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The Prime Spaces as Spectral Spaces (*). 

MARCO FONTANA - FRANCESCO PAPPALARDI 

1.  - I n t r o d u c t i o n .  

The prime spectrum of a general commutative unitary ring, endowed with the 
Zariski topology, is a well established tool in algebraic geometry. In the case of inte- 
gral domains, an older topological tool introduced by O. ZARISKI, namely the abstract 
Riemann surface (whose underlying set is the collection of all valuation domains of 
some field containing the given integral domain, cf. [Z-S, p. 113]), is also available, 
but seems to have fallen into disuse. 

The important role of valuation domains and the increasing needs of commutative 
ring theory have motivated several researchers to consider possible extensions of the 
concept of ~,valuatiom~, looking at its multiform aspects (cf. for instance [S], [M], [J], 
[Co], [Grl], [Gr2], [B], [Fr], [H] and [H-V]). In particular P. SAMUEL[S] and, suc- 
cessively, I. CONNELL [Co] have introduced similar extensions of the notation of 
,~place,~ in a non-integral context, which have led to the construction of a new topolog- 
ical space (denoted Gam by Connell; the definition is given later), extending at the 
same time the abstract Riemann surface and the prime spectrum. 

The purpose of this paper is twofold: (a) to pursue the topological study of the 
space Gam, initiated by Connell, establishing a very close connection with Hochster's 
theory of spectral spaces (cf. [Ho]); (b) to apply the theory of Gam spaces for a better  
understanding of Gilmer's D + m constructions (cf. [Gi 1, Appendix 2]). 

Before stating the main theorems of this paper (cf. the following Theorems 2.1, 
2.2 and 2.5), we need to recall several known results from the already quoted papers 
by P. SAMUEL, I. CONNELL and M. HOCHSTER. 

The following three properties were introduced by P. SAMUEL (IS]; see also [B, 
ch. 6, w 1. Ex. 6-8, pp. 169-170]) in order to extend the notion of valuation to the possi- 
bly non-integral domain case. 

Let  A be a subring of a ring (possibly not a domain) B. 

(*) Entrata in Redazione il 30 giugno 1989. 
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(PI) There exist p eSpec(A) such that for every pair (C, q) with A ~ C c B  
and q e Spec (C) then q n A r p. 

(P2) The complement S := B \ A  is a multiplicatively closed subset of B. 

(P3) For every dominated polynomialf(T1,.. . ,  Tr) e A[T1,..., Tr ], r I> 1 (cf. IS, 
p. 123]), and for every family of r elements { ~ I , . . . , ~ r } r  then 

f(tl,...,~r)=/:O. 
We say that A is a (P~)-ring in B if the property (P~) is satisfied for the pair A c B, 

(1~<i<3). 
Samuel has shown that: 

(P1) ~ (Ps) ~ (P2) 

and that the converse of these implications does not hold in general. Moreover, if 
B = K is a field, then for the ring A the following equivalences hold: 

(P1)-ring r (P2)-ring ~ (P3)-ring <~ valuation domain. 

It is also known (see [M] and [Grl] or also [Hu, Th. 5.1 and Th. 5.5]) that: 

A is (P1) in B r is a valuation ring in B; 

A is (P3) in B <:>A is a paravaluation ring in B; 

where A is called a paravaluation (resp., valuation) ring in B if there exists a map 
(resp., a surjective map) ~:B---~ G w {~} from B to a totally ordered abelian group G 
extended with ~, satisfying the classical properties: 

(V1) a(xy) = ~(x) + a(y), Vx, y e B; 

(V2) t,(x+y) ~>min(~(x), ~(y)), Vx,yeB; 

(V3) ~(1)=0 and ~(0)= ~, 

such that A = {b e B I ~(b) 1> 0}. 
We collect (see [S] or [B]) some properties that we will use later. Let A be a (P2)- 

ring in B and let S : = B \ A .  Suppose that S:/:0, then: 

(1) [ := {~ e A I a~ e A, V~ e 8} is the conductor of A r B and it is a prime ideal 
of A and B. 

(2) A is a paravaluation ring in B if and only if A/~ is a paravaluation ring in 

B/f. 
(3) Suppose now that B is an integral domain. Then, A is a paravaluation ring 

in B if and only if A = V n B, where V is a valuation domain of the quotient field 
of B. 

Another possible extension of the notion of valuation was given by I. G. CON- 
NELL [Co] by means of a generalized concept of place for commutative rings. 

Let A be a fixed ring and let B be an A-algebra (for the sake of simplicity, we sup- 
pose A c B). A specialization r of an A-algebra B (to another A-algebra C) or simply 
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an A-specialization in B is an A-algebras homomorphism defined on a sub-A-algebra 
of B, to another A-algebra C such that: 

x, y �9 B,  xy �9 B ,  x �9 B \ - B  ~ y �9 Ker (r 

We will denote an A-specialization by r B ---7 C or by r B --~ C, where B c B is the do- 
main of definition of r When C is a field, then r is called in A-preplace of B. The ker- 
nel of a A-preplace of B is called an A-prime of B. The set of all A-primes of B is de- 
noted by GamA (B) and is called the prime space of the pair A c B. 

An interesting and useful characterization of A-primes of B is the following: 

A subset g3 of B is a A-prime of B i f  and only i f  (see [Co, Prop. 1]): 

(Prl) g~ is an A-module, 1 ~ ?~; 

(Pr2) ~g~ c ~; 

(Prs) (B \ ?~)(B \ ?~) c (B \ ~). 

We notice that  the specializations and the preplaces ,,define,, the same class of 
rings. More precisely, it is not difficult to deduce from Connell's results the 
following: 

PROPOSITION 1.1. - Let -B be a sub-A-algebra of B. The following statements are 
equivalent: 

(i) B is a domain of definition of an A-specialization in B; 

(ii) For every x, y �9 B, xy �9 B, x �9 B \ B  ~ y �9 B; 

(iii) B is a (P2)-ring in B; 

(iv) B is a domain of definition of an A-preplace of B. 

Any  sub-A-algebra -B of B, verifying (one of) the previous statements is integrally 
closed in B. �9 

Finally we recall that  an A-place of B, r is an A-preplace of B r B-~  C where C is 
a field, satisfying the following universal property: if r C'  is another A-pre- 
place of B with Ker( r  Ker(r then there exists a unique A-algebras homomor- 
phism ;~: C ~ C '  such that r ),or whenever the right-hand side is defined. 

Two A.places of B given by the homomorphisms r B --~ C, and r B '  ~ C'  are said 
to be equivalent (in symbols r - r if B = B '  and there exists an A-algebras isomor- 
phism ;~: C--* C' such that  the following diagram: 

.~.C 

B' r C '  

commutes. 
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It can be shown that the natural map: 

PlacesA (B) --, GamA (B), r ~ Ker (r 

defines a bijection, modulo the previous equivalence relation - ,  that is: 

PlacesA ( B ) / -  --) GamA (B). 

It is possible to introduce a topology in Gamd (B) in a natural way. For every finite 
subset E of B, we consider: 

~I(E) := ( ~  �9 GamA (B) I ~ n E  = 0}. 

If E = {hi: 1 ~< i ~< n}, then: 

A(E)= N A(bi). 
i = 1  

It is easy to see that ~ : =  {zl(E) I E c B, # E  < ~)  gives rise to a basis for the open 
sets, because A(E)nA(E ' )=A(EuE ' ) .  The topology defined by J is called the 
Zariski topology of GamA (B). 

For every subset E (possibly not finite) of B, we can consider: 

~ ( E ) : =  {~ �9 GamA (B) I ~ ~ E} = N ~ ( f )  = Gamn(B) \ fU  E A(f) .  
f e E  

Thus W(E) is a closed set in Gamd (B). 
Notice immediately the following difference between the behaviour of the space 

Gamd (B) and the prime spectrum of a ring: 

REMARK 1.2. - (a) For every subset Y r GamA(B), we define J ( Y ) : =  N y _  ~.  It 

is easy to see that J ( Y )  is a sub-A-module of B and is multiplicativeiy closed. It  can 
be shown that: 

Y = ~ ( E )  ~ Y = ~ (o~ (Y) )  �9 

It  is not true in general, that every closed set of GamA(B) is of the form W(E), for 
some E r 

(b) If f, f ' � 9  B, then in general we have that: 

A(f) n A(f') = A(f, f ' )  c A(ff ') .  

It is not very hard to prove that: 

PROPOSITION 1.3 (I. G. Connell, 1968). - (a) The following maps 

Spec (B) ~ GamA (B) -~ Spec (B), 

q ~ q 

~ (~: ~B), 
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where (~:~B):= {s e B I sB r ~} is the unique, largest, prime ideal of B contained in 
~,  are continuous and their composition is the identity map. 

(b) Spec (B) is a dense subspace of GamA (B). �9 

Finally we recall that a topological space X is called a spectral space if it is homeo- 
morphic to the prime spectrum of some ring, endowed with the Zariski topology. 

In a famous paper M. HOCHSTER (Cf. [Ho]) gives several characterizations of spec- 
tral spaces. Among them we recall the following: 

THEOREM 1.4 (M. Hochster, 1969). - A  topological space X is spectral i f  and only 
i f  the following properties hold: 

(S 1 ) X i8 To; 

($2) X is quasi-compact; 

($3) X is sober (cf. [G-D]); 

($4) X has a basis of quasi-compact open sets closed under finite intersec- 
tions. [] 

2. - The pr ime  spaces  as spectra l  spaces .  

Several topological results given by Connell show that a general prime space 
GamA (B) is ~,close to being>~ a spectral space. Moreover, for some special pairs A c B, 
the prime space GamA (B) is already known to be spectral space. 

(a) If B is integral over A (in particular, if A = B) then the canonical map 
GamA (B)--~ Spec (B) (cf. Proposition 1.3) is the identity map, because in this case, for 
every A-prime ~ of B, (~:B~) (the largest sub-A-algebra of B in which ~ is a prime 
ideal) coincides with B (cf. Proposition 1.1 or [Co, Cor. 2, p. 82]). 

(b) If A is a Noetherian 0-dimensional ring (in particular, if A = K is a field) and 
if B = A[x] is the polynomial ring in one variable over A, then the canonical map 
GamA (B)--. Spec (B) (cf. Proposition 1.3) is the identity map. The reason in this case 
is similar, but less evident. As a matter of fact, GamAr~d (Bred) is canonically homeo- 
morphic to GamA(B), because the prime radical of B coincides with 
n { ~  I ~ e GamA (B)}. Furthermore, in the present situation Are d is a finite product of 
fields, thus GamA~d(Bre~) is canonically homeomorphic to a finite disjoint union of 
prime spaces of the type GamK (K[x]), where K is a field. Finally, the canonical map 
GamK(K[x]) ~ Spec (K[x]) is the identity map, since also in this case (~: K~l~) = K[x] 
for every K-prime ~ of K[x], because no integrally closed sub-K-algebra of K[x] is 
properly contained between K and K[x] (cf. Proposition 1.1 and [Co, Prop. 17]). By 
the way, we remark that the previous property does not hold for polynomial rings in 
several variables. For instance, GamK (K[x, y]) ~ Spec (K[x, y]), because xK[x] is a K- 
prime, but not a prime ideal, in K[x, y]. 
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(c) Let B = K be a field and hence A is an integral domain. Let X(A, K):= 
= (V]A r V r K, V a valuation domain of K} denote the abstract Riemann surface of 
the pair A r  (cf. [Z-S, p. 113]). Then, it is known that  the canonical map 
X(A, K ) ~  Gamd (K), V ~  my (where my is the maximal ideal of V) is an homeomor- 
phism (cf. [Co, Prop. 10]). Furthermore,  when K is the field of quotients of A, it is 
known that  X(A, K) is a spectral space canonically homeomorphic to Spec (A 'b ) where 
A 'b is the Kronecker function ring, with respect to the b-operation (or completion) 
(cf. [Gi2, Sect. 32]) of the integral closure A'  of A into K (that is: 

A 'b = { f ig[ f ,  g e A' [T], g ~ 0 and c(f) b r c(g) b } 

where, for every polynomial h e A'[T], c(h) is the ideal of A' generated by the coef- 
ficients of h); (cf. [D-F-F] and [D-F, Th. 2]). 

Even though there is no hope that  the canonical map of Proposition 1.3 
GamA (B) -~ Spec (B) is the identity map in general (cf. (b) and also Remark 1.2), nev- 
ertheless it is natural to investigate whether GamA (B) is a spectral space and ,,how 
far,  GamA(B) is from Spec (B). 

Our first result, which generalizes [D-F-F, Th. 2.5 and Th. 4.1] and completes 
some partial result by Connell (cf. [Co, Propp. 6, 14, 20]), gives a positive answer to 
the first question. 

THEOREM 2.1. - F o r  every A-algebra B, A c B, 

(a) GamA (B) is a spectral space; 

(b) the canonical map ,Od : GamA (B) ~ Spec (A), ?~ ~ ~ • A,  is a surjective 
closed spectral map. 

PROOF. - (a) Trivially GamA (B) is To, because if ~ r ~ '  then for instance ~ r ~ '  
therefore for every b e ~ \ ~ ' ,  ~ ' e  zl(b) and ~ ~ A(b). Moreover, Connell has shown 
that if F is an irreducible closed subspace of GamA (B) then o~(F) e GamA (B) and F = 
= W ( J ( F ) )  [Co, Prop. 6]; thus J ( F )  is the unique generic point ofF,  hence GamA (B) is 
a sober space. An argument by Connell proves also that  GamA(B) is a quasi- 
compact space [Co, Prop. 14]. Therefore GamA(B) verifies the properties ($1), ($2) 
and (S~) of Theorem 1.4. To conclude the proof of (a) we need to verify ($4). 

We know that the basis for the open sets {A(E) I E c B, # E  < ~} is closed under  
finite intersections, so the only remaining fact to show is that  A(bl , . . . ,  bn) is quasi- 
compact, for every {bl, ..., b~} c B, n>~ 1. We use mathematical induction. When 
n = 1, zI(E) = zl(b) with b = bl e B. We claim that the map: 

where f :  B ~ B[1/b], b ' ~  b ' /1  is the canonical A-homomorphism, is continuous and 
Im ()0 = zl(b). The previous claim implies that  ~(b) is quasi-compact, as it is the con- 
tinuous image of a quasi-compact space. We notice that  )~ is continuous because it is 



MARCO FONTANA - FRANCESCO FAPPALARDI: The prime spaces etc. 337 

obtained as the restriction to a subspace of the ((dual,, map of the canonical homomor- 
phism f, that is: 

),: GamAil/b](B[bl) cGamA(B[b])GamAff>)GamA(B). 

To show that Im(~)=A(b), we begin by noticing that Im(~)cA(b);  otherwise 
there would exist a A[1/b]-prime ~ in B[1/b] such that b � 9  and hence 
1 = 1/b.b �9 ~ ,  which is a contradiction. 

To prove that Im()0 ~A(b) is enough to show that: 

i) ~ �9 A(b) ~ !~[1/b] �9 GamA[1/b](B[1/b]); 

ii) ~ e A(b) ~ f - l ( ~ [ 1 / b ] )  = ~.  

i) It is evident that ~[1/b] is a sub-A[1/b]-module of B[1/b] not containing the 
identity element, which is multiplicatively closed. Moreover if: 

c 
bk and - ~  �9 B \ ~ with ~ �9 ~ , 

then the necessarily c and d would be in B \ ~ with c. d �9 ~ ,  which is impossible. 
Thus !~[1/b] �9 Gamd[1/b] (B[1/b]). 

ii) It is easy to see that ~ c f  -1 (~[1/b]). On the other hand, let fl � 9  (g~[1/b]) 
then we can write: 

f l = P O + b + . . . + P - 2  with p~ �9 ~ ,  i~>0 b r' 

and we can suppose that r is minimal with such a property. If r = 0 then ~ = P0 �9 ~.  If 
r~>l then, after multiplying both members of the previous identity by b r, we 
obtain: 

and then 

fl.b ~=pob~ +plb ~-~ + ... +p~ 

( f l . b r - l _ p o b ~ - l _  ... 

We know that b 6 ~ ,  thus 

- p r - 1 ) b  =pr�9 ~. 

gives another expression of fl as an element o f f  -1 (~[1/b]), contradicting the mini- 
reality of r. We conclude that r = 0, hence/~ �9 ~ .  

b 
Pr- 1 + P  

/~=Po+ + . . . +  b~_ 1 

fi "br-1 -Po b r - 1 -  . . . -Pr -1  =: P �9 g~ , 

since B \ ~ is multiplicatively closed. Therefore: 
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Now, we can suppose that A(b l , . . .  , bn_ l )  is quasi-compact as continuous image 
under the natural map: 

)~' : GamA[1/bl ..... 1/b~_l] (B [-~1 1 1) ' " "  bn-1 -~ Gamd(B). 

We consider the following diagram of continuous natural maps: 

GamA[Vbl ..... ~b~l\B[/)l( ['/-- .... ' bn-1]l-] | GamA(B) 

\ / 

It is straightforward to see that the image of the continuous map Z is 

Im00 = Im (i') c~ Im (Z") = z~(bl, ..., bn-1) c~ zl(bn) = zl(bl, ..., bn). 

We notice that if, in the previous proof, we had that {bl, ..., bn } c A, then the con- 
elusion would be obtained more easily, extending the well known properties of local- 
ization. As a matter  of fact, if S is a multiplicative subset of A, then restriction to a 
subspaee of the ~dual,, map of the canonical A-homomorphism h: B ~  S-1B is a con- 
tinuous map: 

,-1 . ~ _ 1  n \ G a m A (  h ) 
As" Gams-1A(S-1B) ct~amd(~ t~) > Gamd(B), ~ h - l ( ~ ) .  

Moreover, in this case: 

Im 0~s) = {~ e Gamd (B): ~ (~ S = 0}, 

because it can be shown that for every g~ e GamA(B): 

~c~S = 0 <=> h-1 (S-1 ~)  = ~ .  

(The proof is a straightforward modification, to the ease of A-primes, of an argument 
concerning the behaviour of prime ideals under localization.) 

(b) We begin by noticing that Pa : Gama (B) ~ Spee (A) is a continuous and spec- 
tral map. As a matter  of a fact, ~A is the ~,dual,, of the structure homomorphism A c B, 
and moreover GamA (A) = Spec (.4). More explicitly, by using the remark at the end of 
the proof of the previous point (a), for S = {an: n~>0} and a e A ,  we obtain 
that: 

pA 1 (D(a)) = A(a), 
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(where D(a) := {9 �9 Spec (A) I a ~ 9} and A(a) := {~ �9 GamA (B) I a ~ ~}). Therefore, 
the inverse image, under ~A, of a quasi-compact open subspace of Spec (A) is a quasi- 
compact open subspace of GamA (B) and this is exactly the definition of a spectral map 
between spectral spaces [Ho]. 

To show that ~A is a closed and surjective map, we will prove that: 

(i) for every closed subspace F of GamA (B), ~A (F) is a patch subspace (cs [Ho, 
Sect. 2]) of Spec(A); 

(ii) for every pair 9 r q of prime ideals of Spec (A) there exists at least an A- 
prime ~ of B such that ~A (~) = 9; moreover, for every fixed A-prime ~ of B such 
that ~A(~)=9,  there exists an A-prime ~ of B such that ~ ( ~ ) = ~  and 
~c~. 

The first statement of (ii) shows the surjectivity of ~A. By the corollary of the The- 
orem 1 in [Ho], the second statement in (ii), together with (i), implies that ,~A (F) is 
closed in Spec (A). 

(i) We prove that Spec (A) \~A (F) is an open set of Spec (A) endowed with the 
patch topology. Let y �9 Spec (A)\PA (F). Then for every x �9 ~A (F) there exists a sub- 
space G~ of Spec(A) such that y �9 Gx x ~ G~ and G~ �9 {D(f) ,V( f ) I feA} is a basic 
patch set of Spec (A). Set G := n {G~ I x �9 ~A (F)}. Clearly y �9 G, G n ,:A (F) = 0 and G is 
a closed space in the patch topology of Spec (A). We consider: 

~AI(G) = N {~Al(Vx) Ix �9 

The subspace p~l (G) is a closed set in the patch topology of GamA (B), having empty 
intersection with the closed set F. By the finite intersection property in the com- 
pact space GamA (B), endowed with the patch topology, we deduce that there exists 
a finite set {Xl, . . . ,x~}cpA(F) such that G ~ n . . .  n G ~ . n ~ A ( F ) = 0 .  Hence, 
G~ n ... (~ G~ is an open set in the patch topology of Spec (A) containing y, which has 
an empty intersection with ~A (F). 

(ii) Let 9 �9 Spec (A). By Zorn's Lemma applied to the set ~f := {!)~ I ~ is a sub- 
A-module of B, ~0~ is multiplicatively closed, ~ff~ n (A \ 9) = 0, ~D~(A \ 9) c ~ } ,  we can 
find a maximal element ~ in J'. A straightforward verification shows that ~ is an A- 
prime of B and ~ n A = 9. Hence ~A is a surjective map. To check the second part of 
the statement, it is enough to show that: 

,OA (~(~) )  = V(~ n A). 

It is clear that ~A (~V(~)) C V(~ • A). Let q �9 V(~ n A). The set E := ~ + ~ is a multi- 
plicatively closed sub-A-module of B. Moreover (A \ q) E c E and (A \ q) n E = 0. 
By applying Zorn's Lemma to the non empty set J := {~t ~ is a sub-A-module of B, 

is multiplicatively closed, ~ff~n ( A \ q )  = 0, ~ ( A \  q) r ~ ,  ~[~ ~ E}, we can find a 
maximal element ~ in ~ ,  which turns out to be an A-prime of B such that PA (~)  = q 
and ~ .  [] 



340 MARCO FONTANA - FRANCESCO PAPPALARDI: The prime spaces etc. 

The following theorem gives an answer to the question: ,,how far is GamA (B) from 
Spec (B)?- The idea is to obtain Gama (B) as an amalgamated sum of topological spaces 
in which Spec (B) is one of the summands. 

THEOREM 2.2. -Le t  B be an A-algebra, A c B and let ~ be the conductor of A c B. 
Then there exists the following natural homeomorphism of topological spaces: 

GamA(B)- Spec(B) LI GamA/~(B/~). 
Spec(B/~) 

PROOF. - L e t  =A: A ~ A : = A / ~  and =B: B---~[~:=B/[ be the canonical projec- 
tions. We consider the following commutative diagram of topological spaces: 

Spec (B) -~ 

Spec (B) speLIc(~) Gam~(/~) T ~ GamA(B) Spec ( B ) i ~  / ~ - ~ ~ ~  

Gam](/~) = GamA(/~) 

where i~ and iB are the inclusion maps (cf. Proposition 1.3), ~:= Spec(r:~), ~:= 
:= GamA (=S) and T is the (unique) continuous map arising from the universal proper- 
ty of the amalgamated sum of topological spaces (cf. [D, Ch. VI, Sect. 6]). 
Therefore: 

/ i B  (D), 
= 

i~ o ~(~) = Z o i~ (~), 

if x = ~ �9 Spec (B)\~(Spec (B)); 
if x = ~ �9 GamA (B) \ i~  (Spec (B)); 
if x is the image of an element ~ �9 Spec (B). 

We claim that: 

�9 GamA (B), ~ ~ ~ ~ ~ �9 iB (Spec (B)). 

By Proposition 1.3, it is enough to show that 

(~:  ~B) = ~ .  

Obviously, (~:BB) c ~. Conversely, suppose that there exists p �9 ~, p ~ (~:BB). 
Hence, for some ~�9  p ~ .  Let t e f \ ~ ,  then ( p ~ ) t ~ .  From the other side 
(p~) t = p(~t) �9 ~A r ~: Contradiction. 

Now, we can define the following map: 

F: GamA (B) --. Spec (B) LI Gam~ (B), ~ ~ I ~ := ~ / f '  if ~ ~ f ; 
spec(~) [P, if ~ ~ ~ and iB (~) ---- 9~. 
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It is easy to show that ~YoF and ~ o ~  are the identity maps, thus ~ is a 
bijection. 

To show that F is a homeomorphism, we prove that F is a closed map. In order to 
prove that F is a closed map, it is enough to show that if F c Spec (B) LI  Gamz (2) 
is such that: Spec(B) 

F '  := F n Spec (B) = V(b), with b e B ; 

F" := F c~ Gam~ ([3) = W(-bl , ..., -b~) with bl,...,bn�9 n >~ l , 

then ~(F) is a closed subspace of GamA (B). We claim that: 

ge(F) = W(b) u IW(bl ,  ..., bn) n ( f )  , 

where bi is an element of B chosen in the class bi, that 
i = 1 ,  ..., n. 

As a matter of fact 

is b~= bi+ ,~, for 

because if x �9 F then: 

On the other 
where 

[iB(~), i f x = ~ e F ' = V ( b ) ,  
T(x) = 

[fl(~)), if x = ~ �9 F " � 9  W(bl, ..., b~). 

hand, if ~ e W(b) u W(b l , . . .  bn) n ( f )  
' f " , 

then ~ = F ( x )  

thus x e F.  

x := I ~/~ �9 W(b~'i'e' ~ )  = F", 
[9 �9 V(b) = F , 

[] 

if ~ ~ iB (Spec (B)), 

if ~ = iB (t9) e i~ (Spec (B)), 

The previous theorem reduces the study of a general space GamA (B) to the space 
Gam~ (2), where B is an A-algebra with zero conductor. In some relevant cases, that 
we now intend to investigate, this space turns out to be a ,,classicab~ abstract Rie- 
mann surface. 

COROLLARY 2.3. - Let m be a maximal  ideal of a ring B, let r B --~ k(B) := B / m be 
the natural projection onto the residue f ield of B in m and let D be a subring of k(B). 
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I f  A is the subring of B obtained as a pullback in the following way: 

A:= ~-I(D) >> D 

B >>k(B) 

then there exists a natural homeomorphism of topological spaces 

GamA (B) ----- Spec (B) I_I GamD (k(B)). 
Spec (k(B)) 

PROOF. - It is enough to notice that, in the present situation, the maximal ideal m 
of B is the conductor of A r B. The conclusion follows from Theorem 2.2. [] 

COROLLARY 2.4. - L e t  B, k(B), r D and A as the statement of Corollary 2.3. Fur- 
thermore, suppose that B is an integral domain, the integral closure B' of B is a 
Pri~fer domain and that k(B) is the quotient field of D. Then there exists a natural 
homeomorphism of GamA (B) with: 

Spec (B(T) • ,b ), 

where T is an indeterminate over B and k(B), B(T) is the Nagata ring of B (i.e. 
B(T) := B[T]s, where S is the set of polynomials with unit content) and D'b is the 
Kronecker function ring of the integral closure of D, with respect to the b-operation 
(cf. also the previous point (c)). 

PROOF. - In [A-D-F] it is shown that, given an integral domain B, the continuous 
map Spec (B(T)) ~ Spec (B), p ~ p n B, is a homeomorphism if and only if B' is 
Priifer. Moreover, by the previous point (c), we know that the natural maps establish 
the following homeomorphisms: 

GamD (k(B)) ~- X(D, k(B)) -~ Spec (D ,b ). 

We consider the following pullback diagram of natural ring homomorphisms: 

B(T) • ~ _  r  (D'b) >> D'b 

r 
B(T) >> k(B)(T). 

We are in the hypotheses of IF, Th. 1.4], thus we can deduce the following natural 
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homeomorphism of topological spaces: 

Spec (B(T) • 'b) = Spec (B(T)) I~  Spec (D'b). 
Spec (k(B)(T)) 

The conclusion now follows by the previous remarks and Corollary 2.3. [] 

We notice that the hypotheses of Corollary 2.3 are satisfied by the rings interven- 
ing in the classical D + m construction (cf. [Gi 1, Appendix 2]). As a matter  of fact, let 
V be a valuation domain and suppose that V = k + m, where m is its maximal ideal and 
k a field (isomorphic to the residue field k(V) of V). Let D be a subring of k, then the 
domain D + m coincides with the following pullback: 

D + m~-r > D 

V = k + m  ~ > k ( V ) ~ k .  

If we apply Corollary 2.3 and [F, Th. 1.4] to the case in which B := Q~T] is the dis- 
crete valuation domain of power series in one variable T, with coefficients in the field 
of rationals number Q and D := Z, then we obtain the following natural homeomor- 
phism: 

GamA (B) --- Spec (Q~T]) LI  Spec (z) ~ Spec (Q~T~ • Q Z) ---- Spec (A). 
Spec (Q) 

The previous situation is a very particular case of the class of a pair of domains 
A c B for which the spectral map PA: GamA ( B ) ~  Spec (A) is the identity map. 

THEOREM 2.5. - Let B, k(B), r D and A as in the statement of Corollary 2.3. Fur- 
the~nore suppose that B is a Pri~fer domain and that k(B) is the quotient field of D. 
Then the following properties are equivalent: 

(i) GamA(B)= Spec(A) (i.e. ~A is the identity map); 

(ii) GamD (k(B)) = Spec (D) (i.e. ;D is the identity map); 

(iii) D is an i-domain (that is, for every, overring R of D, the canonical map 
Spec (R)--~ Spec (D) is injective; cfi [Pa]); 

(iv) A is an i-domain. 

PROOF. - We consider the following commutative diagram of topological spaces 
and continuous maps: 

GamA (B) ~ Spec (B) 

~ A 

Spec (.4) ~ Spec (B) 

L~ GamD (k(B)) 
Spec (k(B)) 

I I  Spec(D), 
Spee (MB)) 
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where the homeomorphism in the first row is given by Corollary 2.3, the homeomor- 
phism in second row is obtained from [F, Th. 1.4] and the map ~D is the natural exten- 
sion of ~D with the identity map of Spec (B). Therefore, it is clear that (i) <=~ (ii). The 
equivalence (ii) <=> (iii) is proven in [D-F-F, Prop. 2.2]. The show that (iii) r (iv) we 
use the fact that a domain R is an/-domain if and only if its integral closure R' is 
Prfifer and the map Spec (R')-~ Spec (R) is bijective [Pa, Prop. 2.14]. In the present 
situation, the integral closure A' of A is isomorphic to B • where D' is the inte- 
gral closure of D, thus A' is Prfifer if and only ifD'  is Prfifer (cf. also [F, Prop. 2.2(10) 
and Tb. 2.4]). Moreover it is clear that Spec (A')-~ Spec (A) is a bijection if and only if 
Spec (D') - .  Spec (D) is a bijection (cf. [F, Th. 1.4]). �9 

From the previous theorem and, in particular from the proof of (iii)r (iv), we 
deduce immediately the following: 

COROLLARY 2.6. - Let B, k(B), r D and A be as in the statement of Corollary 2.3. 
Furthermore, suppose that B is a Pri~fer domain and D is integrally closed in its 
field of quotients k(B). Then the following properties are equivalent: 

(i) GamA(B)= Spec(A) (i.e. PA is the identity map); 

(ii) GamD(k(B))= Spec(D) (i.e..~D is the identity map); 

(iii) A is a Prefer domain; 

(iv) D is a Pri~fer domain. [] 
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