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UNIVERSALLY INCOMPARABLE RING-HOMOMORPHISMS

DAVID E. DOBBS AND MARCO FONTANA

A homomorphism / : R •* T of (commutative) rings is said to be

universally incomparable in case each base change R •*• S induces

an incomparable map S -*• S ®n T . The most natural examples of
n

universally incomparable homomorphisms are the integral maps and

radiciel maps. I t is proved that a homomorphism f : R -*• T is

universally incomparable if and only if / is an incomparable

map which induces algebraic field extensions of fibres,

* k{Q) , for each prime ideal Q of T . In several

cases ( / algebra-finite, T generated as i?-algebra by

primitive elements, T an overring of a one-dimensional

Noetherian domain R ) , each universally incomparable map is

shown to factor as a composite of an integral map and a special

kind of radiciel.

1. Introduction

Considerable a t ten t ion has been paid over the years to the propert ies

of lying-over, going-up, going-down, and incomparability concerning the

behavior of prime ideals r e l a t i ve to homomorphisms, especial ly inclusion

maps, of commutative rings (cf. [12, page 28]) . I t has seemed natural to
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consider as well the corresponding universal properties, and most of these

have been characterized. [As usual, if P is a property of homomorphisms,

then if •* T is said to be universally P in case, for each change of base

R -*• S , the induced homomorphism S -> S ® T satisfies P .) Indeed,

universally lying-over is equivalent to lying-over [77, Proposition 3-6.1

(ii), page 21+U]; universally going-up is equivalent to integral [2, Lemma,

page 160]; and universally going-down has been closely linked in [4] with

the notion of weak normalization, in the sense of Andreotti and Bombieri.

Our purpose here is to complete this circle of ideas by studying the

universally incomparable homomorphisms. These maps are characterized first

in Theorem 2.2 in ways that are, perhaps surprisingly, not wholly analogous

to characterizations of related classes of homomorphisms in [4], [13].

The most natural examples of universally incomparable homomorphisms

are the integral maps and the radiciel maps. (As in [7 7], a homomorphism

f : R •*• T is said to be radici&'l in case the induced function

/* : Spec(T) •*• Spec(i?) is an injection and whenever /*(<?) = p , the

resulting field extension R /pR -*• T IqT is purely inseparable. As

radiciel is equivalent to universally radiciel [17, Proposition 3.7.1> page

2U6], it evidently implies universally incomparable.) Since any

composition of incomparable maps is incomparable and since tensor product

commutes with direct limit, any composition of universally incomparable

maps is universally incomparable. A sharp converse is available in the

algebra-finite case, for then any universally incomparable map is the

composite of an integral map with a special type of radiciel homomorphism

[Remark 2.12 (b)j. Moreover, each incomparable map is universally

incomparable in the algebra-finite case (Corollary 2.7), but not in general

(Remark 2.3). Factoring results of the above sort are also obtained for

two types of maps R •+ T which need not be algebra-finite. In the first

of these (Corollary 2.8, Remark 2.12 (c)), T is assumed to be generated

as an .ff-algebra by algebraic elements of a particular kind. The second

(Proposition 2.13) addresses a Noetherian context and leads to a geometric

example (Example 2.ll*) illustrating that universally incomparable overring

extensions form a strictly larger class than the universally going-down

overring extensions characterized in [4].

Throughout, all rings are assumed commutative, with unit; and all
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ring-homomorphisms are assumed u n i t a l . In addi t ion, X = X , . . . , X

denote commuting algebraical ly independent indeterminates over the

appropriate r ings . I f f : R ->• T i s a ring-homomorphism, then /

denotes the induced homomorphism R^X , . . . , Xl -*• T\j( , . . . , X "] ; and

i f p i s a prime of R , then k (p) denotes R /pR and T denotes
K p p p

Tftn\ \ (= T ®ff R ) . Any unexplained material is standard, as in [9] and

[72].

2. Results

Before characterizing universally incomparable homomorphisms, we begin

by adapting some material from [73]. Let A be a commutative ring and l e t

p € SpecU) . The prime ideal pA[X] of the polynomial ring A[X] wi l l

be denoted by p* . For each monic i rreducible a € k.(p)[X] , the upper

of p corresponding to a i s

<p, a> = {h € A[X] | the canonical image of h in

[A/p)[X] i s d iv is ib le by a} .

The following resul t was obtained by McAdam [73, Theorems 1 and 2] for the

case of inclusion maps of domains, but the methods of [73] carry over

d i rec t ly , and so we omit the proof.

LEMMA 2.1 . Let R be a ring and p a prime ideal of R . Then:

(a) Let j : R •*• R[X] be the canonical inclusion map. Then the

prime ideals P of R[X] such that j (P) = p are of two types: p*

and the uppers of p . Moreover, p is properly contained in each upper

of p ; and if a , y are distinct monic irreducible polynomials in

kR(p)[X] , then <p, a> and <p, y> are incomparable.

(b) Let f : R -*• T be a ring-homomorphism, with f : R[X] •*• T[X]

the induced homomorphism. Then for each monic irreducible a € k (p)[X] ,
n

the /.-Iprimes Q of T[X] such that f (Q) = <p, a> are the uppers of the

form (q, $> , where q € Spec(r) , f~ (q) = p , and the canonical

inclusion kJp)[X] -*• k (q)[X] sends a to a polynomial which is
ti i
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divisible by 3 . Moreover, the primes Q of T[X] such that

f^(Q) = p* are of two types: q* and (q, 6> , where q € Spec(T) ,

f (q) = p , and no manic irreducible polynomial in k (p)[X] is divisible

by 6 .

The following definition will be of fundamental importance. A ring-

homomorphism f : R •*• T is called residually algebraic if, for each

q € Spec(T) and p = f (q) , the induced field extension kJp) •*• k (q)

is algebraic. The role of this property in the following characterization

of "universally incomparable" should be contrasted with the part played by

purely inseparable requirements in characterizations of radiciel and

various related properties [4, Theorems 2.1 and 2.5] {of. also [J3,

Theorems 3 and B]).

THEOREM 2.2. For a ring-homomorphism f : R •+ T > the following

conditions are equivalent:

(i) f is universally incomparable;

(ii) f is incomparable and residually algebraic;

(Hi) the inclusion map /(if) •* T is universally incomparable;

(iv) there exists n > 1 such that f is incomparable;

(v) /"_ is incomparable;

(vi) for each n ~> 0 , / is incomparable;

(vii) for each n 2 0 , / is incomparable and residually

algebraic.

Proof. It is evident that (vii) =» (vi) =» (v) =» (iv).

(i) =» (vi) . Trivial since R^, ..., X^[ ®R T s T\X±, •••,*„] •

(vi) =» (i). It is known that direct limit preserves incomparability

[6, Proposition 2.3]. Consequently, the criterion in [4, Proposition 2.2]

reduces the present assertion to the easy observation that if / is

incomparable, so is the induced map R/j •* T/JT for each ideal J of R .
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(i) <=• (Hi), f is incomparable if and only if the inclusion map

f(R) \X , . . . , X "\ •*• T[X , . . . , X ~\ i s incomparab le , because

f(R)[X , . . . , X 1 is the image of / . The present assertion therefore

follows since we have already seen that (i) *=> (vi).

The remainder of the proof will sketch how to modify various arguments

of McAdam [13], originally used to treat (what [4, Theorem 2.5] showed to

be) universally unibranched inclusion maps of domains.

(v) =* (H). Assume (v). That f is incomparable now follows from

Lemma 2.1 (a) and the fact that /~1(q) = p entails f^iq*) = p* . In

view of Lemma 2.1 (b), we can show that f is residually algebraic by

reasoning as in [73, page 709, lines 4-8].

(ii) =* (v). Assume (ii). If (v) fa i ls , there exist distinct primes

Ql C Q2 ° f T [ * ] S u c h t h a t ^ l 1 ^ = - f i 1 ^ = P € Spec{R[X]) . If

P = (.p, a) then Lemma 2.1 gives Q. = Iq., y .) , where / (a.) = p and

q. # qo . As Q. l ies over q. , i t follows that q c q , contradicting

incomparability of / . The remaining case, in which P assumes the form

p* , may be treated as in [73, page 709. lines 14-18].

(iv) •* (v). Since [f ) = / , the present assertion follows from

the f irst observation in the above proof that (v) °* (ii).

(vi) =» (vii). Since (/ ) = f , the present assertion follows

since we have already seen that (v) °* (ii)•

(v) =» (vi) . Since / + 2 = (/ ) 2 s11^ since (v) «=» fiij , i t is enough

to show that TiiJ implies / is residually algebraic. Accordingly,

assume (ii) , and consider Q € Spec(T[#]) , with P = / " ( § ) . If $ = <7"

then P = p* with p = f (q) , and the asserted algebraicity of

kft[X](p) ~ k
i?(p)(^r) * kT[X]^^ ~ kyWW follows from the assumed

algebraicity of k^ip) -*• kj,(q) . In view of Lemma 2.1 (b) , the residually

algebraic nature of / readily assures that the only remaining case is
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Q = <q, 6> , P = <p, a> . By taking suitable localizations of factor-
r ings, precisely as in [73, page 710], we need only prove the following
statement. If K c K is an algebraic field extension and P. is a

maximal ideal of K.[X] , then the field extension K^[X]/P^ •+ KO[X]/P^ is

algebraic. This, however, is evident since algebraicity is transitive.

The proof is complete.

REMARK 2.3. An incomparable ring-homomorphism need not be

universally incomparable. Surely the simplest example of this is a trans-

cendental field extension k -*• k(Y) , for i t is evidently not residually

algebraic. Of course, k(Y) is not algebra-finite over k (by, for

instance, Hilbert's Nullstellensatz), thus suggesting the positive result

in Corollary 2.7 below.

The following definition will be helpful. If f : R •*• T is a ring-

homomorphism and p € Spec(i?) , then T(p) = T(p; f) will denote

T®Rkn(p) [s T /p? ] . Notice that Spec(T(p)) is isomorphlc, qua

topological space or partially ordered set, with

[q € Spec(T) | fX(q) = p} .

When the latter set is empty, T(p) is the zero-ring, whose dimension is

conventionally taken as -1 .

The T(p) notation leads to the following characterization of

incomparability. In view of the above comments , i ts proof may be left to

the reader.

LEMMA 2.4. For a ring-homomorphism f : R -*• T , the following
conditions are equivalent:

(i) f is incomparable;

(ii) for each p € Spec(i?) such that T(p) ? 0 , the canonical
homomorphism k (p) -»• T{p) is incomparable;

n

(Hi) for each p d Spec(fl) , dim(r(p)) 5 0 ;

(iv) for each p € Spec(i?) such that T(p) ? 0 , the induced

map R -*• T is incomparable.
P P

In view of Theorem 2.2 [(i) <=> (ii)], we obtain characterizations of
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"universally incomparable" by augmenting each of the conditions in Lemma
2.it with "for each p € Spec(i?) such that T(p) ± 0 , the canonical ring-
homomorphism k (p) -»• T(p) is residually algebraic". Next, we tend to theH
zero-dimensional case, by showing that universally incomparable, in that

context, implies integral.

PROPOSITION 2.5. Let f -. R •+ T be a ring-homomorphism. Then:

(a) Let R, T each be zero-dimensional rings. Then f is integral

if (and only if) f is residually algebraic.

(b) Let f appear in a pullback diagram

f

g

in which C, D are zero-dimensional rings, g is an inclusion, T is

quasilocal, and v is surjective. Then f is integral if (and only if)

f is residually algebraic.

Proof. (a) By passing to /(if) •+• T , we may assume that / is an
inclusion map. If the result fa i ls , select b € T such that b i s not
integral over R . Then

S = <bn + r bn + . . . + r b + r \ r. € i? for each i; n > l\ u {1}

is a multiplicative subset of T which does not contain 0 . Accordingly
(cf. [72, Theorem l ] ) , T has a prime ideal N which is disjoint from
S . Let M = N n R . As N and M are maximal ideals in T and R ,
respectively, algebraicity of the field extension R/M •* T/N produces an
equation

(b+N)n + (lyWlOfi+ff)""1 + . . . + rn+N = 0 € T/N

for suitable r. € R , n > 1 . But then

bn + r^bn~X + . . . + r n € / ? n S = 0 ,

the desired contradiction.
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(b) It is well-known (and easy to see) that J = ker(u) coincides

with ker(w) , so that D (respectively, C ) may be identified with Til

(respectively., R/I ). One readily verifies then that g inherits the

residually algebraic property from f . Therefore, by (a) , g is

integral. Applying [£, Proposition 2.2 (10)] to the above pullback diagram

or calculating directly with the help of the above identifications, one

shows that / is integral, completing the proof.

We pause to record an application of Proposition 2.5 (b). Let

f : R -*• T be an inclusion map of rings such that Spec(i?) = Spec(T) as

sets (or, equivalently, as topological spaces). Then / is integral if

(and only if) f is residually algebraic. (For the proof, we may assume

R # T . Then R is easily seen to be quasilocal, say with maximal ideal

M , and we may apply Proposition 2.5 (b) to the pullback description

It is interesting to note that "Spec(i?) = Spec(T) as seta' is not a

universal property. (Contrast the situation for schemes*.) Indeed, let

K/F be a transcendental extension of distinct fields, B = #|[*]| = K + M

(with M = XB ), and A = F + M . It is well-known (of. [9, Exercise 12,

page 202]) that SpecU) = {0, M) = Spec(S) . However k AM) •+ kAM) is

just F -*• K , which is not algebraic. Thus, by Theorem 2.2

[(i) <=> (ii) «=»• (v) ], the inclusion map A[Y] -*• B[Y] is not incomparable;

a fortiori, S~pec(A[Y]) ± Spec(S[J]) .

We next consider the algebra-finite context.

PROPOSITION 2.6. Let f : R -f T be an incomparable ring-

homomorphism relative to which T is algebra-finite over R and R is

integrally closed in T . Then f is radidel. Moreover, if q € Spec(T)

and p = f (q) , then the canonical field extension ^p(p) •* kSq) is an

isomorphism.

Proof. By passing to f(R) -> T , we may assume that / is an

inclusion map. Let q, p be as in the statement. Note that R is

integrally closed in T ; by incomparability, qT is isolated in its

fibre (over pi? ) ; and T is algebra-finite over R . Thus by

Zariski's Main Theorem (as in, for instance, [7]), there exists an element
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g € R \pR such tha t [T ) = (i? ) . Since g i s a uni t of R (and of
c L ir *7 IT «7 ir

T ) , this entails T = R , whence qT = pR . If j • T -+ T is the

canonical homomorphism, it follows that j (pR ) = q . Hence the

canonical function Spee(T) •*• Spec(i?) is an injection.

It suffices to prove the final assertion. For q, p as above, the

fact that T = R combines with [9, Corollary 5.2] to yield T S T .

Thus we obtain the canonical identifications

kT{q) = Tq/qTq = Tp/qTp = Rp/pR? = kR{p) ,

completing the proof.

COROLLARY 2.7. Let f : R •*• T be a ring-homomorphism relative to

which T is algebra-finite over R . Then f is universally incomparable

if (and only if) f is incomparable.

Proof. Let S be the integral closure of R in T . Then / = hg ,

for the canonical homomorphisms g : R •*• S and h : S •*• T . By

integrality, g is universally incomparable, and so i t suffices to show

that h is universally incomparable. However th i s , in turn, follows from

Proposition 2.6 since h inherits incomparability from f . The proof is

complete.

The preceding ideas permit us next to give another class of examples

of universally incomparable homomorphisms. Following [3] , we shall say

that an element b of a commutative /?-algebra T is primitive over R

in case g{b) = 0 for some g Z R[X] with at least one coefficient equal

to 1 .

COROLLARY 2.8. Let f : R -»• T be a ring-homomorphism relative to

which T may be generated as an R-algebra by a set S = \b.} , where each

b. is primitive over R . Then f is universally incomparable.

Moreover, if R is integrally closed in T , then f is radiciel.

Proof. By Theorem 2.2 [(Hi) => (i) ], we may assume that / is an

inclusion map. In addition, we may assume that T is algebra-finite over

R . (The points involved are that T = lim R\b , . . . , b \ where

{£>, , • •. , b } ranges over the finite subsets of 5 ; and direct limit
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preserves (universal) incomparability [6 , Proposition 2.3]-) Thus, we can

suppose t ha t S = {b , ..., b } , so tha t f "factors" as

R c R\b^ c R\b±, b21 c . . . c R\bvb2, . . . , b n j cR\blt ...,bn] = T .

However for each £ > 0 , b. is primitive over R\p-> 9 - •. , b."] , and so

[3 , Theorem] assures that the extension R\b , ..., b.) <= R\b . . . , b. \

is incomparable. By considering the displayed tower, we thus see that f

is incomparable, and so an application of Corollary 2.7 establishes the

f i r s t assertion. Using the fact that direct limit preserves radiciel [4,

Lemma 2.U (b ) ] , and appealing to Proposition 2.6 instead of Corollary 2.7,

one may fashion a para l le l proof of the second assertion.

REMARK 2.9. The hypothesis of Corollary 2.8 was suggested by a

characterization of integral i ty in [3 , Remark 8 ( c ) ] . We next record a

nonintegral application of Corollary 2.8: if T i s an overring of a

Priifer domain R , then the inclusion map f : R •*• T is radiciel . Indeed,

each element of T i s primitive over i? (by either [10, Theorem 2] or [3,

Corollary 5 3) and R i s integrally closed (in T ) , so that the second

assertion in Corollary 2.8 yields the desired conclusion.

Another proof of the resul t in the preceding paragraph uses ideas that

wi l l reappear in the proof of Proposition 2.10. To wit: since f is

f l a t , i t is a universally going-down overring extension, and hence is

radic ie l by [4, Theorem 3.17 and Corollary 3-12 (b)] .

Let P be a property of (some) ring-homomorphisms. Following [5] , we

shall say that a domain R i s a P-donwin in case the inclusion map R •*• T

sa t i s f i es P for each overring T of R .

PROPOSITION 2.10. For an integrally closed domain R , the following

conditions are equivalent:

(i) R is a universally incomparable-domain;

(ii) R is a radiciel-domain;

(iii) R is a -universally going-down-domain;

(iv) R is a Prufer domain.

Proof. (ii) =» (i). Trivial.

(iii) «=> (iv). This is [5, Corollary 2.3].
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(i) =» (iv). I t is well-known that an integrally closed incomparable-

domain must be a Prufer domain {of. [9, Theorem 26.2]).

(iii) =* (ii). Assume (Hi) , and consider the inclusion map f : R -*• T

for an overring T of R . Since f is a universally going-down overring

map, 14, Theorem 3.173 implies that / satisfies the UGD property and so,

by [4, Corollary 3.12 (b)] , / is radiciel , completing the proof.

REMARK 2.11. One may, in the spir i t of [5] , proceed to develop a

theory for universally incomparable-domains. Typical results state that a

domain R is a universally incomparable-domain if and only if each

localization RM i s ; and, as above, each universally going-down-domain is

a universally incomparable-domain. However, such domains seem less

fruitful than the universally going-down domains, since they fail to

sustain the analogue of [5, Theorem 2.6] . Indeed, there is no (universally

incomparable-) domain R for which the inclusion map R •* T is

(universally) incomparable for each domain T containing R : consider

T = R[X] !

We next formalize a concept which has appeared implicitly in

Proposition 2.6 and Corollary 2.8. A (typically injective) ring-

homomorphism f : R -*• T will be called an essential-identity (and R, T

will be called essentially equal) if, for each p € Spec(fl) such that

T(p) + 0 , the induced map R •* T is an isomorphism. The next remark

collects some relevant material.

REMARK 2.12. (a) Let / be an essential-identity. Then Lemma 2-U

[(iv) •* (i)] implies that f is incomparable. In fact, f is universally

incomparable since, by the la t te r part of the proof of Proposition 2.6, /

is actually radiciel.

(b) By (a) , the combined effect of Proposition 2.6 and Corollary 2.7

is the following assertion. Let f : R -*• T be an incomparable ring-

homomorphism relative to which T is algebra-finite over R . Let S be

the integral closure of R in T , and consider the canonical

homomo rph isms g : R -*• S and h : S -*• T • Then / = hg is universally

incomparable since g is integral and h is an essential-identity.

(c) I t is easy to verify (using [JJ, Propositions 6.1.2-6.1.6, pages

128-130]) that direct limit preserves the essential-identity property.

Thus, by (b), the second assertion of Corollary 2.8 may be strengthened, in
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case / is an injection, to say that R and T are essentially equal.

(d) The characterization of flat overrlngs in [14, Theorem 1] readily

leads to the following result . Let T be an overring of a domain R ,

with f : R •*• T the inclusion map. If T is /?-flat, then / is an

essential-identity; the converse holds if dim(i?) = 1 .

In the absence of finite-type hypotheses, a factoring result in the

sp i r i t of Remark 2.12 (b) seems unavailable. However, we do have the

following important special case.

PROPOSITION 2.13. Let T be an overring of a one-dimensional

Noetherian domain R , with f : R •*• T the inclusion map. Then f is

universally incomparable. Indeed, if S denotes the integral closure of

R in T , with g : R -*• S and h : S •* T the canonical maps, then

f = hg , g is integral, and h is flat. (Hence h is also an

essential-identity and radiciel.)

Proof- The f i rs t assertion may be seen directly since the Krull-

Akizuki Theorem, in the version given in [/, Proposition 5, page 500],

readily implies that f satisfies condition (ii) in the statement of

Theorem 2.2.

We may therefore assume that R = S is integrally closed in T . By

Remark 2.12(a) and (d), i t is enough to prove that f is an essential-

identity. Consider M € Spec(i?) such that T(M) # 0 ; we must show that

R -»• T,. is an isomorphism. Without loss of generality, M + 0 . By abus
M M

de langage, we may further assume that {R, M) is quasi-local, and need to

show that f is surjective.

I t is enough to prove that R contains each element u € T . Set

A = R[u] • Choose a nonzero prime N of T . (Such exists since

T(M) + 0 .) By the remarks made two paragraphs ago, N n A is isolated in

i t s fibre (above M ). Then, just as in the proof of Proposition 2.6,

Zariski's Main Theorem leads to A = R • This completes the proof.

One consequence of Proposition 2.13 is that each one-dimensional

Noetherian domain R is a universally incomparable-domain. In view of

Remarks 2.11 and 2.9, i t is important to note that such R need not be a

universally going-down-domain. In closing, we shall i l lustrate this fact

with a geometric example.
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EXAMPLE 2.14. Let R be the local ring at the origin for the nodal

2 3 2curve y = x + x . In other words, R is the localization of

C[X, Y ] / ^ - ^ 3 - ^ ) at the canonical image of U , i) . Certainly, R is

a one-dimensional local (Noetherian) domain, say with maximal ideal M .

Let R' tie the integral closure of R ; of course, R' has but two

maximal ideals, say N and il/? . As R is seminormal with residue

fields of characteristic zero, R is the weak normalization (in the sense

of Andreotti-Bombieri) of R in R' . So R' is not that weak

normalization, whence [5, Theorem 2.U] assures that R is not a

universally-going-down domain. Accordingly, by [5, Theorem 2.6] , R has a

valuation overring T such that the inclusion map f : R •*• T is not

universally going-down. However, T = {R')*, and, as predicted by

i

Proposition 2.13, / factors as the composite of the integral map R •* R'

and the radiciel (essential-identity, flat) map R' •*• T .
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