I be an ideal of a Prufer domain R and let P be a prime¨
minimal o!er I. If IR " PR and P is the radical of a finitely generated idealP P
C, then I#1 is not a ring.

'Proof. Assume P & C where C is finitely generated and that IR "P
PR . Then there is an element r " P such that IR ( rR . Then for eachP P P
maximal ideal M containing P, IR ) rR ; and for each maximal idealM M
N " NN, IR ( CR & R . It follows that I ) J & rR + C ( P. Since R isN N N
Prufer, I#1 a ring implies I#1 ( R which in this case implies 1 " JJ#1 (¨ P

#1 #1 Ž $ %.PI ( PR . Thus I is not a ring see also 22, Lemma 2.4 .P

$ %Our next lemma is related to Lemma 10 of 13 .

LEMMA 22. Let P ) M be prime ideals of a Prufer domain R. If P is the¨
radical of a finitely generated ideal, then MP#1 & P#1.

'Proof. Assume P & C where C is finitely generated. Let J & rR + C
where r " M * P. Since PR , R & P for each maximal ideal M con-M ##

taining P, PR ) rR & JR . On the other hand, for each N " NN,M M M# # #

R & CR & PR & JR . Hence P ) J ( M. Therefore JP#1 & MP#1 &N N N N
#1 #1 #1P since J is invertible and J ) P .

We are now ready to characterize the class of Prufer domains with the¨
radical trace property.

THEOREM 23. Let R be a Prufer domain. Then the following are equi!a-¨
lent

Ž .1 R is an RTP domain.
Ž .2 R is a TPP domain.
Ž .3 R is a PRIP domain.
Ž .4 Each branched prime is the radical of a finitely generated ideal.

Ž . Ž . Ž .Proof. That 1 implies 2 is true in general Theorem 4 .
Ž . Ž .There are a number of ways to prove that 2 implies 3 . Since R is

$ %Prufer, the combination of Lemma 15 and Lemma 4.4 of 15 implies that¨
#1 #1 Ž . #1if Q is a ring for a P-primary ideal Q, then Q & Q : Q & P &

Ž . #1P : P . Thus if R is a TPP domain and Q is a primary ideal, Q a ring
implies Q is prime.

Ž . Ž .We next prove the equivalence of 1 and 4 .
First assume R is an RTP domain. Let P be a branched prime and let Q

be a proper P-primary ideal. Since P is branched and R is Prufer, P is¨
$ % #1minimal over a finitely generated ideal A 18, Theorem 23.3 . If P is not

$ % #1a ring, then P is invertible 25, Theorem 3.8 . Thus we may assume P is
#1 $ %a ring, in which case, P & R , T by Theorem 3.2 of 25 . By LemmaP

20, P#1 " T. Hence R does not contain T & " R . Thus there is aP N " NN N
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finitely generated ideal B which is contained in P and not contained in
'$ %any N " NN 19, Corollary 2 . It follows that P & A + B .

Now assume each branched prime is the radical of a finitely generated
#1 Ž .ideal and let I be an ideal such that I & I : I . By Lemma 21,

IR & PR for each prime P minimal over I. If I is not a radical ideal,P P 'then there is an element r " I * I. Since IR & PR for each primeP P
Ž .minimal over I, no prime minimal over I contains the ideal J & I : r .R

Let M be a prime ideal that contains J and let P be a prime contained
in M and minimal over I. By Lemma 22, MP#1 & P#1 and therefore
MI#1 & I#1. Hence JI#1 & I#1. Let j , j , . . . , j " J and u , u , . . . , u "1 2 n 1 2 n
I#1 be such that j u + j u + %%% +j u & 1. But then r & rj u +1 1 2 2 n n 1 1

#1 Ž .rj u + %%% +rj u " I since rJ ( I and I & I : I . Hence I is a radical2 2 n n
ideal and R is an RTP domain.

Ž . Ž .Finally we show that 3 implies 1 .
#1 Ž .Assume R is a PRIP domain and let I be an ideal for which I & I : I .

Ž . Ž .As in the proof of 4 implies 1 , it suffices to show IR & PR for eachP P
Ž .prime P minimal over I since P is a maximal ideal of P : P by Theo-

rem 19.
If IR " PR for some P minimal over I, then for each maximal idealP P

M containing P, IR " PR . Since R is a valuation domain for each M,M M m
P is branched and therefore is minimal over some finitely generated ideal
$ % #118, Theorems 17.3 and 23.3 . By Lemma 20, P " T. As in the proof of
Ž . Ž .1 implies 4 , we get that P is the radical of a finitely generated ideal.
Since I#1 is a ring we get a contradiction by Lemma 21. Hence IR & PRP P
for each prime P minimal over I.

COROLLARY 24. Let R be a Prufer domain. If R is an RTP domain, then¨
e!ery o!erring in an RTP domain.

$ % Ž .In 19 , Gilmer and Heinzer prove that for a Prufer domain R, R has !¨
if and only if for each maximal ideal M there is a finitely generated ideal

$ %A such that M is the only maximal ideal containing A 19, Theorem 1 . In
Ž .the same paper they also prove that R has !! if and only if for each prime

ideal P there exists a finitely generated ideal A ( P such that each
$ %maximal ideal containing A contains P 19, Theorem 3 . Our next two

results follow from combining these two theorems with our Theorem 23.

Ž .COROLLARY 25. Let R be a Prufer domain which has !! . Then R is an¨
RTP domain.

Proof. Let P be a branched prime. Then P is minimal over a finitely
$ % Ž .generated ideal A 18, Theorem 23.3 . Moreover, since R has !! , we may

$ %assume that each maximal ideal containing A contains P 19, Theorem 3 .
' Ž .It follows that A & P since Spec R is treed. Thus R is an RTP domain.
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As a partial converse to Corollary 25, we have the following.

COROLLARY 26. Let R be an RTP Prufer domain. If e!ery maximal ideal¨
Ž .of R is branched, then R has ! . If e!ery prime ideal of R is branched, then R

Ž .has !! .
Proof. Since R is an RTP Prufer domain, each branched prime is the¨

radical of a finitely generated ideal. The result now follows from Theorems
$ %1 and 3 of 19 .

Only the first implication in Corollary 26 is new, the other is the same as
Ž . Ž . Ž . $ %1 implies 3 in the previously mentioned Theorem 2.7 of 22 since in a
Prufer domain every prime being branched is equivalent to the domain¨
having acc on prime ideals.

A Prufer domain R is said to have the separation property if for each¨
pair of comparable primes P ) M, there is a finitely generated ideal I

$ %such that P ) I ( M 13, p. 100 . It is known that every Prufer domain¨
Ž . $ %with !! has the separation property 13, Proposition 11 . Our next theo-

rem shows more generally that every Prufer RTP domain has the separa-¨
tion property.

THEOREM 27. Let R be a Prufer RTP domain and let P ) M be a pair of¨
prime ideals. Then there is a finitely generated ideal I such that P ) I ( M.

Proof. Since P ) M there is a branched prime Q properly containing
P and contained in M. Thus, as in the proof of Corollary 25, there is a

'finitely generated ideal I such that Q & I . Since P is properly contained
in Q, we have PR ( IR for each maximal ideal N. Hence P ) I ( M.N N

THEOREM 28. Let R be a Prufer domain. Then the following are equi!a-¨
lent.

Ž .1 R is a TP domain.
Ž .2 R is an RTP domain and the non-in!ertible prime ideals are linearly

ordered.
Ž .3 R is a TPP domain and the non-in!ertible prime ideals are linearly

ordered.
Ž .4 R is a PRIP domain and the non-in!ertible prime ideals are linearly

ordered.
Ž .5 Each branched prime is the radical of a finitely generated ideal and

the non-in!ertible prime ideals are linearly ordered.

Proof. Since R is a Prufer domain, if P is a non-invertible prime, then¨
P#1 is a ring. Hence, if R is a TP domain, then the non-invertible prime
ideals must be linearly ordered by Lemma 14. On the other hand, if the
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non-invertible primes are linearly ordered and I is a radical ideal with I#1

a ring, then I must be prime by Lemma 13.

COROLLARY 29. Let R be a Prufer domain. If R is a TP domain, then¨
e!ery o!erring is a TP domain.

Our first example shows that there are Noetherian RTP domains which
do not have PRIP.

$$ 3 4 5 %%EXAMPLE 30. Let R & K X , X , X . Then R is a Noetherian TP
domain but does not have PRIP.

Ž 3 4 5. #1 $$ %%Proof. Let M & X , X , X . Then M & K X . Thus R is a TP
$ % Ž 3 4.domain by Theorem 3.5 of 25 . But the ideal I & X , X is a proper

#1 $$ %%M-primary ideal with I & K X . Hence R does not have PRIP.

We next give two ways to construct RTP domains. The first involves a
pullback construction beginning with a valuation domain. The second
involves a semi-quasi local Prufer domain and a subfield.¨

Before presenting our first construction, we need to set a little notation.
Let M be an ideal of a domain T and let f be the canonical homomor-
phism from T onto T'M. Let D ) T'M be a subring of T'M and let R
be the pullback of the following diagram:

!

R D

!!

f !

T'MT

In Theorem 31, we take T to be a valuation domain with maximal ideal M.
In Theorem 34, T will be a semi-quasilocal Prufer domain with Jacobson¨
radical M.

Ž .THEOREM 31. Let V, M be a !aluation domain with K & V'M. Let
#1Ž .R & f D be the pullback of the subring D of K where f is the canonical

homomorphism from V onto K. Then R is an RTP domain if and only if D is
an RTP domain. The same equi!alence holds for TPP.

Proof. Note that since V is a valuation domain, every ideal of R
$ %compares with M 10, Proposition 2.1 . Moreover, V is the largest ring

Ž . Ž .which has M as an ideal and thus, V & M : M & R : M .
If R is an RTP domain, then so is D by Theorem 3. Assume D is an

#1 Ž .RTP domain and let I be an ideal of R such that I & I : I .
If I is contained in M, then I is an ideal of V since V & M#1 ( I#1. If

Ž . $ %I " M, then V : I is a ring by Theorem 7 of 23 . Whence I is prime by!
$ %25, Proposition 3.5 . If I & M and I " M, then there is an element!
m " M * I. But since V is a valuation domain, we have m#1I ( M. Thus
m#1 " I#1 which is impossible since we assumed that I#1 & M#1.
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#1Ž .If I properly contains M, then it is easy to show that I & f J for
$ % $some ideal J of D. It follows from 11, Proposition 1.8 or 23, Proposition

% #1 #1ŽŽ .. Ž . #1ŽŽ ..6 that I & f D : J and I : I & f J : J .
#1 Ž . Ž . Ž .Now since I & I : I , we have D : J & J : J . As D is an RTP

domain, J and hence I are radical ideals. Therefore R is an RTP domain
if and only if D is an RTP domain.

For TPP, let Q be a P-primary ideal of R.
If P ) M, then QQ#1 & P since R & V implies Q is also an ideal ofP P
Ž .V and every valuation domain satisfies the trace property . On the other

hand if M ) P, then there is a prime ideal P" of D and a P"-primary ideal
#1Ž . #1Ž . #1 #1ŽŽ ..Q" such that P & f P" and Q & f Q" . As above Q & f D : Q" .

#1 #1Ž . #1ŽŽ .. #1Ž Ž ..Hence QQ & f Q" f D : Q" & f Q" D : Q" . It follows that
#1 Ž . #1QQ & P if and only if Q" D : Q" & P", and that QQ & R and P is

Ž .maximal if and only if Q" D : Q" & D and P" is maximal.
The remaining case is when P & M.

Ž . #1Ž .Let F & qf D . Since R ( V, R & f F . Thus M is the maximalM M
#1Ž .ideal of f F . Hence Q is the primary ideal of both R and R . If Q isM

Ž .#1not an invertible ideal of R , then Q QR & M and it follows thatM M
QQ#1 " R. If Q is invertible, then Q is principal as an ideal of R ; i.e.,M

#1Ž . #1 Ž . #1ŽŽ ..Q & mf F for some m " M. So Q & 1'm f D : F . If D & F,
Ž .then D : F & F, R & R , and Q is invertible with M maximal. IfM

Ž . Ž . #1 Ž . #1D " F, then D : F & 0 so Q & 1'm M. In this case QQ &
#1Ž .f F M & M.
Combining all three cases we have that if D has TPP, then so does R.

The converse holds by Theorem 9.

While Theorem 31 provides a way to make RTP domains which are
neither Mori nor Prufer, it also shows that the classical D + M construc-¨

$ %tion of 7 will not be of use in trying to decide whether or not every TPP
domain is also an RTP domain.

For an ideal I and a prime ideal P not containing I, there is a unique
Ž .prime ideal of T & I : I which contracts to P; namely, the ideal P" &

Ž . $ Ž . #1 Ž .% Ž $P : I & P : I when I & I : I see, for example, 10, Theo-T
Ž . %.rem 1.4 c ; 4, pp. 104!105 . The following lemma provides information

Ž .about the primes of I : I which contain I when I is a trace ideal of a
TPP domain.

LEMMA 32. Let R be a TPP domain and let I be an ideal of R such that
#1 Ž . #1I & I : I . If P" ) N" are a pair of primes of I which contain I, then

P" , R & N" , R.

Proof. Let T & I#1 and let P" ) N" be primes of T containing I. Let
P & P" , R and N & N" , R. Assume P " N and let r " N * P. Without
loss of generality we may assume that N" is minimal over rT + P". Thus
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Ž 2 .the ideal Q" & r T + P" T , T is a N"-primary ideal of T which doesN "

not contain r. Hence neither does the N-primary ideal Q & Q" , R. But
since I ) Q and R is a TPP domain, Q#1 ( I#1 and therefore QT &

#1QQ T & NT. As r " N * Q" we have a contradiction.

LEMMA 33. Let R be a TPP domain and let JJ be the set of those ideals I
#1 Ž . Ž .of R such that I & I : I . If for each I " JJ, the pair R and I : I satisfy

INC, then R is an RTP domain; i.e., e!ery ideal in JJ is a radical ideal of R.

#1 'Ž .Proof. Let I be an ideal of R such that I & I : I and I " I . Let
#1' Ž .t " I * I, T & I , and J" & I : . We begin by showing if M" is aT

prime of T minimal over I, then M" does not contain J". Let M & M" , R,
Q" & IT , T , and Q & Q" , R. Then Q" is M"-primary and hence Q isM "

M-primary. Since I ) Q, Q#1 ( I#1 & T. As M ( QQ#1, we have that
MT & QT ( Q". It follows that t " IT and, hence, J" is not contained inM "

M".
Let J & J" , R. By Theorem 5, no minimal prime of I in R contains J.

But since IT & I, J" " T. Let N" be a minimal prime of J" in T and let
N & N" , R. Then by the above N" is not minimal over I. But by Lemma
32, if M" ) N" with M" a prime minimal over I, then N & M" , R

Ž .contradicting the assumption that R and I : I satisfy INC. Hence, I must
be a radical ideal of R.

So far all of the examples of RTP domains have had treed spectrum. In
our next theorem we show that this is not always the case. The theorem
also shows that for a non-maximal prime P of an RTP domain there may
be prime ideals of P#1 which contain P but do not contract to P.

THEOREM 34. Let T be a semi-quasilocal Prufer domain which contains a¨
field K. Let M , M , . . . , M be the maximal ideals of T and let R & K + M1 2 n
where M & M , M , %%% , M . Then R is quasilocal and both T and R are1 2 n
RTP domains.

Proof. If n & 1, we are in the same situation as Theorem 31. Thus we
may assume n # 1.

$Since T has only finitely many maximal ideals, R is quasilocal 10, Sect.
% Ž . Ž . Ž . $ %3 , and T & R : M & M : M has !! 19, Corollary 3 . Thus T is an

RTP domain.
To prove that R is an RTP domain, we will first show that R is a TPP

domain.
Let P be a non-maximal prime ideal of R. Since R is quasilocal and

T & M#1, there is a unique prime P" of T such that P & P" , R.
Furthermore, R & T so P" & PR , T. Thus for each P-primary idealP P " P
Q, there is a unique P"-primary ideal Q" such that Q & Q" , R. Moreover
since T has only finitely many maximal ideals, only finitely many of the
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maximal ideals of T do not contain P"; say, M , M , . . . , M . Thus P &1 2 k
P"N&P",N and Q&Q"N&Q" , N where N&M , M , %%% , M &1 2 k
M M %%% M .1 2 k

Ž . Ž .Since T is an RTP domain, Q" T : Q" & P". So Q T : Q" &
Ž . Ž . Ž . Ž .Q"N T : Q" & P"N & P. Thus N T : Q" ( R : Q and P ( Q R : Q . For

Ž . Ž . Ž .the reverse containment, note that R : Q ( T : Q & T : Q" , N &
Ž . Ž . Ž . Ž .T : Q" + T : N and T : N Q , R & T : N Q"N , R ( Q" , R & Q.

Ž .Let J be an M-primary ideal and let J" & JT. Then either J" T : J" & T
Ž .or J" T : J" & M" is a radical ideal of T. In the first case, M & MT &

Ž . Ž . Ž . Ž .MJ" T : J" & MJ T : J" and, hence, M T : J" ( R : J . In the second
case, let M , M , . . . , M be the maximal ideals of T which do not contain1 2 k
Ž . Ž . Ž . Ž .J" T : J" . If no such ideals exist, M"&M, T : J" & R : J and J R : J &

Ž .M. For k - 1, let N & M M %%% M . Then M & NM" & NJ" T : J" &1 2 k
Ž . Ž . Ž . Ž .NJ T : J . Thus N T : J ( R : J and again M ( J R : J . Therefore R is

a TPP domain.
#1 Ž . Ž .Let I be an ideal of R for which I & I : I . Since T & R : M is a

Ž .Prufer domain and R and T satisfy INC, R and I : I satisfy INC. Thus by¨
Lemma 33, R is an RTP domain.

Papick gives an example of a domain R where the integral closure of R
$ %is a Prufer domain but the spectrum of R is not treed 26, Example 2.28 .¨

The domain in Papick’s example fits the hypotheses of the above theorem
and thus is an RTP domain. Unlike Prufer RTP domains, this domain also¨
has a pair of comparable primes where the larger survives in the inverse of
the smaller. To illustrate this fact we present the ring R as our next
example.

EXAMPLE 35. Let K be a field, let X and Y be two indeterminates,
Ž .and let G & Z . Z ordered lexicographically . Let T & V , V where V1 2 1

and V are the valuation domains arising from the respective valuations !2 1
Ž . Ž . Ž . Ž . Ž .and ! from K X, Y to G defined by ! X & 1, 0 , ! Y & 0, 1 and2 1 2

Ž . Ž . Ž . Ž .! X & 0, 1 , ! Y & 1, 0 . Finally, let R be the subring K + M. Then2 2
R is a quasilocal RTP domain with two height one primes P and P andx y
M survives in both P#1 and P#1.x y

Proof. That R is a quasilocal RTP domain follows from Theorem 34.
Ž $ %.From the proof of Theorem 34 see also 10, Sect. 3 , we see that R has

three non-zero prime ideals, the unique maximal ideal M & M , M , and1 2
two incomparable height one primes P & P , M and P & M , Px 1 2 y 1 2
Ž .where P is the height one prime of V . Thus R is not a TP domain. As ini i
the proof of Theorem 34, P#1 & P#1 & T , T and P#1 & P#1 & Tx 1 P M y 2 P1 2 2

, T since P & P , M and P & P , M . Hence M survives in bothM x 1 2 y 2 11#1 #1P and P .x y
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In general, it is not the case that each overring of an RTP domain is also
an RTP domain. For example, if V is a valuation domain of the form
Ž .k X,Y + M, then it follows from Theorem 31 that the ring S & k + M is

$ % Ž $ %.a TP domain while the ring T & k X, Y + M is not cf. 22, p. 120 . The
Žring S & k + M is an example of a pseudo-valuation domain or PVD, for

. $ %short . By 21 , a domain is a pseudo-!aluation domain if it has the same
$ %spectrum as some valuation overring. Proposition 2.6 of 2 characterizes

PVD in terms of pullbacks. In the notation of Theorem 31, the aforemen-
tioned proposition means that the domain R is a PVD if and only if

#1Ž .R & f k for some subfield k of V'M. In our next two theorems, we
show how PVDs are related to whether or not every overring can be an
RTP domain.

As mentioned above, if R is a Noetherian RTP domain, then for each
non-invertible prime P, PR#1 is a Dedekind domain. Thus if R &P

$ k1 k 2 k n %K X , X , . . . , X where 1 $ k $ k $ %%% $ k are positive integers,1 2 n
Ž k1 k 2 k n.#1 $ %then R can be an RTP domain only if X , X , . . . , X & K X . We

use this fact to prove our next result.

THEOREM 36. Let W be an integrally closed PVD which is not a !aluation
domain. Then there is an o!erring of W which is not an RTP domain.

Proof. Let V be the corresponding valuation domain containing W
#1 $ %with the same maximal ideal M. Then V & M 21, Theorem 10 . Let

L & V'M and K & W'M. Then there is an element x " L which is
$ 2 5 %transcendental over K. The ring K x , x is not an RTP domain since

Ž 2 5.#1 $ % $ 2 5 %X , X " K X . Thus by Theorem 31 the pullback of K X , X
gives a ring between V and W which is not an RTP domain.

Ž .THEOREM 37. If e!ery o!erring of R is an RTP TP domain, then the
Ž .integral closure of R is an RTP TP Prufer domain.¨

$ %Proof. By Proposition 2.7 of 9 , either R" is Prufer or there is an¨
integrally closed PVD overring of R which is not a valuation domain. The
result now follows from the previous theorem.

Our final result involves the construction of a Prufer TP domain which¨
Ž .does not satisfy ! .

Ž . " 4 " 4Let K & F X, Y where X & X , X , . . . and Y & Y , Y , . . . . For1 2 1 2
each n - 1, let G & Ýn Z ordered lexicographically. For each n, let Vn k&1 n
be the valuation domain corresponding to the valuation ! determined byn

Ž r1 r2 rn. Ž . Ž . Ž .setting ! X X %%% X & r , r , . . . , r " G and ! X & ! Y &n 1 2 n 1 2 n n n k n i
Ž .0, 0, . . . , 0 for each k # n and each i - 1. Similarly, let W be then
valuation domain corresponding to the valuation w determined by settingn
Ž r1 r2 rn sn. Ž . Ž . Ž .w X X %%% X Y & r , r , . . . , r , s " G and w X & w Y &n 1 2 n n 1 2 n n n+1 n k n i

Ž .0, 0, . . . , 0 for each k # n and each i " n. Obviously, W ) V for each n.n n
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Thus "W ( "V . But it is easy to check that V & "V is a valuationn n n
domain which properly contains "W . Moreover the value group associ-n
ated with V is the group G & Ý& Z ordered lexicographically.n&1

EXAMPLE 38. Let R & "W . Then R is a Prufer TP domain that does¨n
Ž .not satisfy ! .

Ž .Proof. For each n - 1, let K & K X , X , . . . , X , Y , Y , . . . , Y andn 1 2 n 1 2 n
R & " n W where W & W , K . Since the W ’s are incompara-n k&1 n, k n, k k n n, k

Ž . $ble discrete valuation domains, each R is a Prufer domain 18, Theo-¨n
%rem 11.11 . Moreover, for each n, the maximal ideals of R are then

principal ideals Y R , Y R , . . . , Y R . Since R ) R , the union $ R1 n 2 n n n n n+1 n
$ % Ž k&n .is a Prufer domain 18, Proposition 22.6 . As R & " W , K ,¨ n k&1 k n

R & $ R so R is a Prufer domain. Furthermore, the principal ideals Y R¨n n
are maximal ideals of R.

For each pair of integers k / n, let V & V , K and let P% be then, k k n n, k
maximal ideal of V . Then V & $& V with maximal ideal P% &n, k k n&k n, k k
$& P% . Let P & P% , R. Then for k / n, P ) Y R. On the othern&k n, k k k k n
hand, for k # n, P + Y R & R. Thus P & $ P is an unbranched maxi-k n k
mal ideal of R and P is the only other maximal ideal besides the principal

Ž .ones Y R. Also R & $V & "V & V. Thus R does not satisfy ! .n P n, n n
The non-zero non-maximal primes of R are the P ’s and for each k, Pk k

" 4is the only prime minimal over the set X , X , . . . , X . Since the P ’s are1 2 k k
linearly ordered and each branched prime is the radical of a finitely
generated ideal, R is a TP domain.

We end with a number of questions concerning RTP domains.

Ž .1 Is the trace property for primary ideals equivalent to the radical
trace property?

Ž . Ž .2 If I is an ideal of an RTP domain, is I : I an RTP domain?
Ž . Ž .3 If the answer to 2 is ‘‘No,’’ is the answer ‘‘Yes’’ if we assume that

#1 Ž .I & I : I or that I is prime?
Ž .4 If I is a trace ideal of an RTP domain R, does the pair R and

Ž .I : I satisfy INC?
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