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Each G-domain R has a canonically associated overring R’? such that Spec(R’) is homeomor- 
phic to Spec(lZ). In general, R” is more tractable than R, since fzn is a pullback of a ring of 
fractions T of R such that each nonzero prime of Tis contained in the union of height 1 primes. 
Domains with this latter property are dubbed ‘essential’, we construct several two-dimensional 
essential G-domains. Often, for instance if R is a seminormal going-down G-domain, R = RX. 
Interest in R” is justified by establishing a natural bijection between homeomorphism classes of 
spectral spaces and homeomorphism classes of spectra of G-domains. 

1. Introduction, summary, and notation 

Let X be a (commutative integral) domain with quotient field K. R is said to be 
a G-domain if K is a finite-type R-algebra. This terminology honors the approach 
of Goldman [17] to the Hilbert Nullstel~cnsatz, Following [13], we let p(R), or 
simply p if no confusion results, denote the pseudo-radical of R, that is, the 
intersection of the set of nonzero prime ideals of R. It is well known that R is a 
G-domain if and only if p(R) #O (cf. 119, Theorem 191). Thus, if @.x(R) is a 
finite set, then R is evidently a G-domain. The Artin-Tate theorem [19, Theorem 
1461 establishes the converse in the Noetherian case; that is, if R is Noetherian, 
then R is a G-domain if and only if R is semilocal of (Krull) dimension at most 1. 
Regarding the general situation, Kaplansky [19, p. 131 has stated, “. . . the facts 
are more complex, and we seem to lack even a reasonable conjecture concerning 
the structure of general G-domains”. 
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In recent years, examples of G-domains with diverse spectra [21,25] have 
served to reinforce Kaplansky’s assertion. Nevertheless, this article identifies a 
more tractable type of G-domain, called a ‘G-domain of pullback type’ (see 
Section 2 for its definition), sufficiently general so that to every G-domain R, 
there is canonically associated a G-domain of pullback type, denoted by R”. Rn is 
an overring of R and the induced map Spec(RO) + Spec(R) is a homeomorphism. 
In certain cases, for instance R a Priifer G-domain, R coincides with R’. (For 
proofs of these assertions, see Theorems 2.9 and 2.15, Corollaries 2.10 and 2.6, 
and Proposition 2.19(c).) As usual, if A is a commutative ring with unit, Spec(A) 
is equipped with the Zariski topology. Following [18], any topological space 
homeomorphic to such a Spec(A) is called a spectral space. It is convenient to call 
a G-space any topological space homeomorphic to Spec( T), for T a suitable 
G-domain. Now, in order to justify the above attention paid to G-spaces (and 
hence to RO), we can cite Proposition 4.2: there is a natural one-to-one 
correspondence between the homeomorphism classes of G-spaces and the 
homeomorphism classes of spectral spaces. 

Section 2 develops the facts about Rn stated above. In order to explicate the 
construction of RO, it is convenient to fix some more notation. Assume now that 
R is a G-domain. Let S = S(R) denote R\U{ P E Spec(R) 1 ht(P) = l}, let R = 
R/p, and let T denote the total quotient ring of R. Then R’ is just the pullback 
R x,S-‘R, an overring of R contained in S-‘R. (The structure map S-‘R-+ T 

which is implicit in the pullback notation is available because of Lemma 2.5(b): T 

is canonically isomorphic to S-‘R. We assume familiarity with the construction 
and universal property of pullback.) Since RD is an overring of R, Rn is also a 
G-domain; and, since RD is a pullback, its ideal-theory and spectrum are tractable 
(cf. [lo]). 

It is convenient to say that a G-domain R is essential (or that R is a G-domain 

of essential type) if each nonzero prime ideal of R is contained in the union of the 
height 1 prime ideals of R. This concept is motivated in part by the observation 
that many G-domains are one-dimensional (cf. Artin-Tate), but its principal 
motivation is that S-‘R is essential, so that Rn is a pullback of an essential 
G-domain. 

For each commutative ring A, we let Spec’(A) denote the subspace of Spec(A) 
consisting of the height i primes. Section 3 is devoted to the study of G-domains R 

such that Spec’(R) is a finite set. Such R are tractable, for if Spec’(R) = 
{P,, . . . , P,}, then it follows easily from the prime avoidance lemma that 
S-‘R = fI R,,. Section 3 pays attention to the G-domains, especially the essential 
ones, admitting such a representation in several categories of domains. 

As for Section 4, suffice it to mention here that, besides the above-noted 
correspondence between G-spaces and spectral spaces, the section also contains a 
pair of interesting essential two-dimensional G-domains: see Example 4.1 and 
Remark 4.6(b). 

In addition to the above standing notation (R, K, p, S, R, T and Rn), the 
following will be in force. R+, R’, and R* denote the seminormalization (in the 
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sense of [30]), the integral closure, and the complete integral closure of R, 
respectively; the corresponding pseudo-radicals are denoted by p+, p’, and p*. 
Finally, X(R) (resp., X’(R)) d enotes the set of all (resp., all one-dimensional) 

valuation overrings of R, and m, denotes the maximal ideal of any given 

valuation ring V. 

2. Essential G-domains and G-domains of pullback type 

Lemma 2.1. Let R be a G-domain. Then 
(a) Every valuation over-ring of R other than K is contained in a maximal 

valuation overring of R distinct from K; 
(b) Every 0 # Q E Spec(R) contains a minimal nonzero prime. Therefore, 

p(R)= fJ{PIPEspec’(R)}; 

(4 P(R) = n{(m, n R) 1 V E X’(R)) . 

Proof. (a) We need only verify that Zorn’s lemma applies. Let {Va} be a chain of 

valuation rings in X(R)\{ K}. Then, W = U V, is necessarily a valuation overring 

of R. The only possible difficulty might be that W = K. Let 0 # x E p(R). Since x 

lies in every nonzero prime ideal of R, 1 lxj??V for every nontrivial V E X(R). It 

follows that l/x cannot lie in W and so W # K. 
(b) Again, we need only verify that Zorn’s lemma applies. Let {Q,} be a chain 

of prime ideals in Spec(R)\{O}. Then, P = fI Q, is a prime ideal. Since 0 # 

p(R) C (2, for every (Y, p(R) C P, and P # 0. 

(c) Given P E Spec’(R), there exists V E X(R) such that m, fl R = P. By (a), 

there exists W E X’(R) such that V C W. Thus m, II R is a nonzero prime inside 

P, whence m, /I R = P. 0 

Lemma 2.2. Let R be a G-domain. Then 
(a) Every overring of R is a G-domain. In particular S-‘R is a G-domain; 

(b) PW’R) = s-‘(p(R)); 

(c) S-‘R C fI{R, 1 Q E Spec’(R)} . 

Proof. (a) Immediate from the definition of a G-domain. 

(b) By Lemma 2.1, p(R)= n{QlQ~Spec’(R)} and 

p(S-‘R) = n{S-‘Q ] S-IQ E Specl(SPIR)} 

= n{Y’Q) Q E Spec’(R) and Q fl S = 0} . 

But, S = R\U{ Q ( Q E Spec’(R)} implies Q n S = 0 is true for every Q E 

Spec’(R). Thus, 

p(S-‘R) = n{S-‘Q I Q E Spec’(R)} 

1 s-‘(n{Q I Q E %=‘(R)l) 

= S-‘( p(R)) . 
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To verify the reverse containment, let 

x=~E~(S-‘R)CS-‘R wherex,ERandx,ES. 
x2 

Since x E n{,‘-‘Q ( Q E Spec’(R)}, it follows that, for every Q E Spec’(R) there 

exists sQ E S such that sax E Q. Then, since saxi = sax2x E Q, it follows that 

xi E Q for every Q E Spec’(R) and, therefore, x E s-‘(ll{ Q 1 Q E Spec’(R)}) as 

claimed. 
(c) It suffices to note that S C R\Q for every Q E Spec’(R). 0 

Corollary 2.3. (KIR) /( p(s-‘R)) = S-‘(R) for every G-domain R. 0 

Remark 2.4. If R is a seminormal G-domain, and S-‘R C R*, one can strengthen 

Lemma 2.2(b). In that case, p(S-‘R) actually equals both p(R) and p(R*). (See 
Theorem 2.9 and Corollary 2.11.) A complete characterization of those G- 

domains for which p(R) = p(S-‘R) would be interesting since this condition is 

necessary and sufficient for R to be isomorphic to a pullback of S-‘R. (See 
Theorem 2.15 ,) 

Let W be any ring. We denote by ZD(W) (respectively, NZD( W)) the set of all 

zero divisors (respectively, all nonzero divisors) of W. The total quotient ring of 

W, denoted Tot(W), is {T/S 1 r E W and s E NZD( W)}. 

Lemma 2.5. Let R be a G-domain with pseudo-radical p, and let Y be the union of 
all minimal primes of I? = Rip. Then 

(a) Y = ZD(R); 

(b) Tot(R) = S-‘(R) = (S-‘R)I(p(S-‘R)). 

Proof. (a) That Y C ZD(R) . is well known [19, Theorem 841. For the reverse 

inclusion, note that p = n { Q 1 Q E Spec’(R)} (Lemma 2.1). Thus, if zj = 0 and 

y #O, then there exists Q E Spec’(R) such that y@Q. It follows that x E Q and 

so x E Y. 

(b) Let X E R. By (a) X E NZD(R) if and only if x @ U { Q ] Q E Spec’(R)}; that 

is, if and only if x E S. Thus Tot(R) = S-‘(R). That S-‘(R) = (S-‘R) /( p(S-‘R)) 
was already noted in Corollary 2.3. 0 

Remark 2.6. By the proof of Lemma 2.5, a G-domain R has essential type if and 

only if R = Tot(R). Thus every one-dimensional G-domain has essential type. 

Since it is known that all Noetherian and all Krull G-domains satisfy dim(R) 5 1 

(a fresh proof of this relatively easy fact is included in Remark 2.18), it follows 

that all Noetherian and Krull G-domains have essential type. However, any 

valuation ring V of finite dimension n 2 2 is a G-domain of nonessential type; 

indeed, the pseudo-radical of V is the unique height 1 prime P of V and so 

s-iv= VP #V. 
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Remark 2.7. In many essential G-domains, (for example, if Spec’(R) is a finite 
set), R=n{R,(PESpec’(R)}. By Lemma 2.2(c), RCS-‘RCn{R,]PE 
Spec’(R)} is always true for G-domains. Hence, if a G-domain R = n{R,) P E 
Spec”(R)}, then R = S-‘R is necessarily essential. 

~oposition 2.8. Let R be an integrally closed G-domain. Then 

(a) R*= n{VIVEX1(R)}; 

(h) p(R) = p(R*) = i-{m, 1 V E X’(R)). 

Proof. (a) This is a result due to Giimer and Heinzer [El. 
(b) p(R*) = I?{(?~,, fI R*) / V E X’(R*)} by Lemma 2.l(c). But X’(R) = 

X’(R*) by (a). Therefore p(R*) = (fI{m, 1 V E X’(R)}) n R*. 
On the other hand, applying Lemma 2.1(c) to R yields p(R) = n{(m, II 

R) 1 V E X’(R)} = (n { wv 1 V E X’(R)}) II R. An application of Lemma 2.1(a) 
makes clear that n{m,IVEX1(R)} = n{m,IVEX(R))C n {V/VE 
X(R)} = R (since R is integrally closed). The assertions now follow easily. c1 

In Corollary 2.16, we establish, for a certain class of G-domains R, that R is a 
pullback of its associated essential G-domain Se’R. We first characterize that 
class. 

Theorem 2.9. Let R be a G-domain. Then, the following are equivalent: 

(a) {.xEK~x*E~ andx3Ep}cR; 

(b) P=P+; 
(4 p=p’; 
(4 P=P*; 
(e) n{m,/VEX’(R)}CR. 
We say that the G-domain R is saturated if it satisfies any of these equivalent 

conditions. 

Proof. If S is any overring of R, then p(R) C p(S) (since every nonzero prime of S 
intersects to a nonzero prime of R). In particular, p Cp+ Cp’ Cp”, from which 
(d) + (c) 3 (b) is an immediate consequence. 

By Proposition 2.8 and the fact that X’(R) = X’(R’), p’ = p” = fl {m, ( V E 

X’(R)). (4 e (4 =3 (4 f 11 o ows 
X’(R)} 0 R) = I7 { 

immediately. Also, p* rl R = (n fm, / V f 
m, c7 RI V f X’(R)} = p by Lemma 2.1(c). If we assume (e), 

then p* C R so p* = p* T1 R = p, which verifies (d). 
To prove (b) + (a), it suffices to show that the set 0 = {x E K lx2 E p and 

x3 up} is contained in p+. Since p’ . 

satisfies x?- E p C p +, 
IS a radical ideal in R + and every x E 0 

the problem reduces to showing that 0 C R’. This is 
immediate from a standard characterization of seminormal domains. 
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The most difficult part of this theorem is the fact that (a) 3 (d). Its proof will 

proceed through a remark and two lemmas which we number for convenient 

reference. As Remark 2.9.1 is well known (and easily verified), its proof is 

omitted. 

Remark 2.9.1. Let R be a domain with quotient field K; let S be an overring of R. 
Then 

(a) (R : S) is the largest subset of K which is an ideal in both R and S; (In 

particular, (R : S) C R.) 
(b) If J is any ideal in S, then (R: S) fl J is an ideal in both R and S; 

(c) If Z is an ideal in R, (I : Z) is the largest overring of R in which Z remains an 

ideal. 

Lemma 2.9.2. Let R be a G-domain and S an overring of R. Assume that 
{x E K 1 x2 E p(R) and x3 E p(R)} C p(R) and that (R : S) Z 0. Then, p(R) = p(S) 
and, consequently, (R : S) 3 p(S). 

Proof. Let Z = (R: S) n p(S). By Remark 2.9.1(b), Z is an ideal in both R and S 

and therefore we need to distinguish the radical of Z in R, rad,Z, from that of Z in 

S, rad,Z. The heart of the proof is to show that rad,Z = rad,Z. 

Clearly, {~ER(x~EZ some NEZ+}C{xESIx?EZ some NEZ’}. So it 

suffices to verify the reverse containment. Since (R : S) # 0, the two rings have the 

same complete integral closure: R* = S”. Thus, using the facts that p(S*) n S = 

p(S) and p(R*) fl R = p(R) (see proof of (d) e (e) above), p(S) fl R = p(S*) n 

SnR = n{m,nSjVEX’(S*)}nR = rl {m,nRIVEX’(R*)} =p(R*)nR 

= P(R). 
Now, we claim that rad,Z C R (from which it follows that rad,Z C rad,Z). To 

prove this claim, let x E rad,Z be arbitrary. For some integer N 2 1, xN E 1. Of 

course, then xn E Z = (R : S) n p(S) C R fl p(S) = p(R) whenever n 2 N. The set 

{d E Z 1 xd gp(R)} is therefore bounded above by N. Let t be the largest 

nonnegative integer such that x’$p(R). If t > 0, then 3t > 2t > t from which it 

follows that (x’)~ and (x’)~ lie in p(R). By our assumption, this forces x’ into p(R) 
which is a contradiction. Hence, t = 0 and x Ep(R) C R. Thus, rad,Z C R. Hence, 

rad,Z = rad,Z C p(R) C p(S). H owever, p(S), being the intersection of all non- 

zero primes, is contained in every nonzero radical ideal in S. Therefore, p(S) = 
rad,Z, forcing p(R) = p(S). 0 

Lemma 2.9.3. Let R be a G-domain, with pseudo-radical p, satisfying {x E 
KIx2ep and x3 Ep} Cp. Then 

(a) For every x E R*, (R : R[x]) > p and p = p(R[x]); 
(b) (p:p)= R”. 

Proof. (a) By Lemma 2.9.2 with S = R[x], it suffices to show that (R: R[x]) # 0. 
But this is immediate from the definition of complete integral closure. 
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(b) Let x E R*. By (a), p C (R: Rjx]); in fact, p is an ideal common to both 
rings. Given any y E p, yx E pR[x] = p; whence, x E (p : p). Thus, I?* C (p : p). 

For the reverse inclusion, set S = (p : p) and note via Remark 2.9.1 that 
(R : S) > p Z 0. Therefore, S C R*, 0 

We now ~~~~l~t~ the proof of Theorem 2.9. Assume (a), namely that {x E 
K(x’E~ andX3Ep}CR. Then, {xEh:}~*Cp andX3Ep}CradR(p)=p. By 
Lemma 2.9.3(b), (p : p) = R* and, therefore, p is a common ideal of both R and 
R*. This implies that (R: R*) ZO from which it follows by Lemma 2.9.2 (with 
S = R*) that p = p*Ll 

Corollary 2.10. If R is a seminormal G-domain, then 
(a) R is saturated; and 

@) p(R) = p(R’) = p(R*). D 

Corollary 2.11. For a saturated G-d~rnai~ R, p(R) =p(S-‘R) if and only if 
S-‘R C R*. 

Proof. If Y’RC R*, then p(R) Cp(S-‘R) Cp(R*). But, for a saturated G- 
domain, p(R) = p(R*), so p(R) = p(S-‘R) is forced. 

Conversely, p =p(S-‘R) =p(R) implies S-‘RC (p: p). But when R is satu- 
rated, (p:p)= R”. 0 

As a consequence of Theorem 2.9, we can generalize the result of Gilmer and 
Heinzer quoted in Proposition 2.8 as follows: 

Corollary 2.12. If R is a saturated G-domain, then R* = f’~ {V 1 V E X’(R)} and is 
completely integrally closed. 

Proof. Obviously R C R’ + R* C (R’)‘. By Proposition 2.8, (R’)* = f-i {V) V E 
X’(R’)} = fl {V~VEX’(R)} an is completely integrally ctosed. We need only d 
show that R* > (R’)*. By Theorem 2.9 applied to R’, p’ = p(R’“). By Theorem 
2.9 applied to R, p = p’. Hence p = p(R’*); so (R : R’*) 3 p # 0, whence R’* C 

R*. 0 

Remark 2.13. A different characterization of the saturated condition was pointed 
out by Campanella [3, Teorema 1.51 who proved that a G-domain R is saturated 
if and only if every height one maximal ideal of R[X] is principal. Campanella 
also showed that a Noetherian G-domain is saturated if and only if it is 
seminormal. However, the saturation condition does not, in general, imply 
seminormality~ 



96 D.E. Dobbs et al. 

For details of the connection between pullback diagrams of commutative rings 

and the resulting pushout diagrams of Spec, we refer the reader to [lo, Theorem 

1.41. For future references, we list in Lemma 2.14 some facts that we will need 

later on. 

Lemma 2.14. A pullback diagram of commutative rings 

Ax,R-_II_,A 

where $, is surjective, naturally gives rise to a commutative diagram 

Spec(A x T R) & WC(A) 

in such a way that Spec(A X r R) is identified with the topological space 
Spec(A) U ,,,,(,,Spec(R) via the maps t.~, and t+. Moreover, 7~~ is a surjective map 
and, thus, p, gives a closed embedding of Spec(A) into Spec(A XT R). 0 

We have already seen, for a G-domain R, that p(S-‘R) = S-‘(p(R)) (Lemma 

2.2(b)) and that S’R/p(S-‘R) = S’(R/p(R)), the total quotient ring T of 

R/p(R) (Corollary 2.3 and Lemma 2.5(b)). Thus, using the canonical surjection 

from S’R to T and the canonical injection from R to T, we can construct the 

pullback RO = R x T S’R which is also a G-domain that we will identify (canoni- 

cally) with an overring of R (contained in S’R). Recall that for every G-domain 

R, its overring S’R is called the essential G-domain associated to R, and that R is 

an essential G-domain if and only if S’R = R. In the same spirit, we say that R is 

a G-domain of pullback type if R = RD and we call RD the G-domain of pullback 
type associated to R. This terminology is justified by Theorem 2.15(c) below. 

Theorem 2.15. (a) If R is a G-domain, then Spec(RO) is homeomorphic to 
Spec(R) (via the map induced by the natural inclusion of R in RO). 

(b) If R is a saturated (e.g. seminormal) G-domain and S’R C R*, then 
RU = R is of pullback type. 

(c) Let R be any ring of the form A X T B such that T is the total quotient ring of 
A, B is a G-domain, and B/p(B) = T. Then R is a G-domain, B is naturally 
identified with S’R, and R = R”. In particular, for any G-domain R, (RU)O = R”. 
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Proof. (a) From the pullback diagram of canonical homomorphisms, 

we obtain a commutative diagram (Lemma 2.14) 

Spec(R”) A Spec( I-T ) 

r 
fL2 

I 
a2 

Spec(S-‘R) I Spec( T) 

such that Spec(R”) is identified with Spe~(~)Us~~~~~~Spe~(S-‘R) and pi is a 
closed embedding. The map (Y,, being induced by the surjection r&, is just the 
standard correspondence between prime ideals in T = (K’R) /( p(Y’R)) and 
prime ideals in S-‘R that contain p(S-‘R). Since every nonzero prime contains 
the pseudo-radical, the image of cy, is Spec(S-‘R)\(O). But every q(P) in this 
image is identified with the corresponding Q,(P) in Spec(R). Thus, up to 

homeomorphism, Spec(R)U specjT~Spec(S-lR) = Spec(R) U (0) (the second 
union being disjoint). Moreover, since p, is a closed embedding, Spec(R) is a 
closed set in Spec(R ) U (0) and the proper closed sets of Spec(R) U (0) are in 
l-l correspondence with all the closed sets of Spec(R). Thus, we have a bijection 
Spec R U Spec rSpec(S- “R)+ Spec(R) which is both continuous and closed; there- 
fore, it is a homeomorphism. 

(b) By the universal property of pullback diagrams, R is always identified with 
a subring of RD via the injection given by $(Y) = (?, r/l). If R is saturated and 
S-‘R C R*, we claim that C#J must be surjective as well. To see this, let (Y, a/t) E - 
R x TS-lR be arbitrary. By definition, Y= (a/t) in T; whence, b = r - alto 
p(S-‘R). By Lemma 2.2(b) and Corollary 2.11, p(S-‘R) = S-I( p(R)) = p(R). 
Thus, bEp(R)C R. But, then, a/t= r- bE R, and (Y, ~/~)=((~~,u/f)= 

+(alt) E 4(R). 
(c) We are given a canonical surjection B2 T and a canonical injection A$ T. 

By the definition of pullback, we have ‘coordinate’ maps vi and rz from R to A 
and B respectively. We may identify R with the subring nz(R) inside B. Now, just 
as in part (a), Spec(R) = SpecfA) U {0}, and Spec(R)\{O} = {r,l’(P) / PE 
Spec(A)). If PESpec(A), *;I (P) = {(x, r) E R lx E P}. Thus, we can compute 
p(R) more explicitly: p(R) = II { r;’ (P) 1 P E Spec(A)} = {(x, y) E R Ix E P for 
all P~spec(A)}. By hypothesis, r-.‘A = B/p(B) where r= NZD(A). This im- 
plies that T-IA, and therefore A, are both reduced. Thus, n {PIPE Spec(A)} = 
0. 
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Note, too, that for y E B, (0, y) E R if and only if 9 = 0 in B/p(B); that is, if 
and only if y E p(B). Consequently, 

p(R) = {(X, y) E R 1 x E n {P: P E Spec(A)) 

= ((0, Y) i(O, Y) E RI 

= ((0, Y)l Y fP@)l . 

It follows that, identifying via the injection 7r2 : R-+ B, p(R) = p(B) # 0, proving 
that R is indeed a G-domain. Moreover, the kernel of 7r, is ((0, y) / (0, y) E R} = 

p(R); so, A 2: Rip(R) = I?. 
To prove that R = I? x T S-‘R, it remains to show that B = S-‘R. Since A = I?, 

Spec’(R) = SpecO(A). Since the set of zero-divisors of A is U {P 1 P E Spec’(A)}, 
it is easy to see that 

S={(x,y)ERjxENZD(A)}. 

Hence, (x, y) E S (sx E NZD(A) and xl 1 = y (working in B/p(B) = T) (3 xl 1 = 

y is a unit in B/p(B) exf 1 = 3 in T and y is a unit in B. Thus, S = {(x, y) E R 1 y 

is a unit in B], and v~(S) is contained in the units of B. It follows that 

S-‘R = n,(S)-‘(q(R)) C B . 

For the reverse containment, choose any y E B. Then 7 = a/s in T for some 
choice of a E A and s E NZD(A). As B -+ T is surjective, there exist m and b in B 
such that fi = s and 6 = a in T. It follows that (s, m) and (a, b) are elements of R 
and that ( y)(rzz(s, m)) = jti = j& = a = 6 in T = B/p(B). Therefore, X=: 
(y)(r&, m)) - b Ep(B). But, we have seen above that p(B) = n;(p(R)) and 
that, since sENZD(A), ( s, m) E S. Hence, y = (x + b)im E ~~(S)-*(~~~R)) = 
S-lR as desired. 

Now, the fact that (R”)O = R” is immediate since R” has the form A XT B 
prescribed in the hypothesis of (c). 0 

Corollary 2.16. A saturated G-domain R has pullback type if and only if 
S’RC R”. 

Proof. The ‘if’ assertion is a restatement of Theorem 2.15(b). 
Conversely, if R = A XT B has pullback type, then B = S-‘R by Theorem 

2.15(c). Moreover, we showed in the proof of Theorem 2.1.5(c) that p(R) = p(B); 
whence, BCR*. Cl 

The condition SIR C R* may seem, at first, quite mysterious and restrictive. 
However, if a G-domain R is Priifer, Noetherian, or Krull, then S-‘R C R*. (See 



G-domains and spectral spaces 99 

Remark 2.18 and Corollary 2.20.) Thus, the condition is satisfied by G-domains 
which belong to the most commonly studied classes of commutative rings. In fact, 
we do not know an example where the condition S-‘R C R* fails. Of course, even 
when it does fail, we still have (SO)-‘(R’) C(R”)* and Spec R0 =Spec(R) by 
Theorem 2.15 and Corollary 2.16. Consequently, the condition S-‘R C R* often 
may be assumed when considering questions about R which are topological in 
nature. 

The essential spectrum of a G-domain R, denoted EssSpec(R), is the set 
{Q E Spec(R) 1 Q fl S = 0). Obviously, EssSpec(R) 3 Spec’(R). 

Remark 2.17. R is an essential G-domain if and only if R = n {R8 1 Q E 
EssSpec( R)} ; indeed, 

S-‘R = fl {(S”R),-r, 1 S-‘Q E Spec(S-‘R)) 

= fl {R, 1 Q E EssSpec(R)} . 

Remark 2.18. If R is a Krufl G-domain, then R = i3 {R, / P E Spec’(R)} and this 
intersection is locally finite. Therefore, by Remark 2.17, every Krull G-domain R 
is essential, with Spec’(R) a finite set. (If O#x Ep, then xE P for every 
P E Spec’(R).) In our terminology, then, the Artin-Tate theorem can be 
‘generalized’ by the following simple fact. If R Z K is an essential G-domain such 
that Spec’(R) is finite, then R is one-dimensional and semiquasilocal. To apply 
this fact to an arbitrary Noetherian G-domain R # K, note that R’ is a Krull 
G-domain; and therefore, as already pointed out, R’ is one-dimensional and 
semiquasilocal. Hence, by integrality (essentially, the going-up and incomparabili- 
ty properties), R must be one-dimensional and semi-local. By Remark 2.17, it 
then follows that every Noetherian G-domain is also essential. 

We investigate the condition S-‘R C R* further in order to prove that Priifer 
G-domains have this property. Let tin(R) denote {V E X(R) j (ml, 17 R) E 

EssSpec(R)}, and let R”(R) = O(R) II X’(R). By a straightforward argument, 
O(R) = X(S-‘R) C X(R). Th e reader should be cautioned, however, that R(R) is 
not necessarily the same as fl(R’). Recall from [5] that R is a going-down (CD) 
domain if, for every overring T of R, the inclusion map R+ T satisfies the 
going-down property. 

Proposition 2.19. Let R be a G-domain. Then 

(a) Zf W is a valuation overring of R and W 3 fl {V 1 V E O(R)}, then W E 

f&R); 
(b) Zf R is saturated, then S-‘R is saturated, and S-‘R C R* (3 O’(R) = 

Xl(R)eR*= fl {VlVEf2’(R)}; 
(c) If R is a saturated GD-domain, then R has pullback type. 

Proof. (a) For every 0 f x E m,, llx,@t’w. Thus, W > 17 {V) V E O(R)} implies 
l/x$ I-) {V/VEfl(R)} which implies x~m, for some VER(R). It follows 
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that m,C U{m,jVEf2(R)}. H ence, m,f?RC U{m,nR]VEfl(R)}= U 

{Q ( Q E EssSpec(R)} . S ince QEEssSpec(R)eQC U {P(PESpec’(R)}, (a) 

follows. 

(b) Assume that R is saturated. Let x E K satisfy x2 Ep(S-‘R) and x3 E 

p(S-‘R). Then, since p(S-‘R) = S-‘(p(R)), x2 = al/b, and x3 = a,lb, where a,, 

a2 Ep(R) and b,, b, E S. Therefore, (blb,x)2 and (b,b2x)3 are both in p(R). As 

R is saturated, it follows that b,b,x Ed. Hence, x E S-‘(p(R)) = p(S-‘R) 
which means that S-lR is saturated. 

Next, we prove the equivalence of the three conditions in (b). Obviously, 

R’(R) = X’(R) implies R” = n{V 1 V E R’(R)}, by Proposition 2.8 and Corol- 

lary 2.12. 

Now, assume that R* = f7 {VlV E 0’(R)}. The fact that X(S-‘R) = R(R) 
implies that X’(S-‘R) = R’(R). S’ mce S-‘R is saturated, (S-‘R)* = fl {V (V E 
R’(R)} = R* (Corollary 2.12). Thus S-‘R C R*. 

Finally, assume Y’R C R*. Then R* C (S-‘R)* C (R*)*. But (R*)* = R* by 

Corollary 2.12. Hence, R” = (S-‘R)*. As we just noted above, this forces 

R*= n{VIVER’(R)}. If WEX’(R)\R’(R), then W=W*>R*= fl 
{V) V E R’(R)} 3 f-I {V 1 V E L?(R)}. It follows, by part (a), that W E 0(R) n 
X’(R) = 0’(R), a contradiction. 

(c) By Theorem 2.15(b) and (b) of this proposition, it suffices to show that 

X’(R) C 0(R). If K f V E X(R)Ml(R), then Q, = m, II R@Spec’(R). Hence, 

Q, 3 Q, for some Q2 E Spec’(R) (Lemma 2.1(b)). Since R+V satisfies the 

going-down property, Q, 3 Q2 lifts to a chain m, 3 P in Spec(V). Hence V, 
properly contains V, and so V $6X’(R). Cl 

The interested reader should note that an alternative proof to Proposition 

2.19(c) can be obtained using Corollaries 2.12 and 2.16, thus avoiding the use of 

Proposition 2.19(b). 

Corollary 2.20. Zf R is a PrL;ifer G-domain, then Y’R C R*, R has pullback type, 
and R* = fl {Rp( PESpec’(R)} h as essential type. Zf in addition, R is a B&out 
domain. then S’R = R*. 

Proof. Prufer domains are necessarily GD-domains [5, p. 4481. Hence S-‘R C R* 
and R has pullback type, by Proposition 2.19(c) and Corollary 2.16. Furthermore, 

for a Priifer domain, nl(R)=X1(R)={R,IP~Specl(R)}. Thus, R*= fl 
{R, 1 P E Spec’(R)} by Proposition 2.19(b). Applying the same reasoning to R* 
in place of R leads to R* C (S*)-lR* C R** = R* . Hence, R” has essential type. 

If, in addition, R is a Bezout domain, then every overring of R is a ring of 

fractions of R. In particular R* = T - ‘R for some saturated multiplicatively closed 

set T. By the result above, S-‘R C T-‘R = R* = n {R, 1 P E Spec’(R)}. There- 

fore, T 3 S and R, 3 T-‘R for every P E Spec’(R). It follows that T n P = 0 for 

every P E Spec’(R), and so S > T. Thus, S-‘R = T-‘R = R*. 0 
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It is noteworthy that for R either a Prufer G-domain or a Noetherian 

G-domain, R* is just the intersection of the one-dimensional valuation overrings 

of R which lie over the height 1 primes of R. Unfortunately, this intersection is 

not generally locally finite in the Priifer case; so, it does not necessarily follow 

that R* is one-dimensional. It is easy to find examples of G-domains which are 

not one-dimensional. In Example 4.1 we point out an example of an essential, 

Bezout (hence, completely integrally closed) G-domain of dimension 2. 

3. G-domains with only finitely many height 1 prime ideals 

If R is a G-domain such that Spec’(R) is a finite set, then S’R = fl {R, 1 PE 
Spec’(R)}, a finite intersection of one-dimensional quasilocal rings. The condition 

that Spec’(R) be finite is characterized by S’R being semiquasilocal of dimen- 

sion at most 1. In this section, we note certain conditions which guarantee that 

Spec’(R) is finite and deduce some consequences of Spec’(R) being finite which 

enable us to give a more precise description of certain types of rings where this 

occurs. 

Remark 3.1. It follows readily from [22, Theorem 33.31 that a G-domain R 
satisfies Spec’(R) is finite and R has essential type if and only if every nonzero 

principal idea1 of R is a finite intersection of (height 1) primary ideals. 

Remark 3.2. In the structure theory for G-domains given by Theorem 2.15, the 

case where S’R is one-dimensional and semiquasilocal precisely corresponds to 

the requirement that T be a finite direct product of fields. To see this, note first 

that T=S’Rlp(S’R). Thus, if Spec’(R) = {P,, . . . , P,}, then T= 
Hi=, SLRIS’P, and each S’RIS’P, is isomorphic to the field R,IP,R,,. 
Conversely, if T= n:=, K,, a finite direct product of fields, then T is zero- 

dimensional with t maximal ideals and, consequently, S’R is one-dimensional 

with t maxima1 ideals. 

Proposition 3.3. For a G-domain R which is not a field, each of the following 
equivalent conditions implies that R is one-dimensional (hence, essential type) and 
semilocal: 

(a) R is Noetherian and integrally closed; 
(b) R is a Noetherian strong G-domain ; 

(c) R is a Euclidean domain; 
(d) R is a principal ideal domain ; 

(e) R is a unique factorization domain; 
(f) R is a Krull domain ; 
(g) R is a Dedekind domain; 
(h) R = f-7 ;z, V, each V, being a discrete valuation ring (DVR). 
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Proof. Recall that R is said to be a strong G-domain if every overring of R 
(including K) has the form R[l lt] for some t E R (see [25]). All the implications 

(c)+(d) j (e) j (f), (h) j (g) + (f) and (b) 3 (a)+(f) should be evident to the 

reader. Note also (h) + (c) [27, Proposition 51 and (h) 3 (b) [25, Theorem 3.41. 

That (f) 3 (h) h’ m es upon the fact that R, being a Krull G-domain, is one- g 

dimensional and semiquasilocal (Remark 2.18). 0 

Proposition 3.3 focused on the uncomplicated case of Noetherian G-domains 

where, in particular, Spec’(R) is finite. In the next results, we ‘generalize’ by 

assuming that Spec’(R) is finite but not that R is Noetherian. 

First recall [19, Theorem 1071 that if R = n y=, V, where each V, E X’(R), then 

R is a Bezout domain. If, in addition, no two y’s are comparable, and we let Pi 

denote rn,: fl R, then the set of maximal ideals of R is precisely {P, , . . . , P,} and 

R, =V. 
kow, several important classes of (not necessarily Noetherian) integrally closed 

essential G-domains coincide when Spec’(R) is finite. 

Proposition 3.4. Let R # K be an essential G-domain such that Spec’(R) is finite. 
Then, the following are equivalent: 

(a) R is a Prtifer domain; 
(b) R is a B&out domain; 
(c) R is a GCD-domain; 
(d) R is a strong G-domain; 
(e) R is integrally closed and every overring is a finitely generated R-algebra; 
(f) R is integrally closed and every overring is a locally pqr-domain; 
(g) R = f-I YE1 v, h w ere each V, is a one-dimensional valuation overring of R. 

Proof. Recall that a domain R is locally pqr if, for every P E Spec(R), there exists 

t E R such that R, = R[l it]. It is well known that (g) j (b) + (a) and (b) 3 (c). 

Also, in general, (f) ($ (d) ($ (e) (see [21, Proposition 3.71 and [12, Theorem 141) 

and (d) + (b) (see [21, Proposition 1.51). Since R = f-I {R, ( P E Spec’(R)} for 

any essential G-domain such that Spec’(R) is finite, (a) +(g) is evident. Also, R 
being one-dimensional and semiquasilocal [19, Theorem 1071, (g)+(d) [25, 

Theorem 3.41 and (c)+(b) [4, Corollary 4.4; 28, Theorem 3.71. 0 

Remark 3.5. When R is an essential G-domain and Spec’(R) is finite, we have 

seen that R = n {R, ( P E Spec R}. It is natural to ask whether, conversely, any 

finite intersection, R = fl r=, Ri, of quasilocal G-domains gives rise to a G- 

domain. It is not surprising that, if each R, is one-dimensional having the same 

quotient field as R, then R is a G-domain and Spec’(R) = {m, II R, . . , m, n R} 
where m, is the maximal ideal of Rj (apply [19, Theorem 1101). As far as we 

know, however, R need not be essential unless we make still further assumptions 

(e.g. if also each R, is a one-dimensional valuation domain, then R is a 

one-dimensional semiquasilocal G-domain [ 19, Theorem 1071). 
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To pursue Remark 3.5, we consider a specific type of domain for Ri - a 
finite-dimensional conducive domain (not necessarily quasi-local) - which is a 
generalization of the finite-dimensional valuation (or pseudovaluation) case. 
Recall that a conducive domain is a domain T such that the conductor (T : W) # 0 
for every overring W other than the quotient field of T (see [6] or [2]). The 
standard D + M construction, for example, always gives rise to a conducive 
domain. Corresponding to any finite-dimensional conducive domain R # K, there 
is a unique one-dimensional valuation overring V satisfying (R: V) # 0. (See [6, 
Propositions 4.5, 4.31.) For this V= R*, m, fI R is the unique height 1 prime of 

R. Furthermore, since each such R is a G-domain, Theorem 2.9 implies that if R 
is saturated and R # R*, then (R: V) = p(R) = p(V) = rnv = mv n R. 

We include the following easy lemma for the sake of completeness: 

Lemma 3.6. Let R be a domain and T be an overring of R such that (R : T) # 0. 
Then R is a G-domain if and only if T is a G-domain. 

Proof. That R being a G-domain implies T is a G-domain is patent. Conversely, 
pick 0 # t E T such that K = T[l it] (possible because T is a G-domain) and pick 
O# r E (R: T). Since, for each n, Tt-” = (Tr)r”r’ (rt))” C R[r-‘, (rt))‘], it fol- 

lows that K = R[r-‘, (rt))‘] and, so, R is a G-domain. 0 

Theorem 3.7. Let R,, . . . , R,, be finite-dimensional conducive domains which are 
not fields, with Qi being the (unique) height 1 prime of R,. Let R = fl y=, R, and 
qi = Q, n R. Let (V;, M;) be th e unique) one-dimensional valuation overring of Ri ( 
and let 6, = (RL : V,) fl M, (which is nonzero by the conducive property). Let 
W = II YE, V, and mi = M, n W. Assume further that R and each of the R,‘s have a 
common quotient field K and that qi gqi whenever i f j. Then 

(a) R is a G-domain and R* = W, a one-dimensional semiquasilocal Bezout 
domain ; 

(b) St=‘(R) = {q,, . . . , 4,); 
(c) SIR= f-I:‘=, Rq,cR*; 
(d) R can be represented as a pullback of S’R and S’R can be represented as 

a pullback of R* via the diagram 
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(e) If each Ri is one-dimensional, then R = S-‘R is one-dimensional and 
semiquasilocal; 

(f) If each Ri is saturated, then R is saturated and R = R” = l? x T* R* where T* 
is the total quotient ring of R* ip*. 

Proof. Note that m, fl R = M, Cl W fl R = Mi II R = Mj fl Ri fl R = qi and, so, the 

condition qi $Z’qj for i f j implies mi gmi, Mi JZ Mj, and V, gVj for i # j. 
(a) For each 15 i 5 n, choose 0 # xi E bj n R. Then 0 f II:=, xi E 

((f-l;=, R;):(f-l;=, v)) = (R:W); so R* = W* = W. Also, since (R: W) #O and W 
is a G-domain, R must be a G-domain (Lemma 3.6). The other facts about W 
follow from [19, Theorem 1071. 

(b) Since R is a G-domain by (a), every nontrivial V E X(R) is contained in a 

maximal valuation overring (Lemma 2.1(a)). To show that Spec’(R)C 

{ ql, . . . q,}, let P E Spec’(R) and V E X’(R) such that m, n R = P. But, then, 

V=V*>R*=fl;=,y by (a). H ence, V=V, for some 1% icn; so P= q, for 

some 15 i 5 n. Conversely, assume that some q, $Spec’(R). Then qi properly 

contains some P E Spec’(R) (Lemma 2.1(b)). As above, P = q, for some 15 j 5 n 
and so q, > q, which is a contradiction. 

(c) Since Spec’(R) = {ql, . . . , 4,) (by part (b)), S-‘R = n;_, R,,. But Rql c 
(Rj)a, C y/i; therefore, S-‘R C f-I;=, V, = R*. 

(d) Keeping in mind that R * = fly=, Vi = W, the pullback descriptions follow 

easily from the fact that n:=, bi is a common ideal of R, S-‘R, and R*. It 

remains only to prove that the canonical inclusion maps 

K’R S-‘R R* 

-+ r (b, n S-‘R) nb; and nhi-) (bj %*, 

are surjective. By the Chinese Remainder Theorem, this reduces to showing that 

bi il W and bj fl W are coprime in W and that b, fl S-‘R and b, n S-‘R are 

coprime in S’R. For the first of these, it is enough to note that rad,(b, tl W) = 
radVz(bi) II W= M, cl W= m,, and mi and m, are obviously coprime. For the 

second, a similar calculation yields radsml,(b, fl S-‘R) = Y’q,. But, by (b), 

maxSpec(S-‘R) = {S-‘q,, . . . , 

S-‘R. 
K’q,}; thus, S-‘q, and K’q, are coprime in 

(e) We have already seen in the proof of part (c) that Y’R = nyz, Rql c 

fY=, (f%,. But if each Ri is one-dimensional, then (Ri),, = Ri and, so, 

n;=, (Ri),, = n;=, Rj = R. Thus, R = S-‘R = fly=, R,, which is one-dimensional 

and semiquasilocal. 

(f) Since Ri is a G-domain and RT = Vi, the fact that Rj is saturated implies that 

p(R,)=p(y); and, so, b, = Q, = M,. By part (b), p(R) = fl:=, q, = 
(n:=, Qj)nR = n :=, Qi = n;=, Mi =p(R*). Thus, R is saturated. MoreovQ 

the pullback diagrams of part (d), Rl n bj = R, FIRI n (b, n S-‘R) = S-‘R, 
and R* / n (b, n R*) = R*. By Lemma 2.5(b) (noting that R* must be essential 

- 
because it is one-dimensional), R* = Tot(R”) and S’R = Tot(s). It follows 

that R = R X Ts R* as desired. Finally, R = RO, by (c) and Theorem 2.15(b). 0 
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Remark 3.8. Therem 3.7 generalizes several standard results (cf. [19, Theorems 

107 and 1091) on the finite intersection of valuation rings and the finite intersec- 

tion of one-dimensional quasilocal rings. It shows that a common type of finite 

intersection of conducive domains (not necessarily one-dimensional or quasilocal 

or valuation) gives rise to a G-domain R such that both S-‘R and R* are 

one-dimensional and semiquasilocal. Far from being exotic, Theorem 3.7 provides 

the kind of concrete generalization of the Artin-Tate theorem suggested by 

Remark 2.18. In fact, the case where R (#K) is a Krull G-domain is a trivial case 

of Theorem 3.7 since, then, R is a finite intersection of discrete valuation rings 

(which are certainly one-dimensional and conducive). 

In light of Theorem 2.9, Remark 2.18, and Remark 3.8, we ask questions about 

R* when R is a G-domain with Spec’(R) finite. Most importantly, we do not 

know conditions implying dim(R*) = 1. (Of course, this problem would be trivial 

if we also assumed that X’(R) is finite.) One cannot apply directly the results of 

this section because Spec’(R) being finite does not imply that either X’(R) or 

Spec’(R*) is finite. This is illustrated below. 

Example 3.9. We exhibit a one-dimensional quasilocal domain R such that R* is a 

one-dimensional (therefore, essential) Prufer G-domain, but not semiquasilocal. 

Let V be a one-dimensional valuation domain with quotient field K such that 

there exists an algebraic field extension L of K having infinitely many valuation 

subrings extending V. (For instance, take V= Z,, and L the field of algebraic 

numbers.) Let T be the integral closure of V in L. Then T is one-dimensional and 

Prufer, but not semiquasilocal (cf. [13, Example 11). Moreover, T = fl {T, ( m E 
Spec’(T)} is completely integrally closed. Since every nonzero prime in T lies 

over m, in V, V/m, + T/p(T) is well defined (and injective). We can define R to 

be the pullback 

R-----+ Vim, 

T- TIP(T) 

We leave to the reader the routine verifications that R+ T is injective, that 

Spec(R) has only 2 elements [lo, Theorem 1.41, and that, viewing R as a subring 

of T, p(T) is the maximal ideal of R. Hence, (R: T) # 0 so that R* = T* = T. As 

asserted, R is quasilocal whereas T has infinitely many height 1 primes. 

We close this section by stating some more specialized conditions which imply 

that Spec’(R) is finite. 

Example 3.10. Spec’(R) is finite for every G-domain R such that R’ is a strong 

G-domain (see, [ll, Proposition 1; 21, Proposition 3.71). 
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Example 3.11. Spec(R) is finite and dim(R) 5 1 if (and only if) R is a compactly 

packed G-domain of essential type. (R is compactly packed if, for any subset fl of 

Spec(R) and any ideal I in R, the condition I C U {PI P E a} implies Z C P for 

some P E R. See [24,26].) I n a compactly packed ring, every prime ideal P is the 

radical of a principal ideal [23, Theorem 1; 291. By essentiality, dim(R) 5 1. Thus, 

for every P, Spec(R)\{P} is a quasi-compact Zariski-open set; and therefore it is 

closed when Spec(R) is endowed with the patch topology. It follows that in the 

patch topology Spec(R) is discrete. Since the patch topology is compact, Spec(R) 

must be finite. 

4. Describing G-domains via spectral spaces 

In this section we describe some different kinds of G-domains with infinitely 

many height 1 primes. First, relying on the Jaffard-Ohm Theorem [14, Theorem 

18.61, we construct a specific example of a two-dimensional B&out G-domain of 

essential type. Then, based on Hochster’s characterization of spectral spaces [18], 

we describe a general ‘one-point adjunction’ construction for G-spaces. Naturally, 

both techniques are topological, prescribing first the desired prime spectrum and 

then using the appropriate theorem to establish the existence of a ring with such a 

spectrum. The diversity of behavior in our examples, using the one-point adjunc- 

tion, seems to justify our focus on a topological rather than ring-theoretical 

classification scheme. 

Gilmer gave the first example of a one-dimensional Bezout G-domain with 

infinitely many height 1 primes; namely, the ring T in Example 3.9. To exhibit a 

completely integrally closed G-domain of essential type whose dimension is 

greater than 1, we examine further a construction due to Fischer [9]. 

Example 4.1. Let G be the group of all sequences of integers, a = {a, ) II 2 0}, 

that are eventually in arithmetic progression. Addition is given by (a + b), = 
a,! + b,, . Partially order G by defining G + = {a E G ( a, 2 0 for n 2 O}. The 

greatest lower bound for a and b in G is a A b = c where c, = min(a,, b,). 
Evidently, G is a lattice-ordered group. The ‘prime’ subsets of G are those sets S 

such that S + G + = S, G ‘\S is closed under addition, and a A b E S for every a 

and b in S. Fischer [9, Example 1.41 has shown that, as a partially ordered set, 

Spec(G) looks like Fig. 1 where 

Pj={aEG+Iaj>O}, 

P’={aEG’[a,>Oforalllargen}, 

P”= {aE G+la,+, > a, for all large n}, 

0=0 
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Moreover, (0) is an open set. By the Jaffard-Ohm Theorem [14, Theorem 18.61, 

there exists a Bezout domain R with G as its group of divisibility and with 

0 

Fig. 1. 

Spec(R) homeomorphic to Spec(G). As (0) is open in Spec(G), (0) must be 

open in Spec(R), meaning that R is a G-domain. Obviously, dim(R) = 2. From 

the definitions of G and P” the reader can easily verify essentiality, namely, 

P” C UT=, P,. (Alternatively, it will be established in Remark 4.6(b) that any 

G-domain with a prime spectrum ‘looking like’ Spec(G) must be essential.) 

Hence, by Corollary 2.20, R = S-‘R = R*. 

Example 4.1 inspires an approach to classifying G-domains. We shall seek to 

construct all G-spaces and then identify properties of the underlying G-domains. 

Note that every G-space is an irreducible spectral space. 

The key definition of this section can now be introduced. Let X be a topological 

space and 0 a point disjoint from X. The one-point adjunction to X is the 

topological space X, = X U (0) whose closed sets are X, and all the closed sets of 

X. To motivate this definition, consider an arbitrary G-space Y. The unique 

minimal point 0 (corresponding to the prime ideal (0)) is an open set. Thus, r\(O) 

is a closed subspace of Y and therefore a spectral space having Y as its one-point 

adjunction. Thus, we shall adopt the convention of denoting any such Y by X0 

and Y\(O) by X. 

Proposition 4.2. The correspondences X++ X U (0) (via the one-point adjunction) 
and y\(O) t-r Y give rise to a bijection between the homeomorphism classes of 
spectral spaces X and the homeomorphism classes of G-spaces Y. 

Proof. By the remarks above, it suffices to show that if X is a spectral space, then 

x”=xu{o} IS a G-space. First, note that X0 is a spectral space because it 

inherits from X the three criteria of Hochster [18]: It is a T, quasi-compact space, 

its quasi-compact open sets are closed under finite intersection, and every 

irreducible closed set is the closure of one of its points. Since {o} = X,, (whence, 

O< x for every x E X) and since (0) is open in X0, it follows that X,, is a 

G-space. 0 
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Since a nonempty spectral space is zero-dimensional if and only if it is 

Hausdorff and since dim(X,) = dim(X) + 1, we obtain 

Corollary 4.3. The homeomorphism classes of one-dimensional G-spaces are in 
l-l correspondence via the one-point adjunction with the homeomorphism classes 
of nonempty Hausdorff spectral spaces. 0 

Remark 4.4. The nonempty Hausdorff spectral spaces (of dimension 0) are the 

same as the nonempty Boolean spaces (i.e. spaces homeomorphic to the prime 

spectrum of a nonzero Boolean ring) (cf. [20, p. 833 and Theorem 6.11). Thus, 

the homeomorphism classes of nonempty Boolean spaces are in l-l correspond- 

ence with the homeomorphism classes of one-dimensional G-spaces. 

Recall that a spectral space X is a T,-(respectively, discrete Alexandroff) space 

if for every x E X, {x} is open in {x} (respectively, for every F C X, F = U 
{{x} ( x E F}). Every discrete Alexandroff space is T,. 

Corollary 4.5. Let X,, be a G-space. Then 
(a) X0 is a T,-space if and only if X is a T,-space. 
(b) X,, is discrete Alexandroff if and only if X is discrete Alexandroff. 
(c) Every G-space with only jinitely many primes of height greater than 1 is a 

T,-space. 

Proof. (a) and (b) may be verified by the reader. To prove (c), consider P E X. 

Then, by hypothesis, {p} = {P, P, , . . . , P,l} consists of finitely many elements 

where each P, 2 P. Thus, we can pick f E n;=, P,\P. Thus, {P} = D(f) fl {p} is 

open in {P}, as desired. (If n = 0, f = 1 suffices.) 0 

Remark 4.6. (a) Y is a Noetherian space if and only if YH (by which we mean Y 

endowed with Hochster’s opposite order topology [18, Proposition 81) is a 

discrete Alexandroff space [7, Corollary 3.41. Thus, by Proposition 4.2 and 

Corollary 4.5, Y-+ Y” U (0) gives a l-l correspondence between homeomor- 

phism classes of Noetherian irreducible spaces and homeomorphism classes of 

discrete Alexandroff G-spaces. 

(b) More concretely, we now construct a two-dimensional essential discrete 

Alexandroff G-space with infinitely many height 1 elements. Let Z denote the 

integers and Y = Spec(Z). Then, as a partially ordered set, X,, = YH U (0) looks 

like Fig. 2. By (a), it remains only to prove that any G-domain R having X0 as its 

prime spectrum must be essential. But, if R were not essential, we could pick 

f E M\ U yzl Pi. Then, X,\(M) = D(f) would be a G-space (homeomorphic to 

SpecW If I>>; w h ence, X,\{M, 0} would also be a spectral space. But X,\{M, 0}, 

being an infinite discrete topological space, is not quasi-compact and, therefore, 

not spectral. Thus R is indeed essential. 
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Fig. 2. 

(c) By a construction similar to (b), we exhibit a two-dimensional G-space 

which is T, but not discrete Alexandroff. Let W = Spec(A) where A is the 

one-dimensional Bkzout domain of algebraic integers localized at the complement 

of the union of all maximal ideals lying over a fixed nonzero prime number. Then, 

by (a), the two-dimensional G-space X,, = WH U (0) is not discrete Alexandroff 

because W is not Noetherian (cf. [ll, Corollaire, p. 61.) Of course, X0 is T, by 

Corollary 4.5(c). 

Remark 4.7. It is non-trivial to construct spectral spaces X such that the 

corresponding G-space X,, will have a particular prescribed property. For in- 

stance, we would like to be able to build essentiality into our space X,. One 

tempting approach would be to consider the ring A of real-valued continuous 

(bounded) functions on a topological space Y. (The question of which informa- 

tion is imparted to A from the topological properties of Y has been discussed 

often in the literature. See [l, 8, 161 for example.) There are conditions which 

guarantee that every Q E Spec(A) is contained in U {P 1 P E Spec”(A)}. Intui- 

tively, this means that A has the right ring-theoretic condition for essentiality. We 

have been unable to deduce from this that Spec(A) U (0) must have an underly- 

ing G-domain of essential type. The remaining question is whether, in some 

‘broad’ category, being of essential type is really a topological property. 
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