Locally Pseudo-Valuation Domains (*).
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Sunte. - In questo lavoro vengono studiate due controparti globali. della nozione di domindo di
pseudo-valulazione (abbreviato, PVD), un tipo di dominio quasi-locale diviso introdotto da
Hedstrom-Houston (Pac. J. Math., 75 (1978), pp. 137-147). La pit larga di queste coniro-
parti & la classe dei domini localmente di pseudo-valutazione (abbr., LPVD), la quale & con-
tenuta tra la classe dei domini di Priifer e quella dei domini seminormali localmente divisi.
L’altra & quello dei domini globalmente di pseudo-valutazione (abbr., GPVD); ciascun do-
minto B di tale classe & un LPVD con un sopraanello di Priifer unibranched canonicamenie
associato. Per i domini quasi-locali, le nozioni di LPVD, GPVD ¢ PVD coincidono. En-
trambe le classi (dei GPVD e dei LPVD) sono stabili in relazione a svariate costruzioni ed
operazioni della teoria dei domini. Ciascun sopraomello di wn dominio B é un LPVD se, ¢
solamente se, I & un LPVD la cui chiusura integrale & un dominio di Priifer. Se R é un PVD
avente V come sopraanello di valutozione canonicamente associato e se R* (risp., V*) ¢ la
chiusura integrale di B (visp., V) in un campo contenente R, allora B* ¢ un GPVD, avente V*
come sopraancllo di Priifer canonicamente associato. Numerosi esempi di LPVD ¢ GPVD
vengono costruiti.

1. —~ Introduction.

One of the most fruitful recent generalizations of the concept of a valuation
domain is that of a pseudo-valuation domain, or PVD. This type of quasi-local
domain, introduced by HEDSTROM-HOUSTON[17] and studied extensively thereafter ([6],
[18], [1], [11]), is particularly interesting sinece any pseudo-valuation domain R ad-
mits a canonically associated valuation overring ¥V with the same set of prime ideals
as R, such that B may be recovered from its residue-class field and V by a pullback
construction [1, Proposition 2.6]. It happens that any PVD is a divided demain, a
type of quasi-local going-down ring introduced in [5] (cf. also [12]), and one now
has at hand a theory of the so-called locally divided domains ([7], [12]). Accordingly,
it is natural to ask if PVD’s also admit a global counterpart, forming a class of semi-
normal domains intermediate between Priifer domains and locally divided domains,
possibly such that each of these new domains has an associated unibranched Priifer
overring from which its structure may berecovered a by pullback. This paper answers
the above question by finding two such counterparts.
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The first, and larger, of these counterparts is the class of loeally pseudo-valuation
domaing, or LPVD’s, introduced in section 2. A domain R is naturally defined to
be a LPVD in case R, is a PVD for each prime ideal P of E. The class of LPVD’s
clearly containg all Priifer domains and all PVD’s; it contains an abundance of
other semi-quasi-local domains, by applying the construction in [14, section 3] (see
Example 2.5 and Remarks 2.11 (b), (¢)); and it is stable under several domain-
theoretic constructions (see Remarks 2.4 (¢) and Propositions 2.6 and 2.7 ). Perhaps
the mogt interesting result in section 2 is the following part of Theorem 2.9: if R
is a LPVD, then each overring of R is an LPVD if and only if the integral closure
of R is a Priifer domain, While this statement may be viewed as a globalization
of [18, Proposition 2.7], its proof uses recent work on seminormality [2].

Section 3 treats the clags of GPVD’s, a second global counterpart to PVD’s.
Roughly speaking, a domain R is a GPVD in case R is an LPVD whose localizations
have pullback descriptions arising from a canonically associated unibranched Priifer
overring of R which has the same Jacobson radical as E. (For a more precise state-
ment, see the characterization of GPVD’s in Theorem 3.1.) Examples of Noetherian
GPVD’s are provided by the rings Z[+/d], where d is a square-free integer such that
d =25 (mod 8) (see [8] for details). By using the material on K-rings in [21], Ex-
ample 3.2 (b) presents a one-dimensional non-Noetherian GPVD whose associated
Priifer overring is the Priifer domain with uncountable maximal spectrum con-
structed in [13, Example 1], Bxample 3.4 presents an LPVD which, although not a
GPVD, has Priifer integral closure. (Its construction depends on some lemmas of
independent interest concerning loeally finite intersections; their proofs, patterned
after [19], may be found in the appendix.) Nevertheless, the clags of GPVD’s is
quite extensive, containing in particular all Priifer domains and all PVD’s, as well
a8 the semi-quasi-local LPVD’s mentioned earlier. It also behaves well under in-
tegral closure (Proposition 3.5), and Noetherian GPVD’s can be characterized by a
global counterpart of [11, Corollaire 1.6] (Proposition 3.6). Perhaps the following
is the most natural way for GPVD’s to arise. Let R be a GPVD (for instance, a
PVD) with associated Priifer domain 7, let F be a field containing 7, and let R*
(resp., T*) be the integral closure of R (vesp., T) in F. It is a classic result of Priifer
that T* i a Priifer domain; Corollary 3.9 asserts that R* is a GPVD, with associated
Priifer domain 7% Results in the same vein for more general classes of going-down
- rings have been scarce (ef. [6, Theorem 3.2]).

All rings considered below are commutative, with 1. Data consisting of a quasi-
loeal ring R with maximal ideal M and residue-class field k = R/M will be summa-
rized as either (R, M) or (R, M, k), with k denoted by either k(R) or k(M). More
generally, if P is a prime ideal of a ring R, then k(P) denotes EB,/PR,. If Ris aring
then the Krull dimension of R, the Jacobson radical of R, the complete integral
closure of B and the integral closure of R are denoted by dim (R), J(R), C(R) and R’
respectively, We assume familiarity with the literature on PVD’s and with pull-
baek techniques, as in [9]. Any unexplained terminology is standard, as in [15]
and [197. : ' ’
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2. - Locally pseudo-valuation domains.

Let B be a domain, with quotient field K. Asin [17], we say that a prime ideal P
of R is strongly prime in case, whenever elements ¢ and y of K satisfy xy € P, then
either w € P or y € P; and that R is a pseudo-valuation domain (or, in short, a PVD)
in ease (R, M) is quasi-local and M is strongly prime. In order to globalize the
PVD concept, we need the following definition and preliminary result. We shall
say that a prime P of R is locally strongly prime (in R) if PR, is strongly prime;
equivalently, if E, is a PVD.

Leuwma 2.1, — If @ ¢ P are distinet primes of a domain R and P is locally strongly
prime in R, then @ is algo locally strongly prime in R.

Proor. — Since QR, is a nonmaximal prime of the pseudo-valuation domain
R, [17, Proposition 2.6] guarantees that (R,),, = E, is a valuation domain and,
hence, a PVD, as required.

PropoOSITION 2.2. — For a domain R, the following conditions are equivalent:
(1) Ry is a PVD, for each maximal ideal M of E;

(2) Each prime of R is locally strongly prime in E.

Proor. — By the above comments, (1) is equivalent to requiring each maximal
ideal of R to be locally strongly prime. However the latter condition is equivalent
to (2) by virtue of Lemma 2.1, since each prime is contained in a suitable maximal
ideal.

A domain R satisfying the equivalent conditions in Proposition 2.2 will be called a
locally pseudo-valuation domain (or, in short, an LPVD). It is clear that any Priifer
domain is an LPVD, and so is any PVD. A more interesting family of examples
is given in Example 2.5. First, we pause to relate the LPVD concept to the studies
in [5], [7].

COROLLARY 2.3. — Any LPVD is a locally divided domain.
Proor. — It suffices to recall that any PVD is a divided domain [6, p. 560].

REMARKS 2.4. — (@) As in the proof of Corollary 2.3, we may use earlier studies
of PVD’s to show that LPVD’s satisty additional local properties. For insfance,
any LPVD must be seminormal, sinee it is known (ef. [2, Proposition 3.1 (@)]) that
any PVD ig seminormal.

(b) The converse of Corollary 2.3 fails, even in the quasi-local integrally
closed case [6, Remark 4.10 (5)].
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(¢) By combining Corollary 3 with [7, p. 124], we see that any LPVD is treed,
in the sense that its prime spectrum, as a poset under inclusion, forms a tree. A
similar appeal to [7, Theorem 2.4] reveals that if R is an LPVD, then R 4 PR, is
an R-flat overring, for each prime P of K.

(d) The LPVD concept has appeared recently in [2, Corollary 3.6], which
produced a natural class of one-dimensional domains satisfying eondition (2) in
Theorem 2.9 below.

(¢) In view of what is known about PVD’s, Proposition 2.2 readily yields
that if R is an LPVD, then R/P and By are also LPVD’s, for each prime ideal P
and multiplicatively cloged subset § of R.

Exampie 2.5. — Let n>2 be a positive integer. Then there exists a locally
pseudo-valuation demain 7' with precisely # maximal ideals, such that 7 is neither a
Priifer domain nor a PVD.

To indieate such a construction, consider a field ¥ with the following two proper-
ties: (1) there exist n pairwige incomparable valuation domains V,= %k -+ M, having
(maximal ideal M,, residue class field k¥ and) a common quotient field; (2) there
exist n distinet proper subfields k; of k. Then T = [ (k;+ M,) has the asserted
properties.

For a proof, first set Q,= M, I for each i. By appealing to [14, Theorem 3.1]
(ef. also [10, Proposizione 5.6.1 (f)]), we have that @, ..., @, are distinet and form
the maximal spectrum of 7. Since n>2, T is not quasi-lecal and, hence, is not a
PVD. Moreover, for each i, we claim that T, ~Fk,-+ M;. As each k,+ M, is a
PVD but not a valuation domain (by, for instance, [17, Example 2.1]), it will follow
that T is an LPVD but not a Priifer domain.

To complete the proof, we proceed to establish the above claim. First, recall
that P = V, is a Priifer domain with precisely » distinet maximal ideals, given
by N;= M;N P, such that P, = V, for each 4 (cf. [19, Theorem 107]). Next, it
will be convenient to regard 7' as being constructed in n steps. The first of these
steps produces a domain, say T, as the pullback of the diagram

P——ik

in which the vertical mayp is the inclusion and the horizontal mayp is the composite
of the ecanonical surjection P — P/N; with the isomorphism P/N,-—k. By [9,
Theorem 1.4], 7,c P is a unibranched extension; in particular, the primes of T,
are N, and ideals of the form I N T, for primes I # N, of P; and (T))y 0= P,
(= V,) for each j>2. We shall next describe the localization of 7, at its remaining
maximal ideal, N,.
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Since [9, Theorem 1.4] yields that Spec (7)) and Spec (P) are homeomorphic,
it follows readily that P\, is the saturation in P of the multiplicatively closed
set T\N,. Thus P\, = P, (= V), so that [9, Proposition 1.9] supplies the pull-
back deseription (T))y, =2 k1 X2 V1, whence (T')); == k,+M,. The next step of the
construction produces 7, as the pullback of the diagram

ks,

|

Ik

in which the vertical map is the inclusion and the horizontal map is the composite
of the canonieal surjection 7,— T,/N,N T, and the isomorphisms 7,/N,N T, —
> V,/M, k. As above, [9, Theorem 1.4] may be applied to show that T,c T,
is a unibranched extension; and, besides N, T, the other primes of 7T, take the
form J N T,, for primes J 7= N,N T, of T,: We shall next depscribe the localiza-
tions of 7, at each of its maximal ideals.

To this end, note first that N,N 7', ¢ ¥,. (Otherwise, k, + M, = (T3, (T y,nr, =
=k -+ M,, whence V,c V,, contrary to hypothesis.) Accordingly, [9, Theorem 1.4(c)]
applies, giving (7,), ., = (1)), (= k+ M,). Moreover, if j>3, then N,N T, ¢ N,
(The point is that the homeomorphism Spec (73) — Spee (T), given by [9, Theo-
rem 1.4], induces an isomorphism of the underlying posets.) Accordingly, [9, The-
orem 1.4 (c)] applies again, yielding (7,), ., = (T\)y,qp (= V;) for j>3. For the
localization of T, at its remaining maximal ideal, ¥, N T,, one may argue as above
invoking the pullback description &, M, =~ P, Xk, toshow that (T,), ., = &, M,.

By iteration of the above process, we arrive at a domain T,, with precisely »
distinet maximal ideals, at which the respeective localizations are the domains
L, M, Since T, is the intersection of its loealizations at maximal ideals, T, = T,
and the proof is complete.

Propositions 2.6 and 2.7 offer additional ways fto construct LPVD’s. First, in
order to ease the statement of Lemma 2.8, it is convenient next to recall the follow-
ing terminology and facts. Let (R, M) be a quasi-local domain with quotient field K.
R is a PVD if and only if M is also a maximal ideal of some valuation overring V
of R [17, Theorem 2.7]. In this case, V is uniquely determined as the conductor
V= (M.M)={xeK: oM c M}, by [1, Proposition 2.5], and is called the valuation
domain associated to R; Spec (R) = Spec (V) as sets; if R+# V, than V = (B: M),
by [17, Theorem 2.10]; and R may be recovered as the pullback B = V Xy, k(R),
by [1, Proposition 2.6].

ProposrrioN 2.6. — If § is an overring of a locally pseudo-valuation domain R
such that the extension R c § satisfies INC, then 8 is also an LPVD. In particular,
each integral overring of an LPVD must be an LPVD.
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Proor. — It is enough to show that Sy is a PVD, for each maximal ideal ¥ of 8.
Note that B, ., is a PVD by virtue of Proposition 2.2. Since the overring extension
Ry .zC 8, inherits INC from Rc 8, an application of [17, Theorem 1.7] completes
the proof.

ProrosiTioN 2.7. — Let B c 8 be an integral extension of domains, such that B
is integrally closed. Then:

(1) If 8y is a PVD for some prime ideal N of §, then R, _, is also a PVD.

[a¥:4

(2) If § is an LPVD, then R is also an LPVD.

ProOF. — Since integral extensions satisfy the lying-over property (cf. [19, The-
orem 44]), (2) follows immediately from (1). As for (1), note that [15, Proposi-
tion 12.7] guarantees that 8§, K = R, .,, where K denotes the quotient field of R,
so that (1) is a consequence of part (1) of the following result.

PROPOSITION 2.8. — Let § be a PVD with maximal ideal N, quotient field F,
and associated valuation domain V. Let K be a subfield of #. Set R=8NK,
W=VNK and M = NN RE. Then:

(1) B is a PVD with maximal ideal M = N N K and associated valuation
domain W,

(2) If F is algebraic over K, then the contraction map Spec (8) — Spec (R)
is an inclusion-preserving bijection and hence dim (R) = dim (8).

(3) Assume that [F:K]<Coco. Then R is Noetherian if and only if § is No-
etherian such that [k(S):k(R)] < co.

Proow. ~ (1) Since V is a valuation domain of F with maximal ideal N, [15,
Theorem 19.16 (a), (b)] implies that W is a valuation domain of K with maximal
ideal N N K = M. Moreover, M is also the unique maximal ideal of R. To see
this, observe for any r e RN\ M that r ¢ NN, so that +1e SN K = R, as desired.
Since B = W X, k(R), the assertions in (1) now follow directly from [1, Proposi-
tion 2.6].

(2) As F|/K is algebraie, [15, Theorem 19.16 (b), (¢)] assures that the contrac-
tion. map Spec (V) — Spee (W) is an inclusion-preserving bijection and dim (W) =
= dim (V). Since Spec (8) = Spec (V) and Spec (R) = Spec (W), (2) readily follows.

(3) Suppose first that (the psendo-valuation domain) R is Noetherian. By [17,
Proposition 3.2], dim (R)<1. If dim (R) = 0, then (2) shows that § is a fleld, triv-
ially Noetherian. In the remaining case, dim (R) == 1, and the Krull-Akizuki the-
orem may be applied, to conclude that § is Noetherian. Moreover, applying [11,
Corollaire 1.6] to the pullback description of R reveals that [k(W) k(R)] << co. How-
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ever, finiteness of [F:K] guarantees finiteness of [k(V):k(W)] (cf.[4, Lemma 2,
p. 417]). Then [K(S):k(R)], being a divisor of [k(V):k(R)] = [K(V):E(W)][k(W):
'E(R)], is necessarily finite.

Conversely, to show that B is Noetherian, {11, Corollaire 1.6] reduces the task
to proving [E(W).E(R)] <oco and W is a DVR. Since 8 is assumed Noetherian,
applying [11, Corollaire 1.6] to the pullback description of § yields that [k(V):
k(S)]<<co and V is a DVR. As [E(8):k(R)]<<co by hypothesis, we argue as
above that [k(V):k(R)] < co, whence [k(W):k(R)] < oco. Finally, W inherits the
DVR property from V, by [4, Corollary 3, p. 418], to complete the proof.

Let R be a domain, with integral closure E’. If E is a coherent LPVD, then [6,
Proposition 4.2] readily implies that B’ is a Priifer domain and [18, Theorem 1.9]
readily implies that each overring of R is an LPVD. The relation between these
conditions is given next in Theorem 2.9, this secfion’s main result. First, recall
from [20] that R is said to be an i-domain if the contraction map Spec (8) — Spec (R)
is an injection for each overring § of R; equivalently (cf. [20, Corollary 2.15]), if
the integral closure of Ry is a valuation domain for each maximal ideal M of R.

THEOREM 2.9. — Let B be a domain, with integral closure R’. Then the following
conditions are equivalent:

(1) Each overring of R is an LPVD;
(2) R is an LPVD and each overring of R is seminormal;
{3) R is an LPVD and R’ is a Prifer domain;

(4) R is an LPVD and an i-domain.

PROOF. — (1) => (2): Use the fact that any LPVD is seminormal (cf. Re-
marks 2.4 (a)).

(2) == (3): Use the fact [2, Theorem 2.3] that if each overring of R is semi-
normal, then R’ is a Priifer domain.

{3) = (4): Assume (3). By [20, Proposition 2.14], proving (4) reduces to
showing that the (surjective) contraction map Spec (R') — Spee (R) is an injection.
To this end, one need only show for each prime ideal P of R, that 8 = (B')p, 18
of the form (R'), for some (uniquely determined) prime ideal @ of R'. As R'is a
Priifer domain, [19, Theorem 65] reduces the task to showing that § is a valuation
domain. However this follows from [17, Theorem 1.7] (ef. also [6, Proposition 4.11)
since the Priifer domain §, being an integral extension of the pseudo-valuation

domain E,, must be guasi-local.

© - -(4) = (1): Apply the first assertion in Proposition 2.6. The proof is complete.
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CoRrOLLARY 2.10. — Let R be a PVD, with associated valuation domain V and
integral closure R’. Then the following conditions are equivalent:

(1) Fach overring of R is seminormal;
(2) Bach overring of R is an LPVD;
(3) Bach overring of E is a PVD;

4) R'=7.

Proor. — The assertion follows directly from Theorem 2.9 in view of the follow-
ing observations. If the pseudo-valuation domain R is an ¢-domain, then R'= V
(cf. [6, Remark 4.8 (a)]) and each overring of R is quasi-local (by [20, Proposi-
tion 2.34]).

REMARKS 2.11. - (a) The following result gives a sufficient condition for an
LPVD to be a Priifer domain. Let R be a domain, but not a field. Then R is a
Prifer domain each of whose maximal ideals is finitely generated if (and only if) B
is an LPVD each of whose maximal ideals is invertible. For the proof, note for
each maximal ideal M of R, that R, is a PVD whose maximal ideal is invertible,
and hence principal (cf, [19, Theorem 59]); thus, by [17, Corollary 2.9], Ry is a
valuation domain, as desired.

() Let T be the LPVD constructed in Example 2.5. If each field extension
k;c k figuring in the construction of 7' is taken algebraie, then [14, Proposition 3.4]
shows that the integral closure of T is [} (k + BM,), which is well-known to be a
Priifer domain. Thus, in this case, each overring of 7 is an LPVD, by virtue of
Theorem 2.9. The same conclusion follows (for algebraic k,c k) from [2, Corol-
lary 3.6] in (the less general) cage dim (k + M,) =1 for each ¢, for T is then (a
seminormal ¢-domain and) one-dimensional (ef. [14, Lemma 3.1 and Theorem 3.17).
Of course, the integral closure of 7 need not be a Priifer domain in general. For
instance, if each %, is algebraically closed in k, then 7' is integrally closed.

(¢) Let 1<d<co. Then there exists a d-dimensional LPVD, §, which is nei-
ther a Priifer domain nor a PVD, such that each overring of § is an LPVD.

For the construction, note that the ring 7' in the first paragraph of (b) certainly
takes care of the case d = 1. Let F be the quotient field of 7. If d>2, consider a
(d — 1)-dimensional valuation domain (V, M) of the form V =¥ + M. Then § =
= T 4 M has the asserted properties. To see this, it is easiest to verify condi-
tion (3) in Theorem 2.9, using the lore of the D + M-construction (cf. [6, Proposi-
tion 4.9 (4)]).

(@) Let R satisfy the equivalent conditions in Theorem 2.9. For each maximal
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ideal M of R, let V(M) be the valuation domain associated to Ry. It follows readily
from the proof of (3) = (4) in Theorem 2.9 that R'= ) V(M).

(¢) The equivalence (3) <= (4) in Corollary 2.10 was also established in [18,
Proposition 2.7] (ef. [11], Corollaire 1.4 (¢)]).

3. — Globalized pseudo-valuation demains.

One reagon that the theory of PVD’s is so tractable is the presence of a valuation
overring sharing the spectrum of a given PVD. As [1, Proposition 3.3] shows, a
non-quasi-local LPVD (which is not a Priifer domain) cannot admit a (Priifer)
overring with the same spectrum. However, an analogue of the «same spectrum »
phenomenon is available for the non-quasi-local case. Indeed, we now proceed to
introduce and characterize this section’s object of study, a well-behaved class of
LPVD’s admitting unibranched Priifer overrings.

THEOREM 3.1. — Let R be a subring of a Priifer domain 7. Then the following
two conditions are equivalent:

(1) (¢) Rc T is a unibranched extension;

{(b) There exists a nonzero radical ideal 4 common to T and R such that
each prime ideal of T (resp., R) which contains A is a maximal ideal
of T (resp., R).

(2) There exist a nonzero radical ideal B common to 7 and R such that R =
= R/B and T = T/B satisfy the following:

(i) Rc T is a unibranched extension;

(i) dim (R) = dim (T) = 0.

Next, suppose that (1) and (2) hold. Then, if 4 is as in (1) and N is a maximal
ideal of T containing A, the square

R, .—>kENNER)

NOR

v

Ty —— k()

is a pullback diagram. Moreover, J(B) = J(T); T =) V(M), where the index M
runs over the maximal ideals of B and for each M, V(M) denotes the valuation
domain associated to the pseudo-valuation domain Ry; and B = T'X [y, H k(NN R),
where the index N runs over the maximal ideals of 7.

Each domain R for which there exists a Prifer domain 7' satisfying the eqnivalent
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conditions in Theorem 3.1 will be called a globalized pseudo-valuation domain (or,
in short, a GPVD); and 7T will be called the Priifer domain associated to R.

It will be shown, in the course of proving Theorem 3.1, that if R is a GPVD with
associated Priifer domain 7, then the contraction map Spee (T) — Spec (R) is a
homeomorphism. The induced order-theoretic isomorphism guarantees, in particular,
that a prime ideal of 7' is maximal if and only if its contraction is a maximal ideal
of R. '

Granting Theorem 3.1 for the moment, we shall show next that any GPVD, R,
must be an LPVD. Indeed, let T be the Priifer domain associated to R, consider
any nonzero maximal ideal M of R, and let N be the maximalideal of T contracting
to M. Let A be as in condition (1) of Theorem 3.1. If A ¢ N then, a fortiori, the
conduetor (R:T) is not contained in N, and so By coincides with the (pseudo-) valua-
tion domain Ty (ef. [19, Exercise 41 (b), p. 46]). On the other hand, if 4 c W,
then [1, Proposition 2.6] translates the first pullback assertion in the statement
of Theorem 3.1 into the statement that R, is a PVD with associated valuation
domain TYy.

It is important to observe that if R is a GPVD, then its associated Priifer
domain 7T is uniquely determined by conditions (1) and (2) in Theorem 3.1. Indeed
T = V(M) where, as above, V(M) denotes the valuation domain associated to
By. To see this, without loss of generality, R is not a field. Then it suffices to
note that the preceding paragraph established that V(M) = Ty.

Any Priifer domain R is a GPVD and coincides with its associated Priifer domain.
To see this, take A = R = T in condition (1) of Theorem 3.1; or take B=R =T
in (2), invoking the convention that the zero ring has Krull dimension 0. If the
Priifer domain R is not a field, one may verify (1) and (2) somewhat less artificially
by setting 7' = R and choosing 4 or B to be any (neecessarily nonzero) maximal
ideal of R.

If (R, M) is a PVD with associated valuation domain V, then R is a GPVD with
associated Priifer domain V. To see this, the preceding example allows us to assume
R V. Then (1) and (2) hold with 4 = M = B.

Additional examples of GPVD’s will be given in Examples 3.2 and 3.4.

Proor or THEOREM 3.1. ~ (1) = (2): Given (1), set B = A. Then (i) follows
from (a) and the observation that (Q/4) N (R/A) = (@ N R)/A for each prime @
of T which contains 4. In addition, (ii) follows readily from (2) and the assump-
tions about A4.

(2) = (1): Given (2), set A = B. Since A is an ideal of both R and T, it
follows readily that R~ R xzT. Applying [9, Theorem 1.4] to this pullback de-
seription reveals that Spec (R) is canonically homeomorphic to a certain guotient
space which, by (i), may be identified with Spec (7). In particular, (¢) holds. In
addition, (b) follows readily from (ii) and the assumptions about B. This completes
the proof of the equivalence of (1) and (2).
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Henceforth, suppose that (1) and (2) hold. Let N be a maximal ideal of T
containing B and set M = N N R. Since Spee (R) and Spec (T) are order-isomor-
phie, the saturation in T of the multiplicatively closed set B\ M is easily seen to
be TN\N, whence T, ,= T,. Thus, applying [9, Proposition 1.9] to the pullback
description B = R X_T yields

R, ~ (R,/BR,) Xp.zr.T

TN/BTy LN

However, (b) guarantees that MR, is the only prime ideal of R, which contains
BR,. Since BR, inherits from B the property of being a radical ideal, BR, = MR,,,
whence Ry/BRy~k(M). Similarly, Ty/BTy~ k(¥N), and so the above pullback de-
seription of R, simplifies to k(M) X,,, Ty, as asserted.

Let N be a maximalideal of 7 and set ¥ = N N B. We claim that MR, = NTy.
This follows from the observation that V(M) = T, (whose proof was indicated
earlier) since a PVD and its associated valuation domain have the same maximal
ideal. Henece, J(R) =N M =N MEBy=nN NIy=nN N = J(T), and so the square

R—> RJJ(R)

|

T ———s TJ{T)
is a pullback diagram. Moreover, the above claim also implies that

RIJ(R) — [] k(M)

T/J(T) — [] k()

is a pullback diagram. Juxtaposition of the preceding two diagrams yields the
asserted pullback description of R. As the proof that 7' =n V(M) was given in
the comments following the statement of the theorem, the proof is complete.

The reader may have noticed that the proof of above equivalence (1) < (2)
carries over if one deletes the conditions 4 s 0 and B 0. However, the only
additional situation covered by such generality is the case in which BRc T is a
proper extension of fields.

ExampLES 3.2. — (a) The domain T constructed in Example 2.5 is a GPVD with,
to use the earlier notation, associated Priifer domain P == (k -~ M,). Indeed,
one verifies condition (2) of Theorem 3.1 as follows. Set B =[] N,, the intersec-
tion of the » maximal ideals ¥, of P; evidently, B is a nonzero radical ideal of P.
However, B is also (@, the intersection of the n maximal ideals of T (cf. [14,
p. 156, last line]); in particular, B is an ideal of T as well. Set T = T/B and
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P = P|B. Then T c P is readily shown to satisfy conditions (i) and (ii) by virtue
of the observations that Spec (T) = {Q./B}, Spec (P) = {N,/B} and (N/B)nT =
= (),/B for each 1.

(b) Let A be the domain of all algebraic integers, pZ a maximal ideal of Z,

{M ;} the uncountable set of maximalideals of 4 which contract to pZ, § = AN {M.},

T=Agand N,= M,As: Then, as noted by GiLmer [13, Example 1], T i3 a one-

dimensional Priifer (in fact, Bézout) G-domain with {N,} as its set of maximal

ideals. Then there exists a non-Noetherian one-dimensional GPVD, R, with as-

sociated Priifer domain 7T (s« R). (Thus, in contrast with the example in (a), R is
not semi-quasi~local.)

Observe that J(T) = pT # 0, so that T = T/pT is absolutely flat. Then I =

= Spec (T), endowed with the Zariski topology, is a Boolean space. Setting K =

= (I, {k(N,)}), we thus have that 7' is a K-ring, in the sense of [21, p. 369]. (Note

that condition (1) in [21, Théoréme 3.1] is easily verified.) In particular, view T
as embedded in [] k(N;). Set

R={weT: for each i, the coordinate z,€ Z/pZ} = T Xy, [1{Z/pZ: icI}.

Then R is absolutely flat and one may check (cf. [21, Corollaire 3.6]) that R is the
smallest K-ring. In particular, B c T is a unibranched extension.

Define B = T Xyqyy, 11 {Z/pZ: i€ I}. Rvidently, R~ R/pT. The foregoing in-
formation agsures that B c 7' satisfies condition (2) of Theorem 3.1 (with B = pT)
and so R is indeed a GPVD with associated Priifer domain 7. Moreover, the home-
omorphism Spee (7') — Spec (B) yields dim (R) = dim (7) = 1. Finally, that R is
non-Noetherian follows by, for example, appeal to condition (2) in Proposition 3.6
below: it suffices to observe that T, being a one-dimensional domain with infinitely
many maximal ideals and nonzero pseudo-radical, cannot be Noetherian (cf. [19,
Theorem 88]) and, hence, is not a Dedekind domain.

Despite the abundance of GPVD’s supplied by Examples 3.2, not every LPVD
is a GPVD. An example to this effect, such that its integral closure is actually a
Priifer domain, is given in Example 3.4. First, we isolate some needed facts concern-
ing locally finite intersections of PVD’s. Lemma 3.3 is a PVD-theoretic analogue
of some results on locally finite intersections of valuation domains in [19, Theo-
rems 111-113]. Its proof is a rather straightforward adaptation of the approach of
KAPLANSKY [19] and, for that reason, has been placed in the appendix.

LemmA 3.3. — Let the domain R be a locally finite intersection ) {W;:iel}
of one-dimensional psendo-valuation overrings W,.  For each i I, let V,; be the
valuation domain canonically associated to W,. Assume that the V/’s are pairwise
incomparable. Then:

(1) If 8 is any multiplicatively closed subset of R not containing 0, then Rg
is a locally finite intersection of those W, which contain Rg.
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{2) If B is one-dimensional and quasi-local, then R = W, for some 4.

(3) If P is a height 1 prime ideal of R, then R, = W, for some 4.

ExXAMPLE 3.4. — There exists a one-dimensional LPVD, D, which is not a GPVD.
Moreover, D can be arranged Noetherian (in which case, D is not infegrally closed
and D’ is a Dedekind domain); alternatively, D may be chosen integrally closed
(in which case, D is not Noetherian).

We next assemble the data for the congtruction of such D. Let £ be an infinite
field, I an infinite index set with cardinality at most that of k, {X,: ¢ e I} a family
of algebraically independent indeterminates over k, K = k({X,:i€I}), ¥ an in-
determinate over K, F = K(Y), n an integer exceeding 1, and {«,: ¢ I} a subset
of k (such that a,s «; Whenever i=<j in I). For each iel, set K,= E{X,: je
e IN{}), K;,= K,(X7), V, the valuation domain K[Y],_,., expressed as usual as
K 4 M, where M,= (Y — o)V, W= K, M,, and W,= K,-+ M,. Finally, set
R = N Wl- y B=NW; and T'=V.. vThen E and R are each one-dimensional
LPVD's with quotient field F, neither B nor R is a GPVD, Eis integrally closed
(but not Noetherian), and R is Noetherian (but not integrally closed) with T its
integral closure.

The proof of the above assertions will follow from a series of observations. First,
we shall show that F is the common quotient field of B, B and T. Since Ec RcC
c T c F, it suffices to verify the statement for RE. To this end, note first that kc R
since kc X, for each i; and that Ye R since ¥ = o, -+ (Y — o)) €k -+ M, W,
for each {. Accordingly, it remains only to show that each X, is in the quotient
field of B. For this, write X, = wv~* where v = ¥ — «,;, and note that ve R+
+ % = R, so that we need only prove that » € B. Now if j ¢ in I, X, is a unit of
W, since X,e f(,-, whence 4 = vX,e RW,= W,-. On the other hand,

U = @X,;G Miviz M,’C Wc‘J

whence u e R, as desired.

Consider the multiplicatively closed set § = K[YNU (Y — «;) of K[Y]. It is
straightforward to check that § satisfies the conditions in [15, (4.7)] (essentially
because K{Y] is a prinecipal ideal domain) and so, by [15, Lemma 5.4],

K[Y];=NK[Y]p,,=V.=T

It follows that T is a prinecipal ideal (henee Dedekind, hence Priifer) domain. By
abus de¢ langage, we shall let M, denote {¥ — «,) T, the typical nonzero prime ideal
of T. Of course, T'y,= V.

Ag T ig a Dedekind (hence Krull) donvlain, the expression of T as [ V, is locally
finite. Therefore both fhe expressions K = [ W, and R = (1 W. are also locally
finite since, for each ¢, W, and W, both have the same unique maximal ideal as V,

g
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Moreover, each W"i (resp., W, is a one-dimensional quasilocal (indeed, pseudo-
valuation) overring of R (resp., R), and so [19, Theorem 110] may be applied to the
above locally finite intersections. Setting N,=M,NnE and N,= M.N R for each
iel, we deduce the following. For each nonzero prime ideal P of R (resp., R),
there exists ¢ eI such that N,c P (resp., N,c P).

It will be useful to observe next that for ¢4 jin I, N, and N, (resp., N, and N,)
are comaximal ideals of B (resp., R). This follows since

t—o,=(Y—o)— (Y—a)eN,+ NcN,+ N,

and a,— «; is a unit of both B and R. The final comment of the preceding para-
graph now yields that each N, (vesp., N,) has height 1 in R (resp., R).

We shall show next, for each ielI, that Ry = W, and Ry = W, The proots
being similar, we shall tend only to the first of these. As N, has height 1,
Lemma 3.3 (3) applies to the above noted locally finite expression for R, with the
result that Ry = W, for some j € I depending on 4. The above observation concern-
ing comaximality leads easily to ¢ = j, as desired.

We are now in a position to verify that B and R are one-dimensional domains,
with maximal spectra {¥,} and {JV i}, respectively. (By virtue of the preceding para-
graph, it will then follow that both R and E are LPVD’s.) As before, we shall give
only the argument for R, by proving that each non-zero prime ideal P of R must
coincide with some N,;. To this end, apply Lemma 3.3 (1) to the above-noted locally
finite expression for R, with the result that R, = {W,: j € J}, for some subset J
of I depending on P. If jeJ, then E,c W,= Ry, whence N,c P. The earlier
obgervation about comaximality therefore guarantees that J is a singleton set,
say {i}. The above expression for R, simplifies to I, = W,= Ry, whence P = N,
as asserted.

We shall show next that neither B nor E is a GPVD. As above, we argue only
for R. Note, for each ¢, that the associated valuation domain of Ry (= W,) is
V(N,) = V,. Thus if one supposes that R is a GPVD, Theorem 3.1 implies that the
associated Priifer domain of R is () V.= 7. The desired contradiction will arise
by showing that the conductor C = (R:T) is zero, although C containg the non-
zero ideal 4 satisfying condition (1) in the statement of Theorem 3.1. To this end,
note first via [15, Corollary 5.2] that Ty 4= T, (= V,) since M, is the only
prime ideal of T which is disjoint from R\ N.; consequently,

O (Ry: Tpw) =N (WiiV) = M,.

However, the locally finite property of the expression 7' = (| ¥, guarantees (since I
is infinite) that () M,= 0, whence ¢ = 0, as desired.

To check that R is integrally eclosed, it is enough to verify that each 1?;% (=W,
is integrally closed. However, this is a well-known consequence of the fact that K,
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is algebraically cloged in K. (Moreover, R is not Noetherian. Indeed, [6, Corol-
lary 3.5] reveals that E is not even a locally finite-conductor domain, lest  become a
Priifer domain which is not a GPVD, an absurdity.)

We turn to the remaining assertions about E. Of course, R is not integrally
closed since its typical localization, Ry = W, is not integrally closed. The point
is that W= K(X,) + M,= K 4 M,= V,. In fact,

R=N(Ry)=NV:=T.

Finally, one may see in a variety of ways that R is Noetherian. Xor ingtance,
combine the following two remarks. R is locally Noetherian (sinee, for each 4, V,
is a discrete valuation domain and [K:K,] = n < o). Moreover, each nonzero ele-
ment r € R lies in only finifely many maximal ideals of R (since r € N, entails r & M,).

Thig completes the proof of Example 3.4.
ProPosITION 3.5. — Any integral overring of a GPVD ig also a GPVD.

Proor. ~ Let R be a GPVD with associated Prifer domain T, and let § be an
integral overring of E. We shall show that § is a GPVD with associated Priifer
domain 7 ag well.

Let A be an ideal of both R and T which satisfies condition (1) of Theorem 3.1.
Since RcScR'cT'= T, it follows that 4 is also an ideal of 8. If N is a prime
ideal of § which containg 4, then condition (#) of Theorem 3.1 assures that ¥ N R
is a maximal ideal of R and so, by integrality, N is maximal in §.

It remains only to prove that S c T is a unibranched exfension. Since Rc T
is unibranched, it suffices to show that if N is a prime ideal of 8, then there exists a
prime of 7 which contracts to N. To this end, set M = NN R and let ¢ be the
unique prime of T satisfying @ N B = M. Recall that T, is the associated valuation
domain of the pseudo-valuation domain R,. (If M DA, this is the content of the
first pullback assertion in the statement of Theorem 3.1;if M D A, then T,= Ry [19.
Exercise 41 (), p. 46].) Thus, by [11, Proposition 1.3 (a)], Sy and T, are compar-
able (via inclusion). If TQ;SN then ;S'N}s a localization of the valuation domain
T, at some nonmaximal prime, whence Sy= T, for some prime I g Q of T; then
QNE=M=N8NE=IT,NR=1INR, contradicting the unibranchedness of
RcT. Therefore Syc Ty, whence QT, N Syc N8y, so that interseeting with § yields
@NScN. As @ S and N each contract to M, it follows that @ N § = N since
the extengion R c 8, being integral, mugt satisfy INC. This completes the proof.

The next result is motivated by the following consequence of [14, Theorem 3.4].
If T is the ring constructed in Example 2.5, then T is Noetherian if and only if
[k:k;]<<oo and k 4 M, is a DVR for each 4.

ProposITioN 3.6. — Let B be a GPVD, with associated Priifer domain 7' and
integral closure R'. Then the following three conditions are equivalent:

(1) B is Noetherian;
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(2) T is a Dedekind domain and [K(T,).k(R,,,
ideal N of T,

(8) T' is a Dedekind domain and N7y is a finitely generated R, ,-module
for each maximal ideal N of 7.

)] << oo for each maximal

Moreover, if the above conditions hold, then dim (R)<1 and R'= T.

Proor. — (1) = (2): Assume (1). Then dim (R) <1 sinee R is a treed Noetherian
domain (cf. Remark 2.4 (¢) and [19, Theorem 144]). By the Krull-Akizuki theorem,
T is Noetherian, and hence satisfies Noether's conditions for a Dedekind domain.

Next, let N be a maximal ideal of 7 and set M = N N R. Since R, is a Noethe-
rian PVD with associated valuation domain 7', [11, Corollaire 1.6] yields [k(N):
TE(M)] << oo, as desired.

(2) <= (3): This follows directly from the corresponding result in the quasi-
local casge [11, Corollaire 1.6].

(2) = (1): Let M be a maximal ideal of R, with N the maximal ideal of T
contracting to M. Assume (2). Then Ty is a DVR and [11, Corollaire 1.6] assures
that the pseudo-valuation domain Ry, is Noetherian. Hence, (R')p , = (B,)' = Ty =
= T 4 the last equality holding since I\ N is the saturation in 7 of R\ M. By
globalization, R’ = T'.

Since the maximal ideals of E are in one-to-one correspondence with the maximal
ideals of T and since T is a Dedekind domain, R inherits from T the property that
each nonzero element lies in only finitely many maximal ideals. As we have also
shown that R is locally Noetherian, a standard argument now yields that R is No-
etherian (ef. [3, Exercise 9, p. 85]). This completes the proof.

The next result, together with Corollary 3.9, indicates compatibility of behavior
between the LPVD datum and the Priifer datum of a GPVD in the context of
Priifer’s ascent theorem (ef. [15, Theorem 22.37).

THEOREM 3.7. — Let R be a PVD, with asgociated valuation domain V and quo-
tient field K. Let K* be an extension field of K. Let R* (resp., V*) denote the
integral closure of R (resp., V) in K*. Then R* iy a GPVD, with associated Priifer
domain V*,

Proor. ~ Without loss of generality, R is integrally closed and distinet from V.

We consider first the case in which [K* K] << co. Let V,,..., V, be the (finitely
many, pairwise incomparable} valuation domains of K* such that V,n K =V
recall that [k(V,):k(V)] < oo in this case (cf. [15, Corollary 20.3]). We next make
two elementary observations.

{(a) If W is a valuation ring of K such that Rc Wc V and if W denotes the

canonical image of W in E(V), then k(R)c W c k(V) and the canonical homomor-
phism W — W x,,,,V is an isomorphism. (Apply [11, Proposition 1.3 (a)].)
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() Let W and W be as in (a). For each i =1,...,n, let {W,;: 1<j<n,} be
the set of (finitely many, pairwise incomparable) valuation domains of k(V;) such
that W, k(V) = W. Set W, = W, X,,,V,. Then, using (a), one sees easily
that {W,:1<i<n, 1<j<n,} is the set of all valuation domains of K* such that
WiNEK=W;and Wy,¢ W, ;. if (5,j)# (', 5).

For each ¢ =1, ..., n, let k; be the algebraic closure of Ek(R) in k(V;) and set
B, =k Xy, V, We claim that E*= | B,. To see this, note first that R*=
=) Wi, where W, 4, j range as in (a), (b) above (¢f. [15, Theorem 19.8] and (b)).
Moreover the above pullback descriptions yield that B,c W, sinee k,C Wz'i? whence
() B,c B*. For the reverse inclusion, let # € B*. In view of the pullback descrip-
tion of R, it is enough to prove for each i that x,, the canonical image of z in k(7 ),
is actually in %;. This, however, is clear since integrality of @ over R assures integ-
rality (algebraicity) of z; over k(R), thus proving the claim.

We proceed to show that R* is a semi-quasi-local GPVD. By using the above
claim and the definition of the R;, one readily checks that an element z€ V*= [V,
belongs to R* if (and only if) for each ¢, the canonical image of z in E(V ) actually
belongs to k;. Thus the square

L

Vs [T R(V )

is a pullback diagram. Its bottom horizontal arrow is surjective by virtue of the
Chinese Remainder theorem. (The point is that each V*-—Kk(V,) is surjective.
Indeed for each 4, [19, Theorem 107] provides a maximal ideal M; of V* such that
V.= V;‘[i, whence k(V,;)~ V*/M,.) Therefore, the results of [9] apply to the above
diagram. In particular, [9, Theorem 1.4 (f), (b)] guarantees that the contraction
map Spec (V¥) — Spec (R*) is & homeomorphism; and that ker (V*— [Jk(V) =
== M,;= J(V*) coincides with ker (B* - [|%,) = J(R*). It is now evident that
R*c V* satisfies condition (2) of Theorem 3.1, with the role of B played by J(R¥),
sinece the sets of prime ideals of R*/J(R*) and V*/J(V*) are but {(M,N R*)[J(R*)}
and {M,/J(R*)} respectively.

GENERAL CASE. — We may assume that K* ig algebraic over K. Let M denote
the maximal ideal of R. It is well-known (cf. [3, Lemma 5.14]) that J(R*) =
= rad,. (MR*) = {r € R*: x is integral over M} = {z € K*: x is integral over M} =
= {x € V*: wis integral over M} = rad,. (MV*) = J(V*). Thus R*[J(R*) c V¥/J(V¥)
is an extension of zero-dimensional rings, hence satisfies the lying-over property [19,
Exercise 2, p. 41]. In order to verify that condition (2) of Theorem 3.1 is satisfied,
it therefore suffices to show that distinet primes of V*/J(R*) cannot contract to
the same prime of R*/J(R*). If the assertion fails, one readily produces distinct
maximal ideals N, and N, of V* such that ¥N,N RB*= N,N EB* (= P, say). Select
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ye NNN, and set L = K(y). Let R, (resp., V,) denote the integral closure of R
(resp., V) in L. By the finite-dimensional case established above, B, is a GPVD
with agsociated Priifer domain V,; in particular, B,C V, is a unibranched exten-
sion. However, NN V, and N,N V, are distinct (since y lies in the former but
not the latter) prime ideals of V, which each meet R, in PN L. This contradiction
completes the proof.

COROLLARY 3.8. — With the same notation and hypotheses as in Theorem 3.7,
we have:

(1) Suppose that K* is algebraic over K. If W is a valuation domain of K*
which contains R*, then W is comparable with at least one valuation domain of K*
which contains V.

(2) If V* has nonzero pseudo-radical, then C(E*)= C(V*) =) W;, where
{W,} is the set of all one-dimensional valuation domains of K* which contain V*,
If each nonzero element of V* is contained in only finitely many maximal ideals,
then dim (0(V*)<1. If dim (V) =1, then V*= 0(V¥) = CO(R*).

Proor. - (1) By [11, Proposition 1.3 (a)], W K and V are comparable valua-
tion overrings of E. Let 7 denote the integral closure of W N K in K*, Since W
is a valuation overring of the Priifer domain 7, there exists a prime ideal N of 7'
such that W = T.

Suppose first that WN K c V. One sees readily that R*c Tc V*N W. Set
P = Nn E* and let ¢ be the unique prime ideal of V* lying over P. (Note that Q
is well-defined by virtue of Theorem 3.7.) As Rpc Ty= W and V3 is the associated
valuation domain of the pseundo-valuation domain Rj, it follows from [11,' Proposi-
tion 1.3 (a)] that W and VZ; are comparable, as desired. (In fact, one may show in
this case that Wc V3.

In the remaining case, V.c WN K, so that V*c I. Thus W = T, must contain
the valuation domain V.., as desired.

(2) The first assertion follows from [16, Proposition 4] and Theorem 3.7 sinece
R* and V*, having a common nonzero (radical) ideal, must alse have a common
complete integral closure (cf. [15, Lemma 26.5]). As V* is a Prifer domain, the
second assertion is a direct consequence of [16, Corollary 9]. Finally, the third
assertion follows from the equality C(R*) = C(V*) noted above and the fact that V*,
being a one-dimensional Priifer domain, must be completely integrally closed.

COROLLARY 3.9. — Let R be a GPVD, with associated Priifer domain T and
quotient field K. Let K* be an extension field of K. Let R* (resp., %) denote the
integral closure of R (resp., T) in K*. Then E* is a GPVD, with associated Priifer
domain T,

PROOF. — If N is a prime (resp., maximal) ideal of 7 and M = N N R the corre-
sponding prime (resp.; maximal) ideal of E, then Theorem 3.7 readily implies that
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(Bu)* is a GPVD, with associated Priifer domain (T'x)*. (Of course, D* generally
denotes the integral closure of D in K*.) Moreover, one has canonical isomorphisms
R*@p Ry (Ry)* and T* @y, Ty~ (Ty)* (cf. [3, Proposition 5.12).

Hence, if @ is a prime (resp., maximal) ideal of B* and M = @ N R, then ¢ in-
duces a prime (resp., maximal) ideal P in (R,)*. If N is the prime (resp., maximal)
ideal of T lying over M, let I be the prime (resp., maximal) ideal of (7,)* which lies
over P. Then J = I N T* is the unique prime (resp., maximal) ideal of 7* lying
over @ (since any such ideal D must satisfy D(Ty)*=I). In particular, R*c T*
is a unibranched extension.

In order to complete the proof, it suffices to produce a suitable ideal common
to R* and T*. To this end, let A be a nonzero radical ideal of T and R satisfying
condition (b) of Theorem 3.1. We claim that 9 = rad,. (AT*) has the desired prop-
erties.

Indeed, an appeal to [3, Lemma 5.14] as in the proof of Theorem 3.7 reveals
that U = {w e T*: » is integral over A} = {we K*: & is integral over A} = {re
€ B*: x is integral over A} = rad,. (AR*). In particular, % is a radical ideal of both
T* and R* which, since it contains 4, must be nonzero. Finally, if © is a prime ideal
of T* (resp., B*) which contains ¥ then @N ToANT >4 (resp., ENROAN
N R> A), and so the conditions satisfied by A guarantee that @ N T (resp., @ N R)
is a maximal ideal of T (resp., R); hence by integrality, © is a maximal ideal of T*
(regp., B*). Thus 2 has all the desired properties, completing the proof.

REMARK 3.10. — It is interesting to note the following analogue of Corollary 3.9.
If R is an LPVD with quotient field K and if R* is the integral closure of R in a
field extension K* of K, then R* is an LPVD.

For a proof, let N be a maximal ideal of B*, and set M = N N E. Since By is a
PVD, Theorem 3.7 assures that R;\M is a GPVD, and hence an LPVD. Passing to
its ring of quotients with respect to R*\ N, we see that (R*)y is an LPVD (cf. Re-
mark 2.4 (¢)) which, being quasi-local, is then a PVD, as desired.

The ring B congidered in Example 3.4 illustrates the faet that if R is as in
Remark 3.10, then E* need not be a GPVD even in case K*¥= K.

4. — Appendix.

This brief final section contains the proof of Lemma 3.3. First, we give a PVD-
theoretic analogue of [19, Theorem 107].

LeMMA A. - Let R, {W,} and {V,} be as in the riding hypotheses of Lemma 3.3.
Assume also that {i} is finite, say {1,...,n}. Then:

(1) ¥or each ¢, there exists a uniquely determined prime ideal ¢; of R such
that W, = R, .

(2) If Q,1is as in (1), then @, ..., @, are precisely the maximal ideals of R.
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Proor. — For each ¢, let M, denote the maximal ideal of V,, Set S =V, Nn...N
NV, and P;= M,n 8 for each ¢. By [19, Theorem 107], {P,, ..., P,} is the set
of maximal ideals of § and V,= §, for each <.

Consider the pullback

T—[[EW)=T

L

8 —> [[k(V) =78

I

where the right vertical map is induced by the inclusions W,— V, and the bottom
horizontal surjection is induced by the canonical surjections V,— k(V;). By apply-
ing [9, Theorem 1.4] to this pullback, we infer that Speec (7) and Spec (8) are
canonically homeomorphic. (In computing the intervening quotient space, the point
is that Spec (T') and Spec (8) are in one-to—one correspondence since {i} is finite.)
In particular, § is then a unibranched extension of 7 and the maximal spectrum
of T consists of the n ideals given by @,=P,NT. Note that B= (| P:= ker

(8 — 8) = ker (T — T) is a nonzero radical ideal of both 7 and §. Since Spec (T')
and Spec (S) may be identified with {Q,/B} and {Pi/B} respectively, we readily
verify condition (2) of Theorem 3.1; i.e.,, T is a GPVD with associated Priifer

domain 8. Thus, by Theorem 3.1,
TQ,C—'E Sri Xk(m)k(@i)

for each 4. Since ker (8 -8 —k(V,)) = P,, it follows by considering the above
pullback diagram that ker (T —T — k(W ,)) = P,N T = Q,, so that k(Q,) = T|Q,~
=Fk(W,). Accordingly, T, may be identified with V,x,, k(W which, accord-
ing to [1, Proposition 2.6], is just W,: Thus T = N7Z,= W,= R, and the
required assertions are now immediate consequences of the foregoing comments.

Proor oF LEMMA 3.3. — (1) Define J c I so that {W,: jeJ} is the set of those
W.’s which contain Rs. Set A = {W,: je J}. Evidently, Rsc A. For the reverse
inclusion, let x € A4, and write # = s~ for suitable 7, s € B; we shall show z € R;.

As usual, let M, denote the common maximal ideal of W, and V,: Then I(s) =
= {kel: sc M,} is finite since B = () W, is locally finite; moreover, if ke I\ I(s),
then both s~ and s belong to W\ M,, whence z€ W,. Next, set I(z) = {kel:
z ¢ Wy}, a (necessarily finite) subset of I(s). Without loss of generality, I(z) is non
empty (lest w e Rc Ry).

Observe, for each ke I(w), that M, N 8 is nonempty. Indeed, one would other-
wise have Ryc W, so that k€ J, whence z € A ¢ W, contradicting &k € I(z). Select
ze M, N 8.

Evidently, I(w) = I,U I,, where I, = {keI: v VoW, and I,= {keI: x ¢ V,}.
If kel,; then z,we M V,= M,cW,. If kel,, then #* and z, are each nonunit
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elements of W,; thus, since W, is quasi-local and one-dimensional, [19, Theorem 108]
yields a positive integer x, so that y,= 2¢* is divisible in W, by 2, that is,
Yz e W,.

Set 2 = ([]2)(]] ¥:), where the first produect is indexed by keI, and the
second product is indexed by ke I,. Then 03 ze § and the results of the preced-
ing paragraph guarantee that swe B = () {W,: ke I(»)}. Since it is trivial that
wwe D = {Wi: ke INI(z)}, we infer that zx e BN D = [} {W:: i€ I} = R, whence
2 == (zx)# e BRs. Thus Rg== A, evidently a locally-finite intersection.

(2) Let M, (resp., M) denote the maximal ideal of W, (resp., R). The hypoth-
eses on R guarantee that, for each ¢e€I, M;N R is either M or 0. Since R, .,

embeds in its overring W, which iz not a field, M,N R 0; thus, M,NR =M
for each ¢. By applying the locally finite condition to any nonzero element of M,
we see that I is finite, and the assertion therefore follows from Lemma A (1).

(3) By taking § = E\ 2P, we infer from (1) that E, is a locally finite interseec-
tion of some W./s. As R, is one-dimensional and quasi-local, (2) may be applied,
to complete the proof.
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