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Factoring ideals in almost Dedekind domains

By K. Alan Loper at Newark and Thomas G. Lucas at Charlotte

Abstract. A well-known property of Dedekind domains is that each nonzero ideal
can be uniquely factored as a finite product of powers of the maximal ideals that contain
the ideal. One of the questions to be addressed in this paper is to what extent this property
can be extended to the finitely generated ideals of an almost Dedekind domain. A related
question involves a way to measure how far a given almost Dedekind domain is from being
a Dedekind domain.

1. Introduction

There are two di¤erent but related notions which inspire our work in this paper. Both
are derived from elementary properties of Dedekind domains. The first involves factor-
ability of finitely generated ideals and the second is based on work of R. Gilmer [1]. We
wish to consider both in relation to almost Dedekind domains—those one-dimensional
domains with the property that each maximal ideal is locally principal. An alternate char-
acterization of almost Dedekind domains is that a domain D is almost Dedekind if DM is a
discrete rank one valuation domain for each maximal ideal M.

Recall that in a Dedekind domain, each nonzero ideal can be factored uniquely as a
finite product of positive powers of maximal ideals. What we would like to determine is
how close can an almost Dedekind domain come to satisfying a similar factorization prop-
erty. Our exact question is the following: Given an almost Dedekind domain D with max-
imal ideals MaxðDÞ ¼ fMag, when can we find a family of finitely generated ideals fJag
such that each finitely generated nonzero ideal of D can be factored as a finite product of
powers of ideals from the family fJag with the family indexed over the set of maximal
ideals fMag in such a way that JaDMa

¼ MaDMa
? We refer to such a family of ideals as a

factoring family for D. Two things we most likely will have to give up in the general case
are uniqueness of factorizations and the ability to restrict to using only positive powers
(regarding the latter, see the remark following the proof of Theorem 2.5 and Example 3.2).
We will find that in some cases, each nonzero finitely generated fractional ideal may factor
uniquely over the underlying set of some factoring family, but not factor uniquely with
respect to the family. Specifically, we might have a factoring family fJag with family
members Jb and Jg such that Mb 3Mg (equivalently b3 g) but Jb ¼ Jg. This would mean
that while I ¼ Jb ¼ Jg may factor uniquely over the underlying set of the family (as itself ),



it does not factor uniquely over the family. In Theorem 2.10, we give a general scheme for
constructing almost Dedekind domains that will have factoring families for which factori-
zation will be unique over the underlying set of ideals making up the family. The technique
applies to all of the examples we construct in Section 3. At this time we do not know of an
example of an almost Dedekind domain possessing a factoring family such that there is no
factoring family for the domain for which factorizations are unique over the underlying set
of factors. However, we give an example where uniqueness does fail for a particular family
(Example 3.2).

In a Dedekind domain, each nonzero ideal is invertible. The same happens for each
nonzero finitely generated ideal in an almost Dedekind domain. Domains for which each
nonzero finitely generated ideal is invertible are referred to as Prüfer domains ([2], Theorem
22.1).

In a paper that appeared in 1966, Gilmer introduced the notion of aK-domain (read
as ‘‘sharp domain’’) as an integral domain D such that for each pair of subsets M and N of
MaxðDÞ, having

T
Ma AM

DMa
¼

T
Mb AN

DMb
implies M ¼ N ([1]). If D is a Prüfer domain,

then it is aK-domain if and only if each maximal ideal contains a finitely generated ideal
which is contained in no other maximal ideal ([1], Theorem 2). Thus each Dedekind
domain is aK-domain. Moreover, an almost Dedekind domain is aK-domain if and only
if it is a Dedekind domain ([1], Theorem 3). On the other hand, an almost Dedekind
domain that is not Dedekind does have overrings which areK-domains. A trivial example
of such an overring is simply the localization of the domain in question at one of its maxi-
mal ideals. In some sense what we will be studying is how far a particular almost Dedekind
domain is from an overring that is a Dedekind domain.

With the exception of Theorem 2.6 and Corollary 2.7, D will always represent a one-
dimensional Prüfer domain, frequently one which is an almost Dedekind domain. The
definitions which follow are restricted to one-dimensional Prüfer domains. First, we say
that a maximal ideal M of a one-dimensional Prüfer domain D is a sharp prime if it con-
tains a finitely generated ideal which is contained in no other maximal ideal. Since D is one-
dimensional, this is equivalent to saying that M is the radical of a finitely generated ideal.
Obviously we can split MaxðDÞ into two disjoint sets, MKðDÞ containing the sharp primes
and MyðDÞ containing the maximal ideals that are not sharp primes, for lack of a better
name we shall refer to these ideals as dull primes.

Mixing Gilmer’s terminology with ours we can say that a one-dimensional Prüfer
domain D is a K-domain if (and only if ) MKðDÞ ¼ MaxðDÞ. If D fits the other extreme,
namely MyðDÞ ¼ MaxðDÞ, we will say that D is a dull domain. The second concern of this
paper involves constructing almost Dedekind domains that fit between these two extremes.

For a one-dimensional Prüfer domain D we recursively define domains D1 ¼ D,
D2 ¼

T
Mb AMyðD1Þ

ðD1ÞMb
and Dn ¼

T
Mb AMyðDn%1Þ

ðDn%1ÞMb
, with Dn ¼ K, the quotient field of

D, if MyðDn%1Þ is empty. In the event Dnþ1 ¼ K and Dn is not K, we say that D has sharp
degree n. On the other hand we say that D has dull degree n if Dnþ1 ¼ Dn 3K and
Dn%1 3Dn (or n ¼ 1). In section 3, we will give a fairly elementary way to construct almost
Dedekind domains with any prescribed finite dull or sharp degree (the latter for n greater
than one). The scheme we employ will also give rise to defining various infinite sharp and
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dull degrees. Note that aK-domain is the same as a domain with sharp degree 1 and a dull
domain is the same as a domain with dull degree 1.

As a convenience, we also define sharp degrees for ideals of D, both integral and
fractional. For a fractional ideal I of D, we say that I has sharp degree n if IDn 3Dn but
IDnþ1 ¼ Dnþ1. It turns out that the primes of D which generate sharp primes of Dn are
exactly the prime ideals of sharp degree n. For any ideal I , of finite sharp degree or not,
we let MðIÞ denote the set of maximal ideals that contain I and let DI denote the ringT
M AMðIÞ

DM . A property we shall use throughout the paper is that the only primes of D that

survive in DI are those which contain I . The proof is quite elementary, for suppose P is
a maximal ideal that does not contain I . Then there is an element d A P such that
dDþ I ¼ D. It follows that d is not contained in any ideal M from the set MðIÞ. Hence
1=d A DM for each M A MðIÞ, which in turn implies that 1=d is in DI .

For fractional ideals that are not integral, we will mainly be concerned with those
that are finitely generated. In Corollary 2.4, we show that if each prime ideal has finite
sharp degree, then not only does there exist a factoring family for D, but there is one for
which each finitely generated fractional ideal factors uniquely and the factoring family is
actually a set with each member corresponding to a unique maximal ideal of D. Thus we
are led to declaring that a factoring family fJag is a factoring set if no member appears
more than once.

Throughout the paper we useH to denote proper containment.

2. Factoring finitely generated ideals

We start with a lemma which characterizes primes of finite sharp degree in one-
dimensional Prüfer domains.

Lemma 2.1. Let D be a one-dimensional Prüfer domain. Then:

(a) If M is a maximal ideal of Dn, then there is a maximal ideal P of D such that
P ¼ MDn and PDn%1 is a dull prime of Dn%1.

(b) If P A MaxðDÞ survives in Dn, then (i) PDn%1 is a dull prime of Dn%1, and (ii) PDn

is in MKðDnÞ if and only if there is a finitely generated ideal I of D which is contained in P
and no other maximal ideal which survives in Dn.

Proof. Let M be a maximal ideal of Dn. Since D is a one-dimensional Prüfer do-
main, each prime of Dn is extended from a prime of D ([1], Theorem 1). Thus M ¼ PDn for
some P A MaxðDÞ. To show that PDn%1 is a dull prime of Dn%1, consider what happens to a
sharp prime Q of Dn%1. Since Dn%1 is a Prüfer domain ([2], Theorem 26.1), Q is the radical
of a finitely generated ideal J ([1], Theorem 2). Thus J%1 is contained in each localization of
Dn%1 at a dull prime. Hence J%1 is contained in Dn. But then JDn ¼ JJ%1Dn ¼ Dn and
therefore QDn ¼ Dn. Hence PDn%1 must be a dull prime of Dn%1.

To prove (b), suppose P A MaxðDÞ survives in Dn. Then by the above, PDn%1 must be
a dull prime of Dn%1. Obviously, if there is a finitely generated ideal I of D such that PDn is
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the only maximal ideal of Dn that contains IDn, then PDn ¼
ffiffiffiffiffiffiffiffi
IDn

p
is a sharp prime of Dn.

Conversely, if PDn is a sharp prime of Dn, then there is a finitely generated ideal Jn of Dn

for which PDn ¼
ffiffiffiffiffi
Jn

p
. Since PDn is generated by the elements of P, there is a finitely gen-

erated ideal I of D whose extension to Dn is contained in PDn and contains Jn. r

Note that if PDn is a sharp prime of Dn, any ideal I that satisfies the conditions in
Lemma 2.1 must be contained in infinitely many primes which do not survive in Dn, for
otherwise P will be a sharp prime of Dk for some k < n and thus not survive in Dn.

It is known that if a finitely generated ideal of an almost Dedekind domain is con-
tained in only finitely many maximal ideals, then the ideal is a product of positive powers
of these maximal ideals ([2], Theorem 37.5). The converse is trivial. In our next lemma we
show that the finitely generated fractional ideals of sharp degree one in an almost Dedekind
domain are those that can be factored into finite products of nonzero powers of maximal
ideals.

Lemma 2.2 (cf. [2], Theorem 37.5). Let D be an almost Dedekind domain and let I
be a finitely generated fractional ideal of D. Then I is a finite product of nonzero powers of
maximal ideals if and only if I has sharp degree one.

Proof. First, assume I ¼ Mr1
1 Mr2

2 ! ! !Mrn
n with each ri a nonzero integer and no

Mri
i ¼ D. Since I is finitely generated, it is invertible. Thus each Mi is invertible and

therefore a sharp prime. As MiD2 ¼ D2 for each i. The same happens for M%1
i . Thus

ID2 ¼ D2 and we have that I has sharp degree one.

To complete the proof assume I has sharp degree one. Then ID2 ¼ D2. Partion
MaxðDÞ into setsM0ðIÞ ¼ fP AMaxðDÞ j IDP ¼DPg,MþðIÞ ¼ fP AMaxðDÞ j IDPLPDPg
and M%ðIÞ ¼ fP A MaxðDÞ j I%1DPLPDPg (note that one or two of these may be empty).
Since each dull prime survives inD2 and ID2 ¼D2, each dull prime must be in the setM0ðIÞ.
Therefore Dþ

I ¼
T

P AMþðIÞ
DP and D%

I ¼
T

P AM%ðIÞ
DP are both Dedekind domains with non-

zero Jacobson radicals. Thus each is semilocal which means that both MþðIÞ and M%ðIÞ
are finite sets. Note that M%ðIÞ is empty if I is an integral ideal of D, but both may be non-
empty if I is fractional. Let MþðIÞ ¼ fM1;M2; . . . ;Mng and M%ðIÞ ¼ fN1;N2; . . . ;Nmg.
It follows that IDþ

I ¼ Mr1
1 ! ! !Mrn

n Dþ
I and I%1D%

I ¼ Ns1
1 ! ! !Nsm

m D%
I for some positive in-

tegers ri and sj. We also have ID%
I ¼ N%s1

1 ! ! !N%sm
m D%

I . By checking locally we see that
I ¼ Mr1

1 ! ! !Mrn
n N%s1

1 ! ! !N%sm
m . This representation is unique since each Mi and Nj is a

maximal ideal. r

If D is an almost Dedekind domain and P is a maximal ideal of sharp degree n, then
not only is there a finitely generated ideal I of D such that no other maximal ideal of Dn

contains I , but we may assume IDP ¼ PDP since PDP is principal. Thus in Dn, we have
IDn ¼ PDn.

As a consequence, each prime of Dn is extended from a prime of D ([1],
Theorem 1). Also if J is a finitely generated ideal whose radical is a maximal
ideal M, then J%1 is contained in DP for each prime P di¤erent from M. Hence
both J and M will blow up in D2. Thus MaxðD2Þ ¼ fPD2 jP A MyðDÞg. As long as
Dn 3Dnþ13K, MaxðDnþ1Þ ¼ fPDnþ1 jP A MyðDnÞg.
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Theorem 2.3. Let D be an almost Dedekind domain. For each positive integer k
and each prime Pa of sharp degree k, let Ja be a finitely generated ideal of D such that
JaDPa

¼ PaDPa
and Ja is contained in no other prime of Dk. If I is a finitely generated frac-

tional ideal of finite sharp degree, then I factors uniquely into a finite product of nonzero
powers of ideals from the family fJag. In particular, the members of the family fJag are dis-
tinct.

Proof. First note that if Pa is a sharp prime of D, then by checking locally we see
that the corresponding Ja is simply Pa itself. Moreover, by checking locally in Dk we see
that if Pa has sharp degree k, then JaDk ¼ PaDk. Let Pa and Pb be distinct maximal ideals
of D with Pa of finite sharp degree k. Then in Dk we have JaDk ¼ PaDk with PaDk a
maximal ideal of Dk. Thus the only way to have PbDk contain Ja is to have Pb blow up
in Dk. In such a case Pb would have sharp degree m < k. While it might be that
JaDPb

¼ PbDPb
, JaDm would be contained in PaDm so that JaDm cannot equal PbDm. Thus

Ja 3 Jb. It follows that if both Pa and Pb have finite sharp degree, then Ja 3 Jb. Moreover,
no nonzero powers can be equal and JaDn ¼ Dn for each n > k. We will take care of
uniqueness first. For this it su‰ces to show that there is no nontrivial factorization of D
since each of the Jas is invertible.

Assume D ¼
Q

J
em; i

m; i is a finite factorization of D over the set fJag with each Jm; i

having sharp degree m and em; i an integer, perhaps 0. Let n denote the highest sharp degree
of any ‘‘factor’’. Then in Dn, we have Dn ¼

Q
J
en; i
n; i since Jm; iDn ¼ Dn for m < n. As

Jn; iDn ¼ Pn; iDn is a maximal ideal of Dn, it must be that each en; i ¼ 0. Thus the factors J
en; i
n; i

are all superfluous. Continue the process to show all em; i are 0.

For existence of factorizations we use induction and Lemma 2.2.

By Lemma 2.2, if I has sharp degree one, then I is a product of nonzero powers of
finitely many sharp maximal ideals, say I ¼ Me1

1 Me2
2 ! ! !Men

n .

Now assume I has sharp degree two. Then ID2 is a finitely generated fractional ideal
of D2 whose sharp degree as an ideal of D2 is one. Thus by Lemma 2.2 there are finitely
many maximal ideals P1D2;P2D2; . . . ;PnD2 of D2 which locally contain either ID2 or
ðID2Þ%1. For each i, we have a finitely generated ideal Ji in the set fJag such that
JiD2 ¼ PiD2. Thus in D2 we can factor ID2 uniquely as Pe1

1 Pe2
2 ! ! !Pen

n D2 for some nonzero
integers e1; e2; . . . ; en. This factorization is the same as the factorization J e1

1 J e2
2 ! ! ! J en

n D2

since PiD2 ¼ JiD2 for each i. Let J ¼ J e1
1 J e2

2 ! ! ! J en
n . Then IðD : JÞD2 ¼ D2. As both I and

ðD : JÞ are finitely generated fractional ideals of D, IðD : JÞ is a finitely generated frac-
tional ideal of D. It has sharp degree one since IðD : JÞD2 ¼ D2. Thus by Lemma 2.2 there
are finitely many maximal ideals M1;M2; . . . ;Mm such that IðD : JÞ ¼ Mr1

1 Mr2
2 ! ! !Mrm

m for
some nonzero integers ri. Thus I ¼ IðD : JÞJ ¼ Mr1

1 Mr2
2 ! ! !Mrm

m J e1
1 J e2

2 ! ! ! J en
n .

Now assume a factorization exists for each finitely generated fractional ideal of
sharp degree k or less (in every almost Dedekind domain). Let I be a finitely generated
fractional ideal of D which has sharp degree k þ 1. Then ID2 is a finitely generated frac-
tional ideal of D2 which has sharp degree k. Thus ID2 factors into a finite product, say
ID2 ¼ J e1

1 J e2
2 ! ! ! J em

m D2. To complete the proof simply repeat the steps used above for the
case of an ideal of sharp degree 2. Namely, set J ¼ J e1

1 ! ! ! J em
m and factor the fractional

ideal IðD : JÞ over the sharp primes of D. This establishes existence of a factorization. r
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Corollary 2.4. Let D be an almost Dedekind domain such that each prime ideal has
finite sharp degree. Then there is a factoring set fJag such that each finitely generated frac-
tional ideal factors uniquely over fJag. In particular, such a factoring set exists for each
almost Dedekind domain of finite sharp degree.

One special case we wish to consider is the one of an almost Dedekind domain with
exactly one dull prime.

Theorem 2.5. Let D be a one-dimensional Prüfer domain. Then D is an almost
Dedekind domain with at most one noninvertible maximal ideal if and only if there is an
element d A D such that for each finitely generated nonzero ideal I there is a finite set of
maximal ideals fM1;M2; . . . ;Mmg and integers e1; e2; . . . ; em and n with nf 0 such that
I ¼ Me1

1 Me2
2 ! ! !Mem

m ðdÞn. Moreover, if either (hence both) holds and D is not Dedekind, then
the element d must be such that dDP ¼ PDP for the noninvertible maximal ideal P and the set
fdDgWMKðDÞ is a factoring set for D such that each finitely generated fractional ideal
factors uniquely.

Proof. For D Dedekind, we simply set d ¼ 1. Thus we may assume D is not Dede-
kind.

Assume D is an almost Dedekind domain with one noninvertible maximal ideal P.
Then D2 ¼ DP and therefore there is an element d A D such PD2 ¼ dD2 since DP is a dis-
crete rank one valuation domain. Thus by Theorem 2.3, the set fdDgWMKðDÞ is a fac-
toring set for D such that each finitely generated fractional ideal factors uniquely as a finite
product of nonzero powers of members of this set.

For the converse, assume there is an element d A D such that each finitely generated
nonzero ideal can be written in the form Me1

1 Me2
2 ! ! !Mem

m ðdÞn where each Mi is a maximal
ideal, each ei is a nonzero integer and n is a non-negative integer. Let I be a finitely gen-
erated ideal of D and write I ¼ Me1

1 Me2
2 ! ! !Mem

m ðdÞn with no Me1
i ¼ D. Since D is a Prüfer

domain, I is invertible. Combining this with the assumption that Mei
i is not equal to D, we

have that each Mi is invertible.

As we are not assuming that D is almost Dedekind, we need to show that each sharp
prime is invertible. Let M A MaxðDÞ be a noninvertible prime ideal of D, such a prime
exists since we are assuming D is not Dedekind. Then no (nonzero) power of M can appear
as a nontrivial factor (i.e., not D) in a factorization of a finitely generated ideal. Hence d
must be contained in M and each finitely generated ideal contained in M must have a
positive power of ðdÞ in a factorization. It follows that MDM ¼ dDM and DM is a discrete
rank one valuation domain. Such a prime M cannot be sharp since to be sharp it would
have to contain a finitely generated ideal J that is contained in no other maximal ideal.
By checking locally, we would then find that M is the finitely generated (and therefore
invertible) ideal dDþ J. So all of the sharp primes are invertible and the dull ones are
locally principal. Hence D is an almost Dedekind domain.

We next show that D has at most one dull maximal ideal. By way of contradiction
assume P1 and P2 are distinct dull maximal ideals of D. Let b be an element of P1 that is not
in P2 and write ðbÞ ¼ Me1

1 Me2
2 ! ! !Mem

m ðdÞn with no Mei
i ¼ D. As above, each Mi must be

invertible. Thus neither P1 nor P2 appears in the factorization. Therefore n must be positive
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and d must be an element of P1. By repeating this argument for an element in P2 that is not
in P1 we find that d is also in P2. But then we have ðbÞDP2 ¼ ðdÞnDP2 LP2DP2 which is a
contradiction. Hence there must be exactly one dull maximal ideal and the rest is both
sharp and invertible. r

Remark. With regard to the situation in Theorem 2.5, let D be an almost Dedekind
domain with exactly one dull prime, P, and let J be a finitely generated ideal with the
property that JDP ¼ PDP. By Theorem 2.3, the set fJgWMKðDÞ forms a factoring family
for D where each finitely generated fractional ideal will factor uniquely. As J is not a
maximal ideal of D, there is an element a A PnJ. Consider the ideal I ¼ aDþ J. On the one
hand, I properly contains J, but on the other we have PDP ¼ JDP L IDP LPDP. Thus
ID2 ¼ JD2 and thus from the proof of Theorem 2.3, it must be that the factorization of I is
of the form JMe1

1 ! ! !Men
n with each ei negative since J is properly contained in I .

Also note that it is not possible to deduce that D is one-dimensional from the assump-
tion that there is a fixed element d in D such that each finitely generated ideal factors as in
Theorem 2.5. For example, let V be a two dimensional valuation domain with principal
maximal ideal M and height one prime Q for which QVQ is principal. Select an element
d A Q such that dVQ ¼ QVQ and let r A M be such that rV ¼ M. Then each nonzero non-
unit of V has the form ud nrm for some unit u and integers m and nf 0 with m > 0 when-
ever n ¼ 0. Thus each finitely generated ideal factors as MmðdÞn as desired.

The following result may be known but we have been unable to locate a reference.

Theorem 2.6. Let M be a height one maximal ideal of an integral domain D with
nonzero Jacobson radical. Then M is invertible if and only if it is principal.

Proof. Assume M is invertible and let d be a nonzero element in the Jacobson radi-
cal of D. Since M is invertible, MDM is principal. Let b A M be such that bDM ¼ MDM .
Since M is height one, there are elements r; s A DnM and a positive integer n, rd ¼ sbn.
Since d is in the Jacobson radical, s must be in each maximal ideal that does not contain b.
Since s is not in M, sbDM ¼ MDM with sb in the Jacobson radical.

Now consider the ideal sbM%1. This is a finitely generated ideal of D which is not
contained in M. But since sb is contained in the Jacobson radical, it is contained in every
other maximal ideal. Thus there is an element a A M such that aþ sbM%1 ¼ D. Since
sbM%1 is contained in every maximal ideal except M, a must be contained in M and
no other maximal ideal of D. If aDM ¼ MDM , we have ðaÞ ¼ M, otherwise we have
ðaþ sbÞ ¼ M. r

We have several corollaries.

Corollary 2.7. Let D be an integral domain with JðDÞ3 ð0Þ. If M is a height one
maximal ideal of D which is locally principal and the radical of a principal ideal, then M is
principal.

Proof. Let M be a height one maximal ideal of D which is locally principal and
the radical of the principal ideal ðaÞ. Let b A M be such that bDM ¼ MDM . By checking
locally we see that M ¼ ða; bÞ. As M is finitely generated and locally principal, it must be
invertible. Thus M is principal by Theorem 2.6. r
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Corollary 2.8. Let M be a maximal ideal of D, an almost Dedekind domain with
nonzero Jacobson radical. If M has finite sharp degree k, then MDk is principal. The converse
holds provided MDk is a proper ideal of Dk, otherwise M has sharp degree less than k.

Proof. Since D is a Prüfer domain, each overring, other than the quotient field, has
a nonzero Jacobson radical. In particular, the Jacobson radical of Dk is not zero as long as
Dk 3K. Thus if M A MaxðDÞ has finite sharp degree k, then MDk is finitely generated and
thus principal. r

Theorem 2.9. Let D be an almost Dedekind domain where each finitely generated
ideal has finite sharp degree. If JðDÞ3 ð0Þ, then D is Bezout.

Proof. By Corollary 2.8, each maximal ideal M of sharp degree k is a principal ideal
of Dk. Thus the ideals Ja of Lemma 2.2 can be assumed to be principal. The result fol-
lows. r

Next we give a general construction scheme for producing an almost Dedekind do-
main which will have a factoring family for finitely generated ideals. By carefully selecting
the members we can produce a family such that each nonzero finitely generated fractional
ideal will factor uniquely over the underlying set of allowable factors.

Theorem 2.10. Let R1 HR2 H ! ! ! be a chain of Dedekind domains which satisfy all of
the following:

(i) For i < j, each maximal ideal of Ri survives in Rj.

(ii) Each maximal ideal of Rj contracts to a maximal ideal of R1.

(iii) If M 0 is a maximal ideal of Rj and M ¼ M 0 XR1, then MRjM 0 ¼ M 0RjM 0 .

Let D ¼
S
Rn. Then:

(a) D is an almost Dedekind domain.

(b) For i < j, each maximal ideal of Ri is contained in only finitely many maximal
ideals of Rj. Moreover, if Mi is a maximal ideal of Ri and Mj;1;Mj;2; . . . ;Mj; r are the max-
imal ideals of Rj that contain Mi, then MiRj ¼

Q
Mj;k.

(c) For each finitely generated ideal I of D, there is a finitely generated ideal Ii of some
Ri such that I ¼ IiD.

(d) A maximal ideal M is a sharp prime of D if and only if M ¼ MnD for some
Mn ¼ MXRn.

(e) There is a family fJag that is a factoring family for D for which each nonzero
finitely generated fractional ideal can be factored uniquely over the underlying set of the
family.
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(f ) D is a Dedekind domain if and only if each maximal ideal of D1 is contained in only
finitely many maximal ideals of D.

Proof. For each n, we let Kn denote the quotient field of Rn.

Proof of (a). Let M be a maximal ideal of D and let Mi ¼ MXDi. Obviously, some
Mi is not zero. But then no Mi is zero. Let r=s A MDM with s A DnM. For some i, both r
and s are in Di. So r A Mi. But then there is an element b A M1 and an element t A DinMi

such that b=t ¼ r=s. It follows that MDM ¼ MiDM for each i. Since each Di is Dedekind,
MiDiMi

is principal. Thus MDM is principal and height one. Hence D is an almost Dede-
kind domain.

Proof of (b). The first statement is a simple consequence of the fact that each ideal
of a Dedekind domain is contained in only finitely many maximal ideals. For the second let
Mi be a maximal ideal of Ri and let Mj;1;Mj;2; . . . ;Mj; r be the maximal ideals of Rj that
contain Mi. Since the Mj;ks are maximal ideals of Rj, their intersection is the same as their
product. Thus MiRj is contained in

Q
Mj;k. Equality comes from our assumption that

MiRjMj; k ¼ Mj;kRjMj; k .

Proof of (c). Since the set fRig forms a chain, each finitely generated ideal of D can
be generated by some finite subset of some Ri.

Proof of (d). Since D is an almost Dedekind domain, a maximal ideal is sharp if and
only if it is finitely generated. Hence by (c), M is sharp if and only if some Rn contains a
generating set for M. As MXRn ¼ Mn is a maximal ideal of Rn, M ¼ MnD.

Proof of (e). For each maximal ideal M of D and each positive integer i, let
Mi ¼ MXRi. It is easy to see that M ¼

S
Mi. Hence the chain fMig is uniquely deter-

mined by M. Moreover, if N1 LN2 L ! ! ! is a chain with each Nk a maximal ideal of Rk,
then N ¼

S
Ni is a maximal ideal of D. We say that fMig is the chain determined by

M, and that N is the maximal ideal determined by the chain fNig. Each member Nj of
the chain fNig uniquely determines the members of the chain below it since we have
Ni ¼ Nj XRi for each i < j. Thus for each j, N is determined by the truncated chain
fNigyi¼ j.

Since each Rn is a Dedekind domain, the primes of any ring between Rn and its
quotient field, Kn, are all extended from primes of Rn. With the restrictions we have placed
on the maximal ideals, the quotient field of Rn properly contains the quotient field of Rn%1

with Rn%1 ¼ Rn XKn%1.

Let I be a fractional ideal of Rn%1. We will show that I ¼ IRn XKn%1. We at least
have I L IRn XKn%1. Since Rn%1 is a Dedekind domain, each of its fractional ideals is in-
vertible and therefore divisorial. Thus it su‰ces to show that each element of ðRn%1 : IÞ
multiplies IRn XKn%1 into Rn%1. Since both ðRn%1 : IÞ and IRnXKn%1 are contained in
Kn%1, the product is there as well. Now use the fact that both I and IRn XKn%1 will gener-
ate IRn together with the fact that each element of ðRn%1 : IÞ is in ðRn : IRnÞ to verify that
ðRn%1 : IÞðIRn XKn%1Þ is contained in Rn%1. Thus IRn XKn%1 ¼ I .
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For each n and each maximal ideal Mn of Rn, let CðMnÞ denote the set of maximal
ideals of Rnþ1 that contract toMn. The set CðMnÞ is finite since Rnþ1 is a Dedekind domain.
Now select a member Mnþ1 of CðMnÞ and then set FðMnÞ ¼ CðMnÞnfMnþ1g. We will refer
to Mnþ1 as a (or the) discarded prime sometimes including the phrase of ‘‘Rnþ1’’ for em-
phasis. We refer to the members of CðMnÞ as conjugates or conjugate factors of Mn. If
CðMnÞ is a singleton set, then MnRnþ1 is a maximal ideal of Rnþ1 and FðMnÞ will be the
empty set. Note that in this case we will refer to MnRnþ1 as a discarded prime even if Mn is
not a discarded prime of Rn. For nf 1, let FðRnÞ ¼

S
fFðMnÞ jMn A MaxðRnÞg, then set

FðDÞ ¼
S
FðRnÞ. Next, let GðDÞ ¼ fMD jM A MaxðR1ÞWFðDÞg. We will show that

each finitely generated ideal of D can be factored uniquely as a finite product of integer
powers of ideals from the set GðDÞ. Then we will show how to build a factoring family for
D using only the members of GðDÞ.

For each integer n, let GðRnÞ denote the set fPRn jP A MaxðR1Þ or P A FðRkÞ for
some k < ng. We use induction to show that each nonzero fractional ideal of Rn can be
factored uniquely as a finite product of nonzero integer powers of members of GðRnÞ. Since
IDXKn ¼ I for each fractional ideal I of Rn, each finitely generated fractional ideal of D
will factor uniquely over GðDÞ.

Let In be a nonzero fractional ideal of Rn. The result is trivial if n ¼ 1 since
GðR1Þ ¼ MaxðR1Þ, so we move on to the case n ¼ 2. Since R2 is a Dedekind domain, each
nonzero fractional ideal has sharp degree one. Thus Lemma 2.2 guarantees that the frac-
tional ideal I2 factors uniquely as a finite product of nonzero integer powers of maximal

ideals of R2, say I2 ¼
Qk

i¼1
Pri
i . If each Pi is in FðR1Þ, then we at least have existence of a

factorization. If not, then some Pi must be a discarded prime. In such a case there is a
maximal ideal Mi of R1 that has Pi as a factor in R2. If Pi is the only maximal ideal of R2

that is a factor of Mi, then we have MiR2 ¼ Pi, and we simply ‘‘substitute’’ MiR2 for Pi—
they are in fact equal. On the other hand, if Mi has more than one prime factor in R2, then
the other factors are in the set GðR2Þ as only one prime factor is discarded from a set of
conjugates. In this case, MiR2 ¼ PiQ1 ! ! !Qm where the Qis are the conjugates of Pi each

of which is in GðR2Þ. Thus Pi ¼ MiR2
Qm

s¼1
Q%1

s and therefore Pri
i can be replaced by the

product Mri
i R2

Qm

s¼1
Q%ri

s . By doing this for each of the discarded primes in the product
Q

Pri
i

we obtain a finite factorization of I2 using ideals in the set GðR2Þ.

Now assume that for each k < n, each finitely generated ideal of Rk can be factored
into a finite product of nonzero integer powers of members of the set GðRkÞ. Let In be a
nonzero fractional ideal of Rn. As above, Rn is a Dedekind domain so In factors uniquely
as finite product of nonzero powers of maximal ideals of Rn. If each Pi is in FðRn%1Þ, then
we have a factorization of In over GðRnÞ. If not, then some Pi must be a discarded prime.

Let Qi ¼ Pi XRn%1 and let
Qb

a¼1
Nsa

a Rn%1 be a factorization over the set GðRn%1Þ for Qi. If

QiRn ¼ Pi, we simply take the factorization of Qi in Rn%1 and extend each factor to Rn to

get a replacement for Pi. If QiRn3Pi, then QiRn ¼ Pi

Qs

c¼1
Mc where the Mcs are the con-

jugates to Pi. Thus each is in the set GðRnÞ. As in the case n ¼ 2, Pi ¼ QiRn

Qs

c¼1
M%1

c . Now
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replace QiRn by
Qb

a¼1
Nsa

a Rn to get Pi ¼
Qb

a¼1
Nsa

a Rn !
Qs

c¼1
M%1

c . Do this for each discarded prime

in the original factorization of In. This will yield a finite factorization of In over the set
GðRnÞ. Extending both In and each factor to D will yield a finite factorization of InD over
the set GðDÞ. As each finitely generated ideal of D is the extension of some ideal In in some
Rn, we have that each finitely generated ideal of D has a finite factorization over the set
GðDÞ.

Since R1 is a Dedekind domain, Lemma 2.2 implies each fractional ideal of R1 can
be factored uniquely over the set MaxðR1Þ. This forms the base for a proof by induction.
Assume that for each integer k < n, each fractional ideal of Rk can be factored uniquely
over the set GðRkÞ. Since each member of GðRkÞ extends to a member of GðRmÞ for each
m > k, our assumption is equivalent to simply saying that each fractional ideal of Rn%1

factors uniquely over GðRn%1Þ.

Let J be a nonzero fractional ideal of Rn and let J ¼
Qm

i¼1
Qri

i !
Qn

a¼1
ðPaRnÞsa with

the Qis in FðRn%1Þ and the Pas in GðRnÞnFðRn%1Þ. Suppose
Qk

c¼1
Ntc

c !
Qq

e¼1
ðMeRnÞue

with the Ncs in FðRn%1Þ and the Mes in GðRnÞnFðRn%1Þ is a potentially dif-
ferent factorization of J over GðRnÞ. By multiplying by inverses we may obtain
Qm

i¼1
Qri

i !
Qk

c¼1
N%tc

c ¼
Qq

e¼1
ðMeRnÞue !

Qn

a¼1
ðPaRnÞ%sa . Since the left hand side of the equation is

a product of integer powers of maximal ideals of Rn, its form is unique once common fac-
tors are combined. Moreover, the primes on the left hand side are all nontrivial factors of
primes from Rn%1 and for each Nc and Qi exactly one conjugate factor cannot appear in
this product. On the other hand, each Me and each Pa is a prime of some smaller Rk that
either factors nontrivially in Rn or generates a maximal ideal of Rn. Those that generate
maximal ideals of Rn can have no factor on the left hand side of the equation and those that
have a nontrivial factorization must be missing the corresponding discarded prime on the
left hand side. Thus the left hand side must reduce to Rn. This can occur only if the factors
in

Q
Qri

i are simply a rearrangement of the factors in
Q

Ntc
c . As each factor is an in-

vertible fractional ideal of Rn, we may cancel the products
Q

Qri
i and

Q
Ntc

c and obtainQ
ðPaRnÞsa ¼

Q
ðMeRnÞue . Since IRn XKn%1 ¼ I for each fractional ideal of Rn%1, we haveQ

ðPaRn%1Þsa ¼
Q
ðMeRn%1Þue . Now simply invoke the induction hypothesis to get unique-

ness of factorizations.

It remains to show that we can build a factoring family using only the members of the
set GðDÞ. This is actually relatively easy because given any ideal J in GðDÞ, there is some
unique integer n such that J ¼ PnD for some maximal ideal Pn of Rn that is not a discarded
prime of Rn. This places Pn in GðRnÞ. While there may be primes above Pn that are not
discarded primes, there is a unique chain of primes Pnþ1HPnþ2 H ! ! ! with each Pk a dis-
carded prime of Rk and Pk XRn ¼ Pn. Let Pa be the prime of D determined by this par-
ticular chain through Pn and set Ja ¼ J ¼ PnD. Since Pn ¼ PaXRn, JaDPa

¼ PaDPa
. Note

that this means there is a natural one-to-one correspondence between the set GðDÞ and the
subset of MaxðDÞ consisting of those maximal ideals Mb for which there is a largest integer
n such that Mb XRn is not a discarded prime. There may be a (or even infinitely many)
maximal ideal Ms of D for which there is no largest integer n such that MsXRn is not a
discarded prime. For such a prime, simply set Js equal to any member J ¼ MnD of GðDÞ
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such that MsXRn ¼ Mn. With this we have a factoring family for D such that the under-
lying set allows for unique factorization of nonzero finitely generated fractional ideals.

Proof of (f ). By the proof of (e), we see that if each maximal ideal of R1 is contained
in only finitely many maximal ideals of D, then each maximal ideal of D is finitely gen-
erated. Thus D is a Dedekind domain. Conversely, if D is a Dedekind domain, each max-
imal ideal of D is finitely generated. Thus for M A MaxðDÞ, there is a maximal ideal Mn

of some Dn such that M ¼ MnD. Assume M1 A MaxðR1Þ is contained in infinitely many
maximal ideals of D. Then there must be a chain of maximal ideals fMng with each Mn a
maximal ideal of Rn such that each Mn is contained in infinitely many maximal ideals of D.
Thus none of these ideals can generate a maximal ideal of D. Hence, M ¼

S
Mn must be a

maximal ideal of D which is not finitely generated, a contradiction of the Dedekind as-
sumption. Therefore, each maximal ideal of R1 is contained in only finitely many maximal
ideals of D. r

3. Constructing almost Dedekind domains

Let P0 ¼ fNg and let P1 ¼ fA1;1;A1;2; . . . ;A1;n1g be a partition of N into finitely
many disjoint nonempty sets with n1 > 1. Recursively for each positive integer m > 1,
let Pm ¼ fAm;1;Am;2; . . . ;Am;nmg be a refinement of the partition Pm%1 with nm > nm%1

but allowing some Am1;k to survive intact in Pm. Let Y ¼
Q
i AN

Xi. For each set Am;k,

let Ym;k ¼
Q

i AAm; k

Xi. For ease of notation, we let Y0;1 ¼ Y . Let Rm ¼
T
Vm;k where

Vm;k ¼ K ½Ym;1;Ym;2; . . . ;Ym;nm (ðYm; kÞ. Set D ¼
S
Rm. From the construction it is obvious

that R0HR1 HR2 ! ! ! is an ascending chain of semilocal Dedekind domains. Moreover,
each maximal ideal of Rm contracts to a maximal ideal of Rm%1. In particular, each con-
tracts to YK ½Y (ðY Þ in R0 ¼ K ½Y (ðY Þ. We say that a family of sets A ¼ fAm;kmg

y
m¼0 is a chain

through the series of partitions P ¼ fPmgym¼0 if for each m, Am;km MAmþ1;kmþ1 . Depending
on the choice of refinements Pm, there may be chains through P which are eventually
constant. As we will see, such a chain corresponds to a sharp prime of D.

Theorem 3.1. Let D be as above. Then:

(a) If P is a nonzero maximal ideal of D, then PXR0 ¼ YR0. Moreover, PDP ¼ YDP.

(b) D is almost Dedekind domain with nonzero Jacobson radical.

(c) Each finitely generated ideal of D is principal.

(d) There is a natural one-to-one correspondence between the set of maximal ideals of
D and the set of chains through the family of partitions P. Moreover, if M is a maximal ideal
of D, then the corresponding chain of sets A is such that Ym;kmDM ¼ MDM for each Am;km

in A.

(e) The set fYm;k j 0em; 1e kemkg contains the base set for a factoring family for
D. Moreover, the set can be selected in such a way that each nonzero finitely generated
fractional ideal will factor uniquely.
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(f ) A maximal ideal M of D is sharp if and only if the corresponding chain of sets A in
statement (d) stabilizes at some Am;k.

Proof. Statements (a), (b) and (c) follow from Theorem 2.10. In particular, (c) is a
result of Theorem 2.10(c) and the fact that each Di is a PID. Statement (d) follows from the
proof of Theorem 2.10(d) and the fact that each Ym;k generates a maximal ideal of Rm. The
statement in (e) follows from the proof of Theorem 2.10(e). Since each member of the fac-
toring family is principal, each finitely generated ideal of D must be principal. Statement (f )
is simply a combination of statement (d) and Theorem 2.10(d). r

This construction can be used to form almost Dedekind domains with various sharp
degrees. Note that the domain D will have finite sharp degree if and only if there is an
integer n such that Dn is semilocal.

We first show how to construct an almost Dedekind domain of sharp degree 2. This
domain satisfies the hypothesis of Theorem 2.5, so it gives an example of an almost Dede-
kind domain with a single noninvertible maximal ideal.

Example 3.2. For each mf 1, let Pm ¼ ff1g; f2g; . . . ; fmg; fk A N j k > mgg. Let D
be almost Dedekind domain determined by this chain of partitions of N. Then:

(a) D has exactly one maximal ideal M which is not sharp.

(b) D has sharp degree 2.

(c) D is a Bezout domain.

(d) MKðDÞ ¼ fXnD j nf 1g and the set fXnD j nf 1gW fYDg is a factoring set for
D such that each finitely generated ideal factors uniquely.

(e) There is a factoring family for D such that no nonzero finitely generated frac-
tional ideal has a unique factorization over the underlying set of ideals.

Proof. Let Yn ¼
Qy

k¼nþ1
Xk. The maximal ideals of Rn consist of the ideal YnRn and

the ideals of the form XkRn for 1e ke n. Thus for each integer nf 1, XnD is a maximal
ideal of D. Obviously each of these is a sharp prime of D. The only other maximal ideal of
D corresponds to the chain fYnRng. Thus D2 ¼ DM where M is the maximal ideal of D
determined by the chain fYnRng.

Since M is the only dull prime of D and YDM ¼ MDM we have YD2 ¼ MD2. By
Theorem 2.5, the set fYDgW fXnD j nf 1g is a factoring set for D such that each finitely
generated fractional ideal factors uniquely over this set.

Proof of (e). For each n, let Pn ¼ XnD and write n ¼ 4k % i where kf 1 and
0e ie 3. Build a factoring family for D as follows: (i) for M again use J0 ¼ YD, (ii) if
i ¼ 0, let Jn ¼ X 3

2k%1YD, (iii) if i ¼ 1, let Jn ¼ X 3
2kYD, (iv) if i ¼ 2, let Jn ¼ X 2

2k%1YD, and
(v) if i ¼ 3, let Jn ¼ X 2

2kYD. Since 3% 2 ¼ 1, XmD is the product of ðX 3
mYDÞðX 2

mYDÞ%1.
Hence the set fJngyn¼0 is a factoring family for D. But factorizations are not unique. For
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example, XmD can also be factored as ðX 2
mYDÞ2ðX 3

mYDÞ%1ðYDÞ%1. There are in fact infi-
nitely many di¤erent ways to factor each nonzero finitely generated fractional ideal of D.
By the construction of the family it is clear that each factorization of XmD must contain
nonzero powers of both X 2

mYD and X 3
mYD. On the other hand, YD is redundant, as it can

be factored as ðX 2
mYDÞ2ðX 3

mYDÞ%1. r

Next we construct an almost Dedekind domain for which each maximal ideal is dull
and where at least some finitely generated ideals will fail to factor uniquely over whatever
factoring family we might use—but not necessarily fail to factor uniquely over the under-
lying set of potential factors.

Example 3.3. For each positive integer n, let Pn ¼ fAn;1;An;2; . . . ;An;2ng where
An;k ¼ fm2n þ k jm A Z;mf 0g for each integer 1e ke 2n.

(a) D is an almost Dedekind domain which is dull.

(b) There exists a factoring family fJag such that each nonzero finitely generated
ideal factors uniquely over the underlying set of ideals making up the family.

(c) Given any factoring family fJag for D, there exists a nonzero finitely generated
ideal I which does not factor uniquely over the family.

Proof. As no chain of sets through P stabilizes, D has no sharp primes. Hence D is
a dull domain. By the proof of Theorem 2.10(e) (or Theorem 3.1(e)), some subset of fYm;kg
contains a set such that (i) each nonzero finitely generated fractional ideal factors uniquely,
and (ii) this set is the underlying set for a factoring family for D. The nonuniqueness is
simply a consequence of the fact that D has only countably many nonzero finitely gen-
erated fractional ideals but an uncountable number of maximal ideals. Thus for each fac-
toring family, at least two members are the same ideal of D. r

It is actually rather easy to modify the construction in Example 3.3 to obtain an
almost Dedekind domain of dull degree two. One quite trivial way is to simply replace each
set Ar;1, with rf 1, by the sets f1g and fm2r þ 1 jm A Ng. This will yield exactly one sharp
prime, with the rest dull, and therefore destined to stay that way in D2. For a more elabo-
rate example with infinitely many sharp primes, we modify the Prs a bit more.

Example 3.4. Start with the partitions Pn of Example 3.3. Then for each n
and each 0e re n, split each set An;2 r into the singleton set f2rg and the set
A 0

n;2 r ¼ fm2n þ 2r jm A Ng. Then D is an almost Dedekind domain with infinitely many
sharp primes and dull degree 2.

Proof. Obviously each singleton set f2rg corresponds to a sharp primeMrD ¼ X2 rD.
Each of these primes blows up in D2, the e¤ect is the same as beginning the construction by
partitioning the set Nnf2r j rf 0g as in Example 3.3. Thus D2 is a dull domain. r

Before we construct almost Dedekind domains of larger sharp and dull degrees,
we add a little useful terminology. Given a set Am;k, we consider the family of sets
fAn; j jAn; j LAm;k; nfmg and call this the branch of the partition from Am;k. Such a
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branch is said to have sharp degree p, if each maximal ideal which has Am;k in its corre-
sponding family of sets has sharp degree less than or equal to p and at least one such
maximal ideal has sharp degree p. On the other hand, a branch is said to have dull degree
p, if there is a maximal ideal which has Am;k in its corresponding family of sets that does
not have finite sharp degree, and each maximal ideal of finite sharp degree which has Am;k

in its defining family of sets, has sharp degree less than or equal to p% 1, with at least one
such maximal ideal having sharp degree p% 1.

To build almost Dedekind domains of prescribed sharp and dull degrees, we need
a systematic way to build branches of the various sharp and dull degrees. We start with
branches of sharp degree two. Essentially these are built not di¤erently than the entire
partition used in Example 3.2. Let fPmg be a series of refinements. For ease of notation
assume that for each pair of integers m < n, the set Am;1 is infinite and Am;1 contains An;1.
Fix m and order the elements of Am;1 as a1 < a2 < a3 < ! ! ! : Then, as in Example 3.2, for
each integer n > m, let A 0

n;1 ¼ fa1g, A 0
n;2 ¼ fa2g; . . . ;A 0

n;n%m ¼ fan%mg and let A 0
n;n%mþ1 be

the rest of Am;1. In each Pn, replace the sets which contain Am;1 by the A 0
n; j sets and leave

the rest of Pn as it is. Then there is exactly one maximal ideal M whose corresponding
chain contains Am;1 and is not sharp, the one associated with the sets A 0

n;n%mþ1. All other
maximal ideals associated with Am;1 have chains which stabilize at some singleton set farg.
We refer to this technique as building a standard branch of sharp degree two. In our next
example we utilize this basic construction to build an almost Dedekind domain of sharp
degree 3. The construction of the partitions is more complicated, so we will give the details
of the construction in the proof rather than the statement of what we are going to build.

Example 3.5. There is a series of partitions P ¼ fPmgym¼0 such that the resulting
almost Dedekind domain D has a unique maximal ideal M with sharp degree 3, so
D3 ¼ DM and D has sharp degree 3.

Proof. Let P1 ¼ fE;Og where E denotes the positive even integers and O denotes
the positive odd integers. From O, build the standard branch of sharp degree two. But
for E we proceed a little di¤erently. First split E into the sets E4;0 ¼ f4m jmf 1g and
E4;2 ¼ f4mþ 2 jmf 0g. From E4;2 build the standard branch of sharp degree two but
split E4;0 into sets E8;0 ¼ f8m jmf 1g and E8;4 ¼ f8mþ 4 jmf 0g. Then, as with E4;2,
build the standard branch of sharp degree two from E8;4, and, as with E4;0, split E8;0 into
sets E16;0 ¼ f16m jmf 1g and E16;8 ¼ f16mþ 8 jmf 0g. Continue this scheme for each
power of 2. Let D be the resulting almost Dedekind domain and let M be the maximal
ideal corresponding to the chain fE2n;0g.

We will show that there is one prime of sharp degree two associated with O and that
each set E2n;2n%1 is associated to exactly one prime of sharp degree two.

The only sharp primes of D are those associated with some singleton set fag. For each

positive integer n, there is exactly one prime of sharp degree two that contains
Qy

r¼0
X2nrþ2n%1 ,

the one associated with the chain fBm;ngym¼1 where Bm;n ¼ f2nrþ 2n%1 j rfmg. On the
other hand the chain associated with M consists of the sets of the form f2nr j nf 0; rf 1g,
so N, E, E4;0, E8;0, etc. For each n, there are infinitely many primes of sharp degree two
which are associated with E2n;0. Hence M cannot have sharp degree two. As it is the only
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dull prime which does not have sharp degree two, it must have sharp degree three. Thus D
has sharp degree three and D3 ¼ DM . r

Theorem 3.6. For each positive integer kf 2, there is a series of refinements fPmg of
P0 ¼ fNg such that the resulting domain D is an almost Dedekind domain of sharp degree k.

Proof. The proof is by induction on k. Assume the result holds for k. The parti-
tioning scheme is somewhat a combination of those used in Examples 3.3 and 3.5.
As in Example 3.3, we let P1 ¼ fO;Eg and P2 ¼ fA2;1;A2;2;A2;3;A2;4g with each
A2; r ¼ fm22 þ r jmf 0g. The subsequent partitions will be di¤erent. Specifically, from
A2;2 and A2;3 build branches of sharp degree k. On the other hand we split A2;1 into A3;1

and A3;5 and split A2;4 into A3;4 and A3;8 as in the third stage of the process in Example
3.3. Now continue the pattern of splitting the sets An;2n and An;1 as in Example 3.3, but
split the sets An;2n%1 and An;2n%1þ1 into branches of sharp degree k. Each branch of the
infinitely many branches of sharp degree k, corresponds to maximal ideals of sharp degree
k. But the prime associated with the chain fAn;2ng will not have sharp degree k since each
of the sets An;2n is in infinitely many chains associated with primes of sharp degree k. The
same is true for the prime associated with the chain fAn;1g. As these are the only chains
which do not lead to primes of sharp degree less than or equal to k, each has sharp degree
k þ 1 and therefore D is an almost Dedekind domain of sharp degree k þ 1. r

Things are only a slight bit more complicated in building an almost Dedekind domain
with arbitrary finite dull degree. The basic underlying notion is to split sets into ‘‘thirds’’
rather than ‘‘halves’’. Unlike in the constructions above, it is convenient to allow infinite
sets to stabilize in the series of refinements. We start with an example illustrating how to
use thirds to build an almost Dedekind domain of dull degree two with infinitely many
sharp primes. The ‘‘convenience’’ is that our construction parallels the ‘‘excluded middle’’
construction of a Cantor set. This makes it rather easy to increase the dull degree.

Example 3.7. For each pair of integers nf 1 and 1e re 3n, let

An; r ¼ fm3n þ r jmf 0g

and let r ¼ rmrm%1 ! ! ! r1 be the trinary expansion of r. For each integer nf 1, let
Pn ¼ fAn; r j no ri is a 2gW fAk; s j 1e ke n is the smallest integer such that sk ¼ 2g. The
resulting domain D has dull degree two with infinitely many sharp primes.

Proof. We start with an explicit construction for the first few Pns. First
P1 ¼ fA1;1;A1;2;A1;3g. Then for P2, we leave the set A1;2 as is but split A1;1 into A2;1, A2;4

and A2;7, and split A1;3 into A2;3, A2;6 and A2;9. The set A1;2 will appear in each Pn from
here on as will the sets A2;4 and A2;6. On the other hand, we split A2;1 into A3;1, A3;10, and
A3;19, A2;3 into A3;3, A3;12 and A3;21, A2;4 into A3;4, A3;13 and A3;22, and A2;9 into A3;9,
A3;18 and A3;27. In P4, we simply keep each ‘‘middle third’’ as it is and split each pair of
outer thirds based on the remainders on division by 34. Continue this process to build the
partitions Pn. As each middle third set is stable once it appears in some Pn, each leads to a
sharp prime of D. On the other hand, if the chain of sets corresponding with M contains no
middle third set, then each set in the chain is associated with many infinitely many maximal
ideals, including infinitely many which are not associated with a middle third set. Thus D
has dull degree 2 with infinitely many sharp primes. r
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In the proof for the next theorem, we show how the construction in the previous ex-
ample can be used to construct an almost Dedekind domain of arbitrary (finite) dull degree
kf 2.

Theorem 3.8. For each integer kf 1, there exists an almost Dedekind domain of dull
degree k.

Proof. Examples 3.3 and 3.4 provide almost Dedekind domains of dull degree one
and two, respectively. As in Theorem 3.6, we modify a previous construction by taking
out sets which have stabilized and replacing them with branches of the appropriate sharp
degree. Our construction is based on that in Example 3.7.

Fix kf 3. The outer third sets are left as they are in Example 3.7, but each middle
third set is replaced by a branch of sharp degree k % 1. Each of the new chains will lead to
a maximal ideal of sharp degree k % 1 or less, with infinitely many of sharp degree k % 1.
This is the maximal sharp degree of any maximal ideal of D. Each prime resulting from a
chain of outer third sets remains dull in Dk. Thus Dk is a dull domain, with Dk%1 a proper
subring. Hence D has dull degree k. r

Theorem 3.9. There exists an almost Dedekind domain D such that Dn is a proper
subring of Dnþ1 for each positive integer n. Moreover, the ring Dy ¼

S
Dn may be a sharp

domain, a dull domain or have some other sharp or dull degree.

Proof. We start with constructing a domain D such that Dy has sharp degree one
with Dn 3Dnþ1 for each n. Start with the basic Odd/Even partitioning scheme used to
construct branches of sharp degree k, but instead of changing each branch to one of sharp
degree k % 1, allow each new branch to have larger and larger sharp degree. By doing
so, once we hit a set high enough up in the branch of sharp degree n, we find a single prime
of sharp degree n and all others with smaller sharp degree. But now, the chain corre-
sponding to the powers of 2 sets will not lead to a prime of finite sharp degree. How-
ever, once we take the union of the Dns, we will obtain a domain of sharp degree one as
the only prime which does not have finite sharp degree is the one corresponding to the
chain fEn;2ng.

We use a similar scheme to build a domain D such that Dy is a dull domain with
primes of each finite sharp degree. Start with the basic scheme used in the proof of Theo-
rem 3.8, but now instead of replacing each middle third set with a branch of the same sharp
degree, replace them with branches of larger and larger sharp degree. We may leave the
first middle third set, A1;2, alone. Then replace A2;4 and A2;6 by branches of sharp degree
two. Continue by replacing each middle third set Ak; r by a branch of sharp degree k. The
result will be that each branch through a middle third set leads only to primes of finite
sharp degree, but there is no uniform bound on the degree that holds for all branches
through all middle third sets. As in the proof of Theorem 3.8, the primes whose chains
involve only outer third sets will remain dull throughout each Dn and remain dull in Dy.
Thus Dy is a dull domain.

For sharp and dull degree two for Dy, replace branches of finite sharp degree with
ones which mimic the construction of a Dy with sharp degree one. Continue this fractal
like approach to get larger and larger sharp and dull degrees for Dy. r
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