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In this paper, we deal with the integral domain D($‘):= D+ (Xl, A’,, . . . , X,)Ds[XI,X2, . ,X,1, 

where D is an integral domain and S is a multiplicative set of D. The purpose is to pursue the 

study, initiated by Costa-Mott-Zafrullah in 1978, concerning the prime ideal structure of such 

domains. We characterize when D@-‘) IS a strong S-domain, a stably strong S-domain, a 

catenarian domain and a universally catenarian domain. As a consequence, we obtain a new class 

of non-Noetherian universally catenarian domains. Moreover, we give an explicit formula for 

the Krull dimension of D (s*r) (depending on S and on the Krull dimensions of D and 

Qs[X1,X2,.... X,]) and we compute its valuative dimension. 

0. Introduction 

In [7] the integral domains D+XDs[X], where D is an integral domain, S is a 

multiplicative set of D and X is an indeterminate, were introduced and studied. 

Particular emphasis was placed on the transfer, from D to 7’? = D + XDs [Xl, of 

the properties of being either Prtifer, Bezout, GCD, or coherent domains. The 

prime ideal structure of T”’ was also studied, and some useful bounds on the 

(Krull) dimension of T(‘) were given. However, the problem of the determination 

of this dimension in the general situation, as a function of S and of the dimensions 

of D and D[X], remained open. 

In the present paper, we deal with a more general situation: we consider the 

domain 

D(s+=D+(&,& )...) X,)D,[X,,X* )..., X,]=D+XD,[X] 

where D is an integral domain, S a multiplicative set of D and X= {Xi, X2, . . . ,X,} 
is a finite set of indeterminates over Ds. 

We notice that, as in the case of one indeterminate, the domain D(s,r) may be 
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described in various ways: it is the direct limit of the direct system of domains 

D[X,/s,XJs, . . . . X,/s], where s E S (and s1 <sz when st 1 sz); DC”‘) is the pullback 

of the canonical homomorphism v, : Ds [X,, X2, . . . ,X,] + Ds, X, c 0, 1 I i I r, and 

of the embedding a : D G Ds: 

cp’ 
DC’*‘)= &a(D)) - D 

(17) 
I 

a’ a 

DsW,,Xz, . . ..Xrl 
rp 

‘i 

-D Se 

Therefore, we can claim that many properties hold in DC”“, because these proper- 

ties are preserved by taking polynomial ring extensions and direct limits or by 

pullbacks of the special type (0). 

Similarly, as remarked in [7], it is possible to describe DC”‘) as the symmetric 

algebra of the D-module 09’ (using [t, Chapitre III, p. 73, Proposition 9]), but we 

will not use this last property in this paper. 

The purpose of this work is to pursue the study, initiated by [7] when r = 1, of 

the prime ideal structure of the domain D (STr) The main results of Section 2 (cf. . 
Proposition 2.3 and Theorem 2.5) characterize when DC”‘) is a strong S-domain, a 

stably strong S-domain, a catenarian domain, or a universally catenarian domain. 

In particular, the domains of the type DCs”) give rise to a new class of non- 

Noetherian universally catenarian domains (cf. [4]). Moreover, we give an explicit 

formula for the Krull dimension of D (s3r) (depending on S and on the Krull dimen- 

sions of D and Ds [X,, X2, . . . ,X,1) and we compute its Jaffard valuative dimension 

(cf. Theorem 3.2 and Proposition 3.4). 

All rings considered below are (commutative integral) domains. 

We recall that in [13] an integral domain R is called an S(eidenberg)-domain if 

for every height 1 prime ideal P of R, the height of PR [ Y], in the polynomial ring 

in one indeterminate R [ Y], is also 1. A strong S-domain is a domain R such that, 

for every prime ideal P of R, R/P is an S-domain. In [6], it is shown that there exists 

a strong S-domain for which R [ Y] is not a strong S-domain. In [ 151, a domain R 
is called a stably strong S-domain if R [ Y,, Y,, . . . , Y,] is a strong S-domain for 

every finite family of indeterminates ( Y,, Y,, . . . , Y,}. A ring R is said to be 

catenarian in case for each pair PC Q of prime ideals of R, all saturated chains of 

primes from P to Q have a common finite length. Note that each catenarian ring 

R must be locally finite-dimensional. In [3, Lemma 2.31, it is shown that if the 

polynomial ring R [ Y] is a catenarian domain, then R is a strong S-domain. We say 

that a (not necessarily Noetherian) ring is universally catenarian if the polynomial 

rings R[Y,, . . . . Y,] are catenarian for each positive integer n. 
Following Jaffard (cf. [14, Chapitre IV]), we define the valuative dimension of 

an integral domain R as 

dim,(R) = sup{ dim( V): V valuation overring of R}. 
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A Jaffard domain is a finite-dimensional integral domain R such that dim(R)= 

dim,(R) (see [l]). 

We recall that a spectral space E= Spec(A) (i.e. the set of all the prime ideals of 

a ring A equipped with the Zariski topology) is an ordered set under the set- 

theoretical inclusion. Following EGA’s terminology [9,0.2.1.1], we say that a subset 

9 of a spectral space LT is stable for generalizations (resp., specializations) if y E 9 

and y’ly (resp., yly”) imply that y’~ 3Y (resp., y”~ 3). 

1. Prime ideal structure 

We start collecting some basic facts concerning the prime ideal structure of 

D(“‘)=D+(X,, . . . . X,)D,[X ,,..., X,.] =D +XDs[X]. Most of these are conse- 

quences of the general properties of pullback diagrams studied in [S]. 

We denote by 

u : = ‘a, : 9’: = Spec(Ds) - %:=Spec(Ds[Xr, . . ..X.]), 

v:=% : y * X: = Spec(D), 

i: = *I : W: = Spec(D(” “) -+ 8: = Spec(D [X,, . . . , X,]) 

the continuous maps (of spectral spaces) canonically associated to the natural 

ring homomorphisms ~1: Ds [X,, . . . , X,.]-+Ds, Xi-0 llilr, a:DGD,, and 

A :D[X,, . . . ,X,] 6DCs~“, respectively. 

Theorem 1.1. With the previous notation, the spectral space 9+ is canonically 
homeomorphic to the topological amalgamated sum &?lLa. Y. More precisely, 

(1) XDs [X] is a prime ideal of DC” r) and DCs,“/XDs [X] is canonically isomor- 
phic to D. From a topological point of view, the continuous map u’: = ‘p’ : LX+ W, 

associated to the surjective ring homomorphism q’ : DCs,r’ - D, is a closed em- 
bedding, and establishes an order isomorphism E-Z E” : = (Q E 9k Q > XDs [Xl}, 
P ++ P + XDs [Xl. In particular, K”’ is a subspace of 6% stable under specializations. 

(2) (DC”‘)), is canonically isomorphic to Ds [X,, . . . ,X,.1. From a topological 
point of view, the continuous map v’: = aa’ : Y + ?N associated to the natural ring 
homomorphism a’ : DC”‘) -+ Ds [X , , . . . ,X,1, is injective and establishes an order 
isomorphism YVZ, Y’:={QE~&: QflS=0}, PC PflD(s*r’, where Y’ is a sub- 
space of Yy stable under generalizations. 

(3) (D&‘+XD, [Xl) is canonically isomorphic to D,. A topological inter- 
pretation of this fact is that v’ 0 u : y”- W establishes an order isomorphism 
g”-t g’:= Z^‘n Y’, P ++ (Pn D) +XDs [Xl, where y” is a closed subspace of Y’ 
(but not, in general, of CN). 

(4) The topological amalgamated sum Z”llg Y is canonically homeomorphic 
(via the continuous map o defined by o I*= u’ and o 1 w = v’) to 9% In particular, 
these two topological spaces are order isomorphic. 
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(5) The canonical continuous map i : W + .9 is inj’ective but, in general, it is not 
a topological embedding. As a matter of fact, it is not an order isomorphism with 
its image. But, if ME .?X”‘C 9# is a closed point of %+, then i(M) is still a closed point 
of 9. Moreover, i( 3’) is a subspace of 9 stable under generalizations. 

Proof. The proof of the statements (l), (2) and (3) is straightforward. For the first 

claim of (5), we shall give a counterexample (see the following Remark 1.4). The 

second claim follows from the fact that, if M is a maximal ideal of Dcsr) con- 

taining XD,[X], then MfID[X] is a maximal ideal of D[X] (containing XD[X]). 

The third claim follows by noticing that D[X] and D (S,r) have the same localization 

at their multiplicative set S. For statement (4), it is easy to see that o is a continuous 

bijection. Moreover, o is also a closed map as a consequence of Corollary 1.3, which 

follows from: 

Proposition 1.2. Consider the following pullback of ring-homomorphisms: 

w’ 
R-B 

1 w 1 
A-C, 

where v/ is surjective, I= Ker(i,u), and 6 is injective. Suppose that R is quasi-local 
with maximal ideal M. Then 

(a) ZC J(A) ( = Jacobson radical of A); 
(b) Max(A) = ‘y/(Max(C)); 

(c) For every PE Spec(R), with P = 8’-‘(P’) for some P’E Spec(A), there exists 
QE Spec(R) with PC Q and Q = (I,V o 8’))‘(Q’) for some Q’E Spec(C). 

Proof. For ease of notation, we identify R and B with their images in A and C. It 

is straightforward to see that Z also coincides with Ker(y/‘) and R/Z is isomorphic 

to B. Therefore, B is also a quasi-local ring. 

(a) Clearly 1 +ZC 1 +MC U(R) (= units of R) since R is quasi-local. Thus 

1 +I= 1 + ZAC U(A), and the previous inclusion implies that ZCJ(A). 
(b) Obviously ‘v(Max(C)) C Max(A), because ‘I,V is a closed embedding. 

and by the isomorphism A/Z=., we deduce statement (b). 

(c) is an easy consequence of (b). 0 

BY (4 

Corollary 1.3. With the notation of Proposition 1.2, without supposing R 
local, if we take P,, Pz E Spec(R) with P, cP, and P, =S’-‘(P;) for 

quasi- 
some 

P,’ E Spec(A) and P2 = wIpl (Pi) for some Pi E Spec(B), then there exists Q E Spec(R) 

with P, C QC P2 and Q = (t+v 0 S’)-‘(Q’) for some Q’E Spec(C). 

Proof. After tensorizing by BRRPZ, we are in the situation of Proposition 1.2 

(cf. also [5, Lemma 21). Using the statement (c) of the previous proposition, the con- 
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elusion follows from the properties of the correspondence between the prime ideals 

of R and those of R,. 0 

Remark 1.4. If we consider D = Q, S= Q\ (0}, and r = 1, then it is easy to 

verify that i : Spec(i&) + XQ[X]) + Spec(Z,,, [Xl) is neither open nor closed (even 

though, in this particular case, the canonical map Spec(Q[X]) -+ Spec(+[X]) is 

open, in fact universally open [9,1.7.3.10], and not, simply, stable for general- 

izations). Moreover, the continuous injective map i is not an order isomorphism 

with its image, because, for instance, P:= (2 +X)Q[X] fl (Z,, +XQ[X]) and M:= 

2Z(,)+XQ[X] are both maximal ideals of Z,,,+XQ[X], but i(P)=(2+X)ZC,,[X] c 
i(M) = 2Z,,, + XZ(,) [Xl. We also notice that Q: = XQ [X] and P are co-maximal in 

Zc2) +XQ[X], but i(P) and i(Q) are both contained in i(M), as prime ideals of 

Z(2) WI. 

Another interesting property of the domains of the type D’s” is described in the 

following: 

Proposition 1.5. Let Y,, Y2, . . . , Y, be a finite set of indeterminates over a given 
domain DC”“. Then, the polynomial ring D’““[ Y,, Y2, . . . , Y,] is canonically 
isomorphic to (D[Y,, . . . . Y,])@,‘). 

Proof. By flatness, the following diagram, obtained from the diagram (0) by 

tensorizing with OoD[ Y,, Y2, . . . , Y,], 

D’““[Y,, Y,, . . . . Y,] - D[Y,, r,, . . . . r,l 

is still a 

forward, 

&IX,, . . ..Xr. Y,, . . . . r,l -----+Ds[y~, Y2, . . . . Kl 

pullback diagram (cf. [5, Lemma 21). The conclusion is now straight- 

after noticing that D,[Y,, . . . . Y,] coincides with D[Y,, Y2, . . . , Y,ls. 0 

2. Transfer of some properties concerning prime chains 

In this section, we will study the transfer of the properties of being an S-domain, 

a strong S-domain, or a catenarian domain to the integral domains of the type 

D(s”)=D+(X,,...,X,)D,[X 1, . . . ,X,] and to the polynomial rings with coefficients 

in a DCs’). 

In order to study the problem of the transfer of the S-property to DCs’), we need 

to know better the behaviour of this property in passing to polynomial rings. This 

problem was surprisingly disregarded in the literature and only briefly studied in 

[15, Theorems 3.1, 3.3 and Corollary 3.41, where in particular the authors showed 
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that if R is a Priifer domain, then R[ Y,, Y,, . . . , Y,] is an S-domain. M. Zafrullah, 

in a private communication, proved the following general result that improves 

dramatically the previous statement of [15] and some results of a first draft of this 

paper: 

Proposition 2.1. Let R be an integral domain and Y,, Y,, . . . , Y,, a finite family of 
indeterminates over R, where n 2 1. Then R [ Y,, Y,, . . . , Y,,] is an S-domain. 

Proof. It is enough to show that the statement holds when n = 1. Let Y:= Y, . It is 

easy to see that an integral domain A is an S-domain if and only if A, is an S- 

domain for every height 1 prime ideal p of A. In order to prove the statement, it 

is enough to show that R[ Y], is an S-domain, for every height 1 prime ideal P of 

R [ Y]. Two cases are possible for p: = P fl R. If p # (0), then p is an height 1 prime 

ideal of R and P=p[Y]. Thus R[Y],=R,[Y],,,, and PRIY]p=pR,[Y],,yl, hence 

pR,[Y] is a height 1 prime ideal of R,[Y]. We recall that in [3, Corollary 6.31 it 

is shown that for one-dimensional domains, the notions of (strong) S-domain and 

stable strong S-domain are equivalent. By applying this result to Rp, we deduce 

that in R,,[ Y, Z] (where Z is another indeterminate) pR,[ Y,Z] is still a height 1 

prime ideal. Thus p[ Y, Z] = P[Z] is also a height 1 prime ideal. If p = (0), then there 

exists a unique height 1 prime ideal Q of K[ Y], where K denotes the field of 

quotients of R, such that Q n R [ Y] = P. Since K[ Y] is an S-domain, so is K[ YIQ, 

this fact implies that also R[Y], is an S-domain. The proof is complete. 0 

From the preceding proposition we deduce immediately the following: 

Corollary 2.2. We keep the notation introduced in Section 0. Then D(s,r) is an S- 
domain for every S and r 2 1. 

Proof. By Proposition 2.1, we know that Ds [X,, X2, . . . ,X,1, with r-2 1, is an S- 

domain. For every height 1 prime ideal P of DC”‘), we can consider two cases. If 

Pn S=0, then (D(s,‘))p= ((D(“‘))s),=Ds[X,,X,, . . . ,Xrlp and hence it is an S- 

domain. If P fl S # 0, then necessarily r = 1 and P = XDs [Xl, hence this second case 

is impossible, because XD, [X] fl S = 0. 0 

In order to build-up a new class of examples of universally catenarian domains 

which is different from all the classes already known, we deepen the study of the 

domains D(s*r). 

Proposition 2.3. We keep the notation introduced in Section 0. Let r> 1. The 
following statements are equivalent: 

(i) D(s,r) is a strong S-domain (resp., a catenarian domain); 
(ii) D and Ds[X,,X,, . . . , X,] are both strong S-domains (resp., catenarian 

domains). 
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Proof. It is clear that (i) * (ii), because the notion of strong S-domain (resp. 

catenarian domain) is stable under localization and under the passage to quotient- 

domains. 

(ii) = (i). We start with the case of strong S-domains. Let Pi and P2 be two 

prime ideals of D(“” with P, C P2 and ht(PZ/P1) = 1. Three cases are theoretically 

possible. 

Case 1. P, E LK’ (with the notation of Theorem 1.1). Thus also P2 E 9?“‘. In this 

case, ht(Pz[ Y]/P, [Y]) = 1 because &‘= Z= Spec(D) and D is a strong S-domain. 

Case 2. P2 E 9’ (with the notation of Theorem 1.1). Thus also P, E 9’. Also 

in this case ht(P, [ Y] /P, [Y]) = 1 because 9’ z 9 = Spec(Ds [Xi, . . . ,X,1) and 

&1X,, a*., X,.] is a strong S-domain. 

Case 3. P, E 9’ and P2 E K’ \ 3’. This case is impossible when ht(P,/P,) = 1 by 

Corollary 1.3. 

Finally, we notice that the implication (ii) a (i) holds in the case of a catenarian 

domain. As a matter of fact, we can apply [5, Lemma I], after remarking that the 

glueing condition (y) is verified by Corollary 1.3. 0 

As an easy consequence of Proposition 2.3, we have 

Corollary 2.4. Zf D[X,, X2, . . . , X,] is a strong S-domain (resp., a catenarian 
domain), then D(s’) is a strong S-domain (resp., a catenarian domain). 0 

We will show (Example 2.7) that the converse of Corollary 2.4 does not hold 

in general, however it is possible to prove a ‘universal’ converse of the previous 

corollary. 

Theorem 2.5. With the notation of Section 0, and rz 1, the following statements 
are equivalent: 

(i) D(“‘) is a stably strong S-domain (resp., a universally catenarian domain); 
(ii) D is a stably strong S-domain (resp., a universally catenarian domain). 

Proof. (ii) a (i). As a matter of fact, if for every n 2 1, D[ Y,, . . . , Y,] is a strong S- 

domain (resp., a catenarian domain), then the conclusion follows from Corollary 

2.4, after recalling that (D[Y,, . . . . Y,])(s~“=D’sT”[Y,, . . . . Y,,] (cf. Proposition 1.5). 

(i) a (ii). For every nz 1, we know that 

D’““[Y, ,..., Y,J/(X ,,..., Xr)D,[X ,,..., Xr, Y, ,..., Y,JsD[Y, ,..., Y,] 

thus the claim is a consequence of the fact that the notion of strong S-domain (resp., 

catenarian domain) is stable under passage to quotient-domains. 0 

The previous theorem leads to a further non-standard class of universally 

catenarian domains (besides those considered in [4]). In particular, it is possible now 

to exhibit a universally catenarian domain which is neither Noetherian nor a GD 



238 M. Fontana, S. Kabbaj 

strong S-domain (thus not a Prtifer domain) with global dimension bigger than 2. 

As a matter of fact, when D is a universally catenarian domain and the multi- 

plicative set S is non-trivial (i.e. S#D \ (0) and Se U(D)) and r> 1, then D’s,” is 

a universally catenarian domain of the announced kind, even if D is a universally 

catenarian domain of one of the ‘classical’ classes (i.e. CM, locally finite- 

dimensional Prtifer domain, or a domain of global dimensions2). For instance, 

z+(X,,X2,...,Xr)~(2)[X1,...,Xrl, r>l, 

C[U, Vl,,,,+(X,,X,,...,X,)C[U, ~l~u~[X~,...,Xrl, t-21 

are new examples of universally catenarian domains which are not Noetherian, not 

Prtifer, and have global dimension>2. 

Example 2.6. We give an example of a domain D(sr) which is not a strong S- 

domain (still is an S-domain). 

Let k be a field and X and Y two indeterminates over k and let 

Ai :=k+ Yk(X)[Y](,,, M,:= Yk(X)[Yl(,,, 

v, :=k[Yl(,,+Xk(Y)[Xl(,,, P :=Xk(YWlc,,, 
it&:= Yk[Y](,,+P. 

A, is a l-dimensional pseudo-valuation domain, which is not an S-domain [lo, 

Theorem 2.51, and V, is a 2-dimensional valuation domain. Set D:=A, fl V,. It is 

not difficult to see that Spec(D) = { (0), p = P fl D, ml = M, n D, m2 = M2 n D} and 

that 

&, =A19 &,= v,, 

with m, height 1 prime (maximal) ideal of D. Thus, D is not an S-domain. Thus 

~+(x,,x,,...,x,)~,[x*,x2,~~~, X,] is not a strong S-domain, but it is an S- 

domain (cf. Corollary 2.2 and Proposition 2.3). 

Example 2.1. There exists an integral domain D and a multiplicative set S of D such 
that D and DC”‘) are catenarian and strong S-domains, for every rz 1, but 

D[X,, . . . . X,.] is not a strong S-domain for every rz 1 (hence, it is not a catenarian 
domain for r 2 2). 

By [6, Example 31 (cf. also [l, Example 3.8]), we know that it is possible to give 

an example of a quasi-local 2-dimensional catenarian and strong S-domain D with 

a unique height 1 prime ideal P such that Dp is a (discrete) valuation domain, but 

D]X,, . . . . X,] is not a strong S-domain for r? 1 (hence, it is not catenarian for 

rz2, cf. [3, Lemma 2.31). In this case, since a finite-dimensional valuation domain 

is a universally catenarian domain [5] (in particular, a stably strong S-domain), 

then, by the previous Proposition 2.3, D + (X,, . . . , X,)D,[X,, . . . ,X,1, is catenarian 

and a strong S-domain for every r 11. 
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3. bull dimension and valuative dimension 

In order to study the Krull dimension of Des,“), we begin by giving some new 

definitions, related to the S-dimension introduced in [7], with the purpose of ob- 

taining some useful bounds on the Krull dimension of T(‘):=D(‘* ‘). 

Recalling the notation of Section 1, we identify for simplicity 2X, 9 and $2 with 

their canonical images (respectively, Z’, 9’ and y’) in 96 (cf. Theorem 1.1). 

We define the S-coheight of a prime PE 9k by 

S-coht(P):=sup(t?O: P=P,CP,C**.CP,, where PiEZ\gfOr i21}, 
and we set 

S-dim(D): = sup{ S-coht(P): P E K}. 

Obviously, S-coht(P) I coht(P) for every P E Zf; moreover for r = 1, the previously 

defined S-dimension coincides with that introduced in 171. 

Finally, we define: 

y-dim(D [Xi, . . . , Xr]):= sup{ S-coht(P) + ht(P): P E $‘} 

where ht(P) is the height of P as a prime ideal of Ds[Xl, . . . ,X,1 or, equivalently, 

of D[X,, . . ..X.]. 

Before producing a formula which gives the Krull dimension of Des,“) as a 

function of the Krull dimension of D,[X,, . . . ,X,] and of the y-dimension of 

D[X,, . . ..X.l, we give some bounds for dim(D@,‘)) analogous to those proved in 

[7] when r= 1. 

Proposition 3.1. With the notation of Section 0, we have: 

max{ dim(Ds [Xl), dim(D) + r> I dim(D@*‘)) 

I min{ dim(D[X]), dim(D,[X]) + S-dim(D)}. 

Proof. It is clear that dim(Ds[X])Idim(D cs,r)) I dim(D[X]) because of Theorem 

1.1 and Ds [X] = (D(sr))s. Moreover, in D (sr) there always exists a chain of prime 

ideals of length r dim(D) + r. As a matter of fact, we can choose a maximal ideal 

A4 of D(“‘) such that M>XD, [X] and M/XD, [X] corresponds to a maximal ideal 

of D which realizes the dimension of D. Then, A4 contains a chain of prime ideals 

of length ht(M/XDs [Xl) + ht(XD, [Xl) 1 dim(D) + r. Finally, let Q be a prime ideal 

of D’“‘) corresponding to a closed point of 9. By Corollary 1.3, to avoid the trivial 

cases we can consider a chain of prime ideals of Des’) passing through Q. This 

chain necessarily has length I dim(Ds [Xl) + S-coht(Q) I dim(Ds [Xl) + S-dim(D). 

0 

Theorem 3.2. With the notation of Section 0, 

dim(D (‘yr)) = max(dim(D, [Xi , . . . ,&I), $f-dWD[X,, . . . ,X,1)). 

Proof. Let ME Max(D csr)) By Theorem 1 .l, two cases are possible: . 
Case 1. ME Zf (with the notation of the beginning of this section). In this case, 
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ht(M) I dim(D, [Xl) and there exists a maximal ideal A?E Max(D(“‘)) with A?E 9 

such that ht(A& = dim(Ds [Xl). 

Case 2. ME Z (with the notation of the beginning of this section), that is, 

M>XDs[X]. In such a case, we know that every chain of prime ideals of D(‘,‘) 

contained in A4 contains a prime ideal QE$‘ (Corollary 1.3). Therefore, the 

supremum of the length of the chains of prime ideals ending at a maximal ideal 

ME 5~ coincides with: 

sup{S-coht(Q) + ht(Q): QE y} = g-dim(D[X]). 0 

Before giving some important cases for which it is easy to compute y- 

dim(D[X,, . . . . X,]), we draw some consequences from the previous theorem: 

Corollary 3.3. With the notation of Section 0, let D be a Jaffard domain. Then for 
every r-2 1 

dim(D(“‘)) = dim(D) + r. 

In particular, pdim(D[X,, . . . ,X,.1) = dim(D[X,, . . . ,X,1) = dim(D) + r. 

Proof. We notice that when dim(D[X,, . . . ,X,.1) = dim(D) + r, then 

max{ dim(D) + r, dim(Ds [Xl, . . . ,X,1)} = dim(D) + r. 
Moreover, 

min{ dim(D[X,, . . . , A’,.]), dim(Ds [X,, . . . , X,]) + S-dim(D)} 

=dim(DlX,, . . ..X.l). 

Otherwise, we would have 

dim(D) + r 5 dim(D(” “) 5 dim(Ds [X,, . . . ,X,.1) + S-dim(D) 

<dim(D[X,, . . ..X.]), 

and thus dim(Ds [X,, . . . , X,]) + S-dim(D) = dim(D[X,, . . . ,X,.1) = dim(D) + r. 
Moreover, when D is Jaffard, dim(D[Xr, . . . , X,]) = dim,(D) + r = dim(D) + r. Thus, 

by Proposition 3.1, dim(D cs,r)) = dim(D) + r. The second statement follows easily, 

noticing that in general 

dim(D)+rl$‘-dim(D[X, ,..., X,])Sdim(D[X, ,..., X,]). 0 

In order to study the transfer to D (sr) of the Jaffard property, we need to 

compute the valuative dimension of D(s,r). 

Proposition 3.4. With the notation of Section 0, 

dim,(D’“‘)) = dim,(D) + r. 

Proof. It is clear (using [14, Theo&me 2, p. 601) that 

dim(D)+r~dim(D(~‘))~dim,(D(s~‘))~dim,(D[X,, . . ..X.])=dim,(D)+r. 
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Conversely, let I/ be a valuation overring of D realizing the valuative dimension of 

D and let K be the quotient field of D. We consider 

R:= V+(X, ,..., X,)K[X ,,..., X,]. 

It is easy to see that R is an overring of D’s” with 

dim,(R) L dim(R) 2 dim(V) + r = dim,(D) + r. 

The conclusion is now straightforward. 0 

Theorem 3.5. With the notation of Section 0, 
(a) The following statements are equivalent: 

(i) D is a Jaffard domain; 
(ii) DC” ‘) is a Jaffard domain and dim(D(“‘)) = dim(D) + r, for every t-2 1. 

(b) The following statements are equivalent: 
(j) DC’, r, is a Jaffard domain ; 

cij) D]Xi, . . . , X,] is a Jaffard domain and 

dim(D’“‘)) = dim(D[X,, . . . ,X,1) ( = g-dim(D[X,, . . . ,X,1)). 

Proof. (a) (i) @ (ii). By Corollary 3.3 and Proposition 3.4. 

(b) (j) = (jj). By Propositions 3.1 and 3.4, we know that 

dim(D[X,, . . . ,X,1) 2 dim(D@T’)) = dim,(D(s,‘)) = dim,(D) + r. 

Moreover, it is well known that dim, (D[X,, . . . , X,]) = dim,(D) + r ([14, 

Theoreme 2, p. 601). The conclusion follows from the fact that, in general, the 

valuative dimension is larger than the Krull dimension. 

(jj) =. (j) is a consequence of Proposition 3.4, since 

dim,(D)+r=dim,(D[X, ,..., X,]). 0 

We note that DC”‘) could be a Jaffard domain, even though D is not Jaffard, as 

the following example will show: 

Example 3.6. Let A, := k+ Yk(X)[ Y](r) be the l-dimensional pseudo-valuation 

domain considered in Example 2.6. We note that A, is not a Jaffard domain 

because dim,(A i) = 2 [l, Proposition 2.51 and that the polynomial ring A i [Z] is a 

3-dimensional Jaffard domain [ 1, O.l(iv)]. Let A2:=k(Y)[X](X) and set 

D:=A, fl A,. It is not difficult to see that D is a l-dimensional quasi-semilocal do- 

main with Max(D)={M:= Yk(X)[YlC,,f3D, N:=XA,nD}, D,=A,, and 

DN=A2. Hence dim,(D)=max{dim,(A,), dim,(A,)} =2. Set S=D\M and r= 1, 

and consider DC’, ‘) = D + ZAl [Z]. Since D[Z] (like Al [Z]) is a 3-dimensional Jaf- 

fard domain [l, Section 01, from Proposition 3.1 we deduce that dim(D@* ‘)) = 3. 

From Proposition 3.4 we easily compute dim,(D (‘, ‘)); thus we can conclude that 
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DC’,‘) is a 3-dimensional Jaffard domain, but D is not a Jaffard domain. Accor- 

dingly with Theorem 3.5, we have 

dim(D(s I’) = dim@ [Z]) = 3 1 dim(D) + 1. 

Example 3.7. From Theorem 3.5(a), we deduce that 

R,:=~]Y,,..., y,l+(X,,...,X,)z~,,[X,,...,X,, y,,..., Y,l 
and 

&:=UU, V,,,)[Y,, *.., Y,l 

+w,, .--, mau, q,,w,, . ...& y,, **., Y,l 

are both non-Noetherian, non-Prufer Jaffard domains for every rz 1 and n L 0 with 

dim@,) = n + 1 + r, dim(R,) = n + 2 + r. 

We end the paper with a result which allows one to compute the 9 

dim(D[X,, . . . , X,]) in an important case. 

Proposition 3.8. With the notation of the beginning of this section, if 

DSW,, . . . . X,] is a catenarian domain, then 

g-dim@ [X,, . . . , X,]) = dim(D) + r. 

Proof. Let 

be a prime chain of D[X], realizing pdim(D[X]), where Q E y, Pi E E\ y for iz 1 

and POE 9 for 1 <j< h. Since PA = Q>XD,[X] (because QE $7), two cases are 

possible: 

Case 1. Pi = Q = XD, [Xl. In this case, h = r since the height of Q in Ds [X] (or, 

equivalently, in D[X]) is r. Moreover, S-coht(Q) 5 dim(D). Thus ,$j?-dim(D[X]) I 

dim(D) +r and, since the opposite inequality always holds, then necessarily 

Fdim(D [Xl) = dim(D) + r. 
Case 2. PL = QSXD, [Xl. We have the following diagram of inclusion of prime 

ideals: 

d Q 
I/l 

XD, [Xl h 
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where d (resp., I) is the maximal length of the saturated chains between A4 and 

XDs [X] (resp., Q and XDs [Xl) inside D (So) Since 9 is stable for generalizations . 
and Ds [X] is catenarian, I + r = h. Moreover, d= dim(D) and R is stable for 

specializations, thus dz t + 1. 
In conclusion, d + rz t + I+ r = t + h; thus d + Y = t + h since the opposite inclusion 

always holds (cf. Proposition 3.1). 0 

From Corollary 3.3 and Proposition 3.8, we immediately deduce the following: 

Corollary 3.9. With the notation of Section 0, if Ds is a universally catenarian do- 
main, then dim(D @,“)) = dim(D) + r, for every rz 1. 0 

The last example that we give is to show that it is possible to have 

max{ dim(D) + r, dim(Ds [Xi, . . . , X,.])} 

< dim(DcS’)) = 9’dim(D[X,, . . . ,X,1) 

;dim(D[X,, . . ..X..]). 

Example 3.10. Let k be a field and Z,, Z,, Z,, Z, indeterminates. We con- 

sider D:= k+ Z,k(Z,)[Z&,, + Z,k(Z,, Z,, Z3)[Z4]Cz4j. We know from [l] that 

dim(D) = 2, dim,(D) = 4. Moreover, a direct verification shows that the poly- 

nomial ring D[X] is a Sdimensional Jaffard domain (see also below). Let P:= 

Z&(Z,, z,, Z3W41(Z4, be the height 1 prime ideal of D and let S: = D \ P. Clearly 

Dp is a l-dimensional pseudo-valuation domain with dim,(Dp) = 2 and thus 

dim(D,[X]) = 3 (cf. [l] and [lo]). Let DC” ‘):= D + XDp[X] . Clearly 

and 

max(dim(D) + 1, dim(Dp[X])} = 3 

min{dim D[X], S-dim(D) + dim(D,[X])} = 5 

because S-dim(D) =2 [7, Definition 2.81. More precisely, the prime spectrum of 

D+ XD,,[X], as partially ordered set, has the following form: 

‘T M+XD,Wl 

. . . (G) 
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where M is the maximal ideal of D, P*:= PD,[X] flDcsl), F(X) is an irreducible 

polynomial with coefficients in K: = k(Z,, Z,, Zs, Z,) (which is the quotient field of 

D), (F):=FK[X] nD(s~l) and G(X)=Z,X-Z,Z, EK[X]. In D(” ‘) there are two 

kinds of prime ideals upper to (0): the height 1 maximal ideals and those contained 

in P* (since ht(P*) = 2). From Theorem 1.1 and Theorem 3.2, it follows that 

dim@” “) = y-dim@ [Xl) = 4. 

Finally, we point out that the following question arises naturally from the theory 

developed in the present paper: Is D(‘,‘) a strong S-domain for every rz 1, when 

D’s*” is? By our Proposition 2.3, this problem can be reduced to the following: Is 

R [X, Y] a strong S-domain when R [X] is? The question of the transfer of the strong 

S-property to polynomial rings is discussed in two recent papers by S. Kabbaj 

[ll, 121. Although several partial affirmative results were obtained, the general 

question remains open. 
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