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DIVISORIAL PRIME IDEALS IN 
PRÛFER DOMAINS 

BY 

M A R C O F O N T A N A * J A M E S A. H U C K A B A A N D I R A J. P A P I C K 

ABSTRACT. Given a Priifer domain R and a prime ideal P in R, 
we study some conditions which force P to be a divisorial ideal of R. 
This paper extends some recent work of Huckaba and Papick. 

1. Introduction. Let R be an arbitrary Priifer domain and PeSpec(R). In 
this paper we study some conditions which force P to be divisorial, i.e., P = Pv. 
This work expands upon a recent paper of Huckaba and Papick [5]. In 
particular we generalize [5, Proposition 3.10] and [5, Proposition 3.11]. Un
explained terminology and unreferenced facts about Priifer domains may be 
found in [3]. 

2. Some sufficient conditions for P to be divisorial. Let R be an arbitrary 
Priifer domain with quotient field K, and P a nonzero prime ideal of R. It is 
known that if P is maximal, then P is divisorial if and only if P is invertible [5, 
Corollary 3.4]. Hence, we shall concentrate on nonzero, non-maximal prime 
ideals of R. 

Let P be a nonzero, non-maximal prime ideal of R. We know that P 1 is a 
subring of K [5, Theorem 3.8] and in particular P1 = (P:KP) [5, Proposition 
2.3], as well as P1 = RPH ( f \ RMJ, where {Ma} is the set of maximal ideals of 
R not containing P [5, Theorem 3.2]. Hence we have the following inclusion of 
rings: 

Rçp-1cs=icn(n«i^Y 
\ at ' 

We shall prove that if PX^S, then P is divisorial. However, first let us consider 
a somewhat novel result which is at the opposite extreme of our Priifer setting. 

PROPOSITION 2.0. Let R be an arbitrary integral domain with quotient field K 
and (O)^PeSpecCR). If P1 is not a subring of K, then P is divisorial 

Proof. Since P 1 is not a subring of K, then (P:KP)^P~\ Let J = (R : P x). 
Recall that J = PV [5, Lemma 2.1]. To complete the proof we will show that 
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J = P. It suffices to prove that J g R L e t r e J. Since rP 1P^P and PP1 £ P , it 
follows that re P. Hence, J = P. 

We are now prepared to state our main result. 

THEOREM 2.1. Let R be a Prufer domain with quotient field K, and P a 
nonzero, non-maximal prime ideal of R. If P^S = K H (H \ ) , where {Ma} 
is the set of maximal ideals of R not containing P, then P is divisorial. 

Before we establish Theorem 2.1, a lemma is needed. 

LEMMA 2.2. Same notation as the theorem. Then P - 1 ^ S if and only if there 
exists a finitely generated ideal I of R such that I ç P and l£Ma for each a. 

Proof. Recall that P 1 = RPHS, and use [4, Corollary 2]. 

Proof of Theorem 2.1. Since .R is a Prûfer domain, it suffices to show that P 
is an intersection of finitely generated ideals of .R. Let I b e a finitely generated 
ideal of R such that I^P and I^M^ for each a. For aeR\P, we claim that 
P^(I,a). It is enough to check this assertion locally. For Me{Ma}, we 
obviously have RM = (I, a)RM = PRM If M£{Ma}, then PRM ç aRM = (I, a)JRM 

in the valuation ring RM. Finally, we wish to show that P = f] {(L r) ' reR\P}. 
Since P is non-maximal, it will suffice to show for M maximal with P^M, and 
reM\P that r£(I, r2). This follows since r<£(r2)RM = (I, r2)RM. 

COROLLARY 2.3. Same notation as the theorem. If P ^ U M a , then P is 
divisorial. 

Proof. Let a e P \ U Ma and set 7 = (a). The desired conclusion follows from 
Lemma 2.2 and Theorem 2.1. 

COROLLARY 2.4. Same notation as the theorem. If P is the radical of an 
invertible ideal I, then P is divisorial. 

Proof. Apply Lemma 2.2 and Theorem 2.1. 

COROLLARY 2.5 [5, Proposition 3.10]. Same notation as the theorem. If P is 
contained in all but a finite number of maximal ideals, then P is divisorial. 

Proof. Use Corollary 2.3 and Theorem 2.1 to obtain the result. 
Before stating our final corollary, we need some terminology. A domain R 

has property (#) if C\M&V1
 RM¥" PlMev2 ^ M fc>r any two distinct subsets Vx and 

V2 of Max(,R); Max(JR) being the set of maximal ideals of R. 

COROLLARY 2.6. Let R be a Prùfer domain having each overring satisfy 
property (#). If P is a nonzero, non-maximal prime ideal of R, then P is 
divisorial. 

Proof. This follows immediately from [4, Theorem 3], Lemma 2.2, and 
Theorem 2.1. 
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COROLLARY 2.7. Same notation as the theorem. If P = PRP, then P is 
divisorial. 

Proof. The fact that P = PRP, implies that P is comparable with all ideals of 
R, and in particular, P is contained in each maximal ideal of R. Hence P is 
divisorial by Corollary 2.5. 

REMARK 2.8. There exists a nonzero, non-maximal prime ideal P of the ring 
of entire functions R(R is a Bézout domain) such that P is not divisorial. In 
fact, P~{ = R [5, Example 3.12]. 

3. The ideal transform of P. In this final section we study an interesting 
special case arising from the previous section. More specifically, let R be a 
Pnifer domain and P a nonzero, non-maximal prime ideal of R. Recall the 
ideal transform of P, T(P) = [J™=1(R:KPn), and note that T(P) = 
Rp0 rï (PL RMJ, where P0 = fln = i Pn a n d {Ma} is the set of maximal ideals of R 
not containing P [3, Exercise 11, p. 331]. Hence, since P 1 = RP Pl(f\ RMJ [5, 
Theorem 3.2], we have the following tower of rings: 

R^P~]^T(P)^S. 

Note that if P l ^T(P), it is immediate from Theorem 2.1 that P is 
divisorial. It is our intent to study when P" 1 ^ T(P), and as one consequence of 
our efforts we will give a different proof of the fact that P is divisorial in this 
setting. 

LEMMA 3.0. Let R be a Prufer domain and P a nonzero, non-maximal prime 
ideal of R. Then, P is a prime ideal of P \ (Recall that P is an ideal of P \ 
since P~'=(P:KP) [5, Proposition 2.3].) 

Proof. Since PeSpec(R), we know that PR(x)eSpec(R(x)), where R(x) = 
R[x]v, U = {feR[x]:c(f) = R} [1, Theorem 4]. Also, R(x) is a Bézout do
main, as R is a Priïfer domain [1, Theorem 4 and p. 558]. Hence the overring 
P~\x) is a quotient ring of R(x). Notice that P(P~1(x))i=P~\x) [3, Proposi
tion 33.1(4)]. Hence, PR(x)(P~\x)) - P(P \x)) is a prime ideal of P_1(x). 
Whence, there exists a QGSpec(P~1) such that P(P~\x)) = Q(P~\x)) [1, 
Theorem 4]. Therefore P = Q [3, Proposition 33.1(4)], and so P is a prime 
ideal of P \ 

We are now ready to analyze when P l^T(P). 

THEOREM 3.1. Let R be a Prùfer domain and P a nonzero, non-maximal 
prime ideal of R. If P^T(P), then 

(a) P~lÇ:T(P) is a minimal extension, i.e., there are no rings properly between 
P~l and T(P). 

(b) P is an invertible maximal ideal of P1. 
(c) P is a divisorial ideal of R. 
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(d) T(P) = n « Roa = S' where {Qa} is the set of prime ideals of R not 
containing P. 

(e) P~n is never a ring for n>\. 

Proof, (a). Let us suppose A is a ring satisfying P~1(^A^T{P). Since T(P) 
and A are intersections of localizations of R at certain prime ideals of R (R is 
a Priifer domain), there exists a prime ideal Q in R such that A^RQ and 
T(P) £ Ra. We claim P^Q, for if P £ Q there exists Q' G Spec(T(P)) such that 
T(P)a> = RQ [6, Exercise 16(c), p. 149]. This contradiction establishes our 
claim. Hence A ç R Q ç JRP, and s o A ç K p O (f\ RMJ = P'x [5, Theorem 3.2]. 
Therefore A = P ~ \ and the proof is complete. 

(b) Assume P is not a maximal ideal of P _ 1 . (Recall by Lemma 3.0 that P is 
a prime ideal of P_1.) Since P - 1 £T(P) is a minimal extension, we know that 
PP

l = T(P)p-iXP [2, Théorème 2.2]. However Pp1 = JRP, since . R ç P ^ ç R P , and 
so T(P) c R p f i (Ha ^ M ) = ^ \ a contradiction. Hence P is a maximal ideal of 
P{. 

To show that P is invertible in P" 1 we will assume to the contrary. Thus the 
inverse of P with respect to P _ 1 equals P ~ \ i.e., (P _ 1 : P) = P~l [5, Corollary 
3.4]. However, (F - 1 : P) = (jR : P2)^P2. Thus, P ^ P 2 . So, since P~n -
(JR : Pn) = ((« : P n - 1 ) : P), we can conclude by induction that P'n = P" 1 for 
each positive integer n. Therefore P1 = T(P), the desired contradiction. 

(c) As P is a non-maximal prime ideal of JR, we see by (b) that P _ 1 ^ JR, and 
thus PV^R. Therefore, P = PV, as Pv is an ideal of P _ 1 [5, Lemma 2.1]. 

(d) Since T(P) c f\ jR^ = S ' [6, Exercise 16(d), p. 149], it suffices to show 
S'^T(P). Assume otherwise. As in part (a), there exists a prime ideal 
QeSpec(jR) such that T(P)^RQ and S'£RQ. Hence P^Q, and so T(P)^ 
RQ^RP. Whence, T(P)^RPn(Ç)otRMJ = P~\ a contradiction. Therefore, 
T(P) = S'. 

(e) Suppose Pn is a ring for some n > 1. Then P~n = JRP H (H« ^ M J = P _ 1 

[5, Theorem 3.2], and by induction P _ l = T(P). This contradiction completes 
the proof. 

REMARK 3.2. (a) Let R be an arbitrary integral domain with quotient field K, 
and PeSpecCR). Note that if P'1 is a subring of K, then P~1 = (P:KP) [5, 
Proposition 2.3]. Hence P is an ideal of P"1 , but P need not be a prime ideal of 
P1 [5, Example 2.5]. However, if R is a Priifer domain, then Lemma 3.0 
shows that PeSpec(P"1). 

(b) The converse of Theorem 3.1 (b) is valid, i.e.; under the assumptions of 
Theorem 3.1, if P is an invertible maximal ideal of P _ 1 , then P~l^T(P). To see 
this notice that P ^ i P 1 :KP) = P~2^T(P). 

(c) The converse of Theorem 3.1(c) is not generally true. Let R be a 
valuation domain, and P a nonzero, non-maximal prime ideal of R such that 
P = P2. Then PX = T(P), yet P = PV (Corollary 2.5). 
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(d) The converse of Theorem 3.1(d) is not generally true. Let R be a 
valuation domain and P a nonzero, non-maximal prime ideal of R such that P 

is unbranched, i.e., P = UQ?SUC(R) Q. Observe that P~l = JRP [5, Corollary 3.6] 
and S' = H RQ = Rp- Therefore, 

Q^P 
QeSpec(R) 

and so T(P) = S\ yet P1 = T(P). 
(e) The converse of Theorem 3.1(e) is obviously true. 
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