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SOME RESULTS ON THE WEAK
NORMALIZATION OF AN INTEGRAL DOMAIN

Davip E. DOBBS*'** and Marco FONTANA*

1. Introduction. This paper is motivated by the work of Yanagihara
[16] on -sA, the weak normalization relative to an integral extension A C B
of commutative rings. For simplicity, we consider the special case in which
A is a (commutative integral) domain R and B = R’, the integral closure of
R. A particular focus is on the case in which R is weakly normal, in the
sense that R = «(R).

It seems natural to study weak normality in terms of related properties
that are better understood. In this regard, recall that for domains

root closed = weakly normal = seminormal,

with none of these implications being reversible in general. It will be conve-
nient to say that a domain R salisfies the Yanagihara conditions if the follow-
ing holds for each P € Spec(R) : if ch(R/P) = 0, then Ry is seminormal ;
and if ch(R/P) = p > 0, then R is p-closed. It was shown in [16. second
Corollary on page 653] that if R satisfies the Yanagihara conditions, then R
is weakly normal. However, by applying the D+ M construction to the exam-
ple in [16, Remark 2], we see in Example 2.1(b) that a weakly normal domain
of (Krull) dimension = 3 need not satisfy the Yanagihara conditions. In fact,
we show in Example 2.1(a) that the same conclusion holds in dimension 2,
by changing the polynomial ring in Yanagihara's example to a Nagata ring.
Nevertheless, we show that the Yanagihara conditions do characterize weak
normality for certain types of domains : those of dimension < 1 (see Prop-
osition 2.2) and pseudo-valuation domains in the sense of [13] (see Propo-
sition 2.3).

Our contribution in section 3 relates to the following result of Yanagihara
[16. Theorem 1] (see also Itoh [14]). A domain R, with quotient field K, is
weakly normal if and only if R is seminormal and satisfies the following
additional condition : if « € K and p is a prime number such that «” and pu
are in R, then u € R. Section 3 effects a modest sharpening of this charac-
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terization (see Proposition 3.7(4)) in the spirit of what we called the
Yanagihara conditions, by considering separately the primes P of R with
R/P of characteristic zero or of positive characteristic. Related to this
work are two “decompositions” of the weak normalization R*(= «(R)) for
any domain R : see (3.6), (3.11).

The rings discussed in Example 2.1(a), Proposition 2.2 and Proposition
2.3 (but not those in Example 2.1(b)) are all going-down domains, in the sense
of [4]. In fact, weak normality has figured earlier in our work on universally
going-down domains (definition recalled below), principally in connection with
the result [8, Corollary 2.3] that a domain R is a Priifer domain if and only
if R is an integrally closed universally going-down domain. In section 4, this
is sharpened in several ways. First, it is noted in Proposition 4.1 that a
domain R is a universally going-down domain if and only if R* is a Prifer
domain. Secondly, by using our extension of the Yanagihara-Itoh criterion
(from Proposition 3.7), Corollary 4.2(4) characterizes Priifer domains as a
certain type of seminormal universally going-down domain. (This is the spirit
of Angermiiller [3, Theorem 1], who showed that certain one-dimensional
root closed domains must be integrally closed. Note, however, that a root
closed going-down domain need not be integrally closed : cf. [10, Exercise
6, page 184], [5, Remark 2.7(c)].) Section 4 also includes proofs that the
classes of weakly normal going-down domains and of universally going-down
domains are stable under formation of factor domains : see Propositions 4.5
and 4.7.

Throughout, we assume familiarity with the material in [16], [14] on
weak normalization and in [5] on going-down domains and divided primes.
Here, we recall from [2], [15] only the characterizations of weak (resp.,
semi-)normalization of a domain: R* (resp., R*) is the largest integral
overring T of R such that Spec(T) — Spec(R) is a bijection and the residue
class field extensions induced by R C T are all purely inseparable (resp.,
isomorphisms). For additional background or points of view, the interested
reader may consult [11] or the references listed in [16].

2. On the Yanagihara conditions. The effect of Example 2.1 will be
to show that a weakly normal domain R need not satisfy the Yanagihara
conditions if dim(R) = 2. However, we shall show that these conditions do
characterize weak normality if either dim(R) < 1 or R is a pseudo-valuation
domain (see Propositions 2.2 and 2.3). It is interesting to note that all the
rings figuring in these results are going-down domains. (Recall from [4] that
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a domain R is called a going-down domain if R C T satisfies the going-down
property for each overring T of R.) It will be helpful to recall the result
[4. Theorem 2.2] that if R is a going-down domain, then Spec(R). as a poset
under inclusion, is a tree.

Example 2.1. (a) Let n be either o or a positive integer greater than
1. Let p be a prime. Then there exisis an n-dimensional quasilocal weakly
normal going-down domain (R. N) such that ch(R/N) = p and R is not
p-closed. In particular, R does not satisfy the Yanagihara conditions.

To construct a suitable R, we begin with the Nagata ring A = Z ,.(X?).
(By definition [10, page 410], A = Z,,[X*]i».) Note that A is a one-dimen-
sional valuation domain (cf. [10, Theorem 33.4]), and thus is a going-down
domain. Next, take an (n—1)-dimensional valuation domain (V, M) of the
form V= Q(X)+ M. (As usual, we adopt the conventions that °©—1 = o0 =
©+1.) We shall show that R = A+ M has the asserted properties.

Standard facts about the D+ M construction (as in [10]) reveal R is
quasilocal and n-dimensional. By [9, Corollary], R is also a going-down
domain. Moreover, the maximal ideal of R is N = pA+ M, so that R/N =
A/pA = F,(X®), which has characteristic p. Notice also that X is in the
quotient field of R, X* € R, and X & R (since X € A). Hence. R is not
p-closed.

It remains only to show that R is weakly normal. This can be done by
applying the criterion in [16, Theorem 1]. First, note that R is seminormal
since A is seminormal. Next, suppose that u in the quotient field of R
satisfies u?, qu € R for some prime q. As V is ¢-closed, u € V. Without
loss of generality, u € Q(X). If ¢+ p, then ¢7' € A C R, so that u =
q '(qu) € R* = R, as desired. Thus, we may suppose ¢ = p. Now. since

llp € AC sz[X](p) = Zp?(X)

and Z,,(X) is integrally closed, it follows that u € Z,,(X). Moreover,
since pu € A, we have u € Ap~'. To show « € A (and hence u € R), it
suffices to prove

Ap—l ﬂ sz(X) (- A

or, equivalently, that A N pZ,,(X) C pA. If this were to fail, 1 € pZ,,(X),
since pA is the unique maximal ideal of A ; but then 1 would be in the maximal
ideal of Z,;(X). This (desired) contradiction gives u € R, and so R is
weakly normal. O
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(b) By applying the D+M construction directly to the extension Z[X*]
C Z[X] considered by Yanagihara in [16, Remark 2], we obtain only some of
the properties of the example in (a). For instance, the two-dimensional case
is not addressed, since dim(Z[X?]+M) = dim(Z[X*])+dim(V) = 241 =
3. Moreover. Z[X?]+M is not a going-down domain (because, for instance,
its spectrum is not a tree).

Each domain of dimension at most 1 is a going-down domain. We show
next that, in contrast with Example 2.1, the Yanagihara conditions charac-
terize weak normality in the one-dimensional case.

Proposition 2.2. For a domain R such that dim(R) < 1, the following
conditions are equivalent :

(1) R is weakly normal ;

(2) R satisfies the Yanagihara conditions.

Proof. (2) = (1) : As mentioned earlier, this is a special case of (16,
second Corollary on page 653].

(1) =(2) : Assume (1). By [16, Proposition 2], each localization of
R is weakly normal. Moroever, (2) is preserved by localization (a fact
which is especially obvious when dim(R) < 1). Thus, we may assume that
R is quasilocal, say with maximal ideal M. Since fields are trivially semi-
normal and p-closed, we may assume P = M =+ 0. Since weakly normal
implies seminormal, [16, Proposition 2] reduces our task to proving that
if ch(R/M) = p > 0, then R is p-closed.

Deny, and consider u € R'\R such that u” € R. Since R is weakly
normal, [16, Theorem 1] yields pu € R. By an easy induction, p"u & R
for each positive integer n. (For the induction step, consider p™*'u = p(p™u)
and note that (p"u)” € R.) Next, write u as a fraction, u = ab™', with
a, b € R\{0}. As u ¢ R, b € M. Since R is one-dimensional quasilocal,
radz(Rb) = M. In addition, p € M since ch(R/M) = p. Hence, p €
rade(Rb) ; i.e., p" = 7b for some n =1 and r € R. It follows that p"u =
rbu = ra € R, the desired contradiction. [

Despite Example 2.1, we show next that the Yanagihara conditions
characterize weak normality for a special type of seminormal going-down
domain, the pseudo-valuation domain (PVD) in the sense of [13]. Note, by
(13, Example 2.1] that a PVD can have any Krull dimension. By definition,
a domain R is a PVD if R has a ( “canonically associated”) valuation overring
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V such that Spec(R) = Spec(V) as sets. A useful characterization [1,
Proposition 2.6] of a PVD, R, with canonically associated valuation overring
(V. M) is this : R = VX yyF. where F is a subfield (necessarily R/M) of
V/M. Another useful characterization [13, Theorems 1.4 and 2.7] states
that a quasilocal domain (R, M) is a PVD if and only if M is a “strongly
prime” ideal (in the sense that xy € M with x, y in the quotient field of R
implies that either x or y is in M).

Proposition 2.3. Let (R, M) be a PVD with canonically associated
valuation overring V. Set F = R/M and k = V/M. Then the following
conditions are equivalent :

(1) R is weakly normal ;

(2) Ifch(F) =p >0, then R is p-closed ;

(3) R satisfies the Yanagihara conditions ;

(4) Ifv € k\F, then v is not purely inseparable over F.

Proof. (1) = (4) : Deny. Choose v € k\F such that v is purely in-
separable (and hence algebraic) over F. Hence, v is not separable over F.
Thus, p = ch(F) > 0, and v*" € F for some n > 1. If ¢ denotes the canon-
ical surjection V = k, consider A = ¢ '(F(v)). Then A = VX, 4F(v) is
a PVD with canonically associated valuation overring V. Thus, Spec(A) =
Spec(V) = Spec(R). Note that the field extension R/M C A/M is just
F C F(v), which is purely inseparable. (Since R is weakly normal in A and
F is not weakly normal in F(v). [16, Proposition 3] leads to a contradiction.
We continue with another proof.) If P € Spec(R) is nonmaximal, then
Ry = V., = A, by [13, Proposition 2.6], and so the field extension induced
by R/P C A/P is an isomorphism (hence, purely inseparable). We have
shown that Spec(A) — Spec(R) is a bijection inducing purely inseparable
residue field extensions. Hence, A C R* = R, whence F(v) = ¢(A) C
@(R) = k, contrary to the choice of v.

(4) = (1) : Assume (4). and again let ¢ : V = k denote the canonical
surjection. Let A = R*. Since RC ACR CV, it follows via inte-
grality that M is also a maximal ideal of A. Hence, F = R/M C A/Mis a
purely inseparable subextension of F C k. By (4), A/M = F, and so A =
¢ W(A/M) = ¢"'(F) = R. Thus, R* = R, yielding (1).

(2) & (3) : This follows from the facts that if P € Spec(R) is non-
maximal, then R, is a valuation domain (hence seminormal and p-closed for
all p) ; and that R = Ry is seminormal.
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(3) = (1) : This is another case of [16, second Corollary on page 653].

(1) = (2) : Assume (1) and consider u in the quotient field of R such
that u® € R, with p = ch(F) > 0. Since p € M, we have pu” € M, and so
(pu)? = p*'(pu®) € M. Now, since R is a PVD, M is a strongly prime ideal
of R. Hence, pu € M C R. Thus, by (1) and the criterion in [16, Theorem
1], « € R. Hence, R is p-closed. O

The proof of (1) => (2) in Proposition 2.3 also establishes the following
result.

Corollary 2.4. Let P be a strongly prime ideal of a domain R such that
ch(R/P) = p > 0. Then R is weakly normal (if and) only if R is p-closed.

Remark 2.5. (a) The “strongly prime” hypothesis in Corollary 2.4
is (sufficient but) not necessary. In other words, there exists a p-closed
(and weakly normal) domain R with P € Spec(R) such that ch(R/P) = p
and P is not a strongly prime ideal of R. To illustrate this, consider R =
Fo[X, Y]xn and let P be its maximal ideal. ( Since this R is Noetherian and
two-dimensional, [13, Proposition 3.2] shows that R is not a PVD, and so P
is not strongly prime.)

(b) Corollary 2.4 can be used to give an amusing proof that the maximal
ideal of the ring R = Z,2(X?)+M (considered in Example 2.1(a)) is not
strongly prime. Notice that although M, the height 1 prime of R, is strongly
prime and R is weakly normal, one cannot infer this latter fact from Corollary
2.4 since R/M = Z,7(X*) has characteristic zero.

(¢) Since weak normality is a local property [16, Theorem 2], Propo-
sition 2.3 may be used to characterize weak normality for the LPVD’s intro-
duced in [6]. We leave the details to the reader.

3. A decomposition of the weak normalization. The first result of
this section sharpens both conditions in the Yanagihara-Itoh characterization
[16, Theorem 1] of weak normality. Other characterizations will involve
“decomposing” a weak normalization as a suitable intersection of overrings.
It will be convenient to fix notation throughout this section as follows. R will
denote a domain with quotient field K. If P € Spec(R), the corresponding
prime ideals of R* and R* will be denoted by P* and P* respectively. Since
weak normalization commutes with localization [16, first Corollary on page

653], (Rp)* = R*,(= R*ww) = R*pe for each P € Spec(R) ; similarly,



SOME RESULTS ON THE WEAK NORMALIZATION OF AN INTEGRAL DOMAIN 15

(Rp)* = (R*)p+. In addition, p and g will denote positive prime numbers ;
and J(—) will denote Jacobson radical.
For each p, we define

T*(p) = Ti(p)
NIR,+J(R's) : there exist P CP,
in Spec(R) with ch(R/P,) = p|.

Now, for each P, € Spec{R), it follows from the definition of seminormal-
ization that

R*ps = (Rp,)* = N{(Rp)prp,+J((R'p)) prp,) : P C P, in Spec(R)|
= N{Rp+J(R'p) : P C P, in Spec(R)|.

Thus. we have
(3.1) T*(p) = N|R",+: P, € Spec(R) and ch(R/P,) = pl.

Next, defining S*(p) = Si(p) = NI T*(q): q+ pl, we find that (3.1)
vields

(3.2) S*(p) = N{R*p+: P, € Spec(R) and
ch(R/P,) is neither 0 nor p|.

Next. defining T*(0) = N{R*p+: P € Spec(R) and ch(R/P) = 0}, we have
via the principle of globalization:

(3.3) R*= T*(p) N S*(p) N T*(0) for each p.

We next arrange a similar decomposition of R*. For each p, we define
T*(p) = T¥p) = |u € K: for each P C P, in Spec(R) with ch(R/P,) =
p, there exists n = 1 such that u®" € Rp+J(R'5) !, where

_ _|pifch(R/P)=1p
€= € 7 |1if ch(R/P) = 0.

Now, if P, € Spec(R) with ch(R/P,) = p, it follows from the definition
of weak normalization that R*py = (Rp,)* =lu € K: for each PC P, €
Spec(R), there exists n = 1 such that e = e, satisfies u®" € Rp+J(R')}.
Thus, we have

(3.4) T*p) = N{R*x: P, € Spec(R) and ch(R/P,) = pl.
Next, defining S*(p) = S¥p) = N{T*(q) : ¢+ pl. we find via (3.4) that
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(3.5) S*(p) = N{R*m: P, € Spec(R) and
ch(R/P,) is neither 0 nor pl.

Next, define T*(0) = T*(0), and note that T*(0) = N{R*+: P € Spec(R)
and ch(R/P) = 0|. Thus, we have, from (3.4), (3.5) and the principle of
globalization, the desired decomposition of R* :

(3.6) R* = T*Xp) N S*(p) N T*(0) for each p.

We may now give our improvements of the Yanagihara-Itoh character-
ization. (Notice how condition (4) sharpens both parts of (5) below.)

Proposition 3.7. For a domain R with quotient field K, the following
five conditions are equivalent :
(1) R is weakly normal.
(2) (a) Reis seminormal for each P € Spec(R) with ch(R/P) = 0.
(b) There exists p such that T*(p) N S*p) C NIR,: P E
Spec(R) and ch(R/P) # 01.
(3) (a) Ry is seminormal for each P € Spec(R) with ch(R/P) = 0.
(b) For all p, T*p) N S*¥p) C N|IRy,: P € Spec(R) and
ch(R/P) =+ 0}
(4) (a) Ry is seminormal for each P € Spec(R) with ch(R/P) = 0.
(b) If P € Spec(R) with ch(R/P) = p and u € K satisfies u®,
pu € Rp, thenu € R,.
(5) (a) R is seminormal.
(b) If p is a prime number and u € K satisfies u®, pu € R, then
u € R.

Proof. (1) =>(3): Assume (1). Then (3a) follows since weak nor-
mality implies seminormality and localization preserves seminormality. As
for (3b), one need only apply (3.4) and (3.5), since (1) assures that R*p =
(Rp)* = Ry for each P € Spec(R).

(3) = (2): Trivial.

(2) (1) : Assume (2), Since R*p+ = (Rp)* = Rp whenever ch(R/P)
=0, (3.6) leads to

R* = T*p) N S*p) N T*0) C N{Rr: P € Spec(R)| = R,

whence R* = R, thus yielding (1).
(4) = (1) : This follows as in the second half of the proof of [16,
Theorem 1] once it is shown that (4) implies R is seminormal. (An earlier
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draft omitted this detail. Its inclusion here was suggested by ideas in corre-
spondence from Professor Yanagihara.)

Assume (4). Suppose first that R contains a field . If ch(k) = 0, then
(4a) yields that R, is seminormal for each P € Spec(R), and hence so is
NRr = R. If ch(k) > 0, then (4b) and [16, Corollary to Theorem 2] vield
that R is weakly normal (and hence seminormal).

In the remaining case, R O Z(and R 2 Q). As T = Ry, inherits (4)
from R, the previous case shows that T is seminormal. Thus, givenu € K
with ¥® and «® in R, we have u € T. Write nu € R, with prime-power
factorization n = I, pf". We shall show u € R; for each P € Spec(R).

If ch(R/P)= 0, then P N (Z\|0}) = ¢, so that R, is a ring of frac-
tions of T ; thus, R, is seminormal and u € Rr. Hence, we may assume
ch(R/P) =p > 0. Inparticular, p€ P, andsop; & Pif p,+ p. If p =+ p,
for all i, then n is a unit of Ry, so that u = n™'(nu) € R,. Without loss of
generality, p = p,. Then v = up™' is such that +* and pv are in R C R, ;
it follows from (4b) that p{'~'ps®...p5°u = v € Rp. By iteration, mu € R,,
where m = ps§*...p5%. As mis a unit of Rp, u = m '(mu) € R;, as desired.

(1) = (5) : This follows from [16, Theorem 1, (i) = (ii)].

(5) = (4) : Since localization preserves seminormality, it suffices
to show that (5b) implies (4b). Consider P € Spec(R) and u € K with
ch(R/P) = p, v € R, and pu € Rs. Pick z € R\P such that 2u°, zpu €
R. Then (zu)? € R also, and so (5b) gives zu € R C R;. As z7' € R,,
we have u = z7(zu) € R,. 0O

Lastly, we shall show that the Yanagihara-Itoh restriction on «”, pu in
(5b) above is related to another decomposition of R*. The next two definitions
are relevant. For each p. let T\*(p) = {u € K: for each P, in Spec(R)
with ch(R/P,) = p, there exists n = 1 such that *" € R, +J(R'»)}; and
let S\*(p) = N{T,*(q) : ¢+ p}. These concepts are related to the earlier
material in the next result.

Proposition 3.8. Let u € K and let p be a prime number. Then :
(a) Ifu® € T*(p), thenu € T,*(p).
(b) Ifpu € S*(p), thenu € S;*(p).

Proof. (a) Consider P, € Spec(R) with ch(R/P,) = p. By hypothesis
and (3.4), u” € R*,. Using the above description of R*x, we have n > 1
such that """ = (u®)?" € Rp,+J(R's,). Hence. u € T\*(p).

(b) Consider @, € Spec(R) with ch(R/Q,) =q+ p. Asq€ Q.. p &
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Q. (otherwise, 1 € Q,, a contradiction). Thus, p™' € Ro, C R&-. It
follows via (3.5) that u = (p~")pu € R*q-. Hence, u” € R*,-. By(3.4)
and (a), u € T\*(q) for all ¢ #+ p. Hence, u € S\*(p). 0O

We next fit T:*(p), S,*(p) into another decomposition of R*. First,
notice from Proposition 2.8 or the definitions that

(3.9) T*(p) C T,*(p) and S*(p) C S,*(p) for each p.

Next, define T;*(0) = N{Rp+J(R's): P € Spec(R) and ch(R/P) = 0}.
By the above, it is evident that 7,%(0) = N|{R*p:: P € Spec(R) and
ch(R/P) = 0}. Hence, it follows from the definition of T*(0) = T*(0) that

(3.10) T,*¥(0) = T*O0).
Moreover, it follows from the definition of weak normalization that
(3.11) R* = T\¥(p) N S;*(p) N T,*(0) for each p.

We leave it to the reader to develop a similar decomposition of R*.

4. Weak normality and universally going-down. We turn next to con-
nections with universally going-down domains. Let R be a domain. As in
[8], R is said to be a universally going-down domain in case S 2> S @, T
satisfies going-down for each domain T containing R and each homomorphism
R = S of commutative rings. Equivalently, by [8, Theorem 2.6] and [7,
Corollary 2.3], R is a universally going-down domain in case the inclusion
R[X,,....X,] C T[X,....,X,] satisfies going-down for each overring T of R
and each finite set | Xi,...,X,| of algebraically independent indeterminates
over R. Of course, each universally going-down domain is a going-down
domain, but the converse is false {cf. [8, Remark 2.5(b)]). Arbitrary Prifer
domains are the most natural examples of universally going-down domains.
(If R is Priifer and T a domain containing R, observe that the inclusion R —
T is flat, and hence satisfies going-down. Since flatness is a universal
property, R = T is thus a universally going-down homomorphism in the sense
of [12], [7].) In fact, [8, Corollary 2.3] established that R is a Priifer
domain if (and only if) R is an integrally closed universally going-down
domain. We next give some useful characterizations of universally going-
down domains.

Proposition 4.1. For a domain R, the following conditions are equiva-
lent :
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(1) R is a universally going-down domain ;
(2) R* is a universally going-down domain ;
(3) R* is a universally going-down domain ;
(4) R*is a Prifer domain.

Proof. (1) & (4): This amounts to a restatement of the main result
in [8]. Indeed, [8, Theorem 2.4] shows that (1) is equivalent to “R’ is a
Priifer domain and R' = R*.” Accordingly, one need only observe that if R*
is a Priiffer domain, then R' = R*. For this, just note that R C R* C R’ in
general and recall that Priifer domains are integrally closed.

(2) <> (4) : The above characterizations of weak (resp., semi-)normal-
ization make it clear that (R*)* = R*. Applying (1) < (4) to R* instead
of R, we have (2) <& (4).

(3) <> (4) : Since a composite of purely inseparable field extensions
is purely inseparable, it is clear that (R*)* = R*. Applying (1) & (4) to
R* instead of R, we have (3) < (4). O

Corollary 4.2. For a domain R, the following conditions are equivalent :

(1) R is a Prifer domain ;

(2) R is aroot closed universally going-down domain ;

(3) R is a weakly normal universally going-down domain ;

(4) R is a seminormal universally going-down domain. If u in the quo-
tient field of R satisfies u”, pu € R for some prime p, thenu € N{Rp: P €
Spec(R), ch(R/P) = pl.

Proof. Priifer domain = root closed domain = weakly normal domain.
Hence, (1) = (2) => (3). Moreover, Proposition 3.7 gives (3) < (4) ;
and Proposition 4.1 [(1) <> (4)] gives (3) <> (1). O

We next make matters a bit more precise in case of positive character-
istic. First recall ([14], [16]) that a domain R of positive characteristic p
is weakly normal if and only if R is p-closed.

Corollary 4.3. Let R be a domain. Then :

(a) R* is a Prifer domain if and only if R is a universally going-down
domain such that R* = R*.

(b) Suppose that ch(R) = p > 0. Then R* is a Prufer domain if and
only if R is a universally going-down domain such that R* is p-closed.

(¢) Suppose that ch(R) = p > 0. Then R is a Prifer domain if and
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only if R is a p-closed universally going-down domain.

Proof. (a) Observe that R* is an integral overring of R*. As each
overring of a Priifer domain is Priifer and hence integrally closed, we see
that R* is Priifer if and only if R* is Prifer and R* = R*. An application
of Proposition 4.1 [(1) <> (4)] yields (a).

(b) and (c) : In view of Proposition 4.1 [(1) <=>(2)], applying (c) to
R* instead of R yields (b). Thus, it suffices to prove (¢). The “only if”
assertion follows from earlier comments. For the converse, apply Corollary
4.2 [(3) = (1)] and the comment preceding the statement of this corollary.O

Remark 4.4. (a) The condition “R* = R*” in Corollary 4.3(a) cannot
be deleted. Indeed, [8, Remark 2.5(a)] shows for eachd, 1 < d < oo, and
each prime p, there exists a d-dimensional seminormal universally going-down
domain R of characteristic p such that R(= R*) is not a Priifer domain.
This same example shows that “p-closed” cannot be weakened to “seminormal”
in Corollary 4.3(b), (¢).

(b) For convenience, let us say that a domain R satisfies (*) in case the
extension R C S is mated (in the sense of [4]) for each overring S of R.
By [4. Proposition 3.6], R is a Priifer domain if and only if R is an integrally
closed domain satifying (*). Moreover, it was shown in [8, Proposition
2.2(b)] that each universally going-down domain satisfies (*). The converse,
however, is false. Indeed, [5, Remark 2.7(c)] shows for eachd, 1 < d <
oo, there exists a d-dimensional (quasilocal) root-closed (going-down) domain
R of characteristic 0 such that R satisfies (*) and R is not a Priifer domain.
Somewhat as a consolation, we note that each of these rings R is weakly
normal.

Our final results are motivated by Corollary 4.2 [(1) < (3)] and the
fact that any factor domain of a Priifer domain is a Priifer domain.

Proposition 4.5. If R is a weakly normal going-down domain and P €
Spec(R), then R/P is a weakly normal going-down domain.

Proof. By [5, Remark 2.11], R/P is a going-down domain. As for
weak normality, it is enough to consider (R/P)y;» = Ru/PRy for the maximal
ideals M containing P. Now, Ry is a quasilocal weakly normal (hence semi-
normal) going-down domain. Thus, by [5, Corollary 2.6], A = Ry is a divided
domain ; i.e., QA= Q for all @ € Spec(A). Consequently, the assertion
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follows from the following easy consequence of the Yanagihara-Itoh character-
ization of weak normality [16, Theorem 1]. If B is a weakly normal domain

and [ = IB, € Spec(B), then B/I is weakly normal. 0O

Remark 4.6. It is easy to see that Proposition 4.5 fails without the
“going-down” hypothesis. Consider, for instance, R = F,[X, Y] and P =
(X*—Y?). Since R is integrally closed, R is weakly normal. However, R/P
is not weakly normal since it is not 2-closed: x = X+ P and y = Y+ P
satisfy (xy™')? = y € R/P although xy' & R/P. (Of course, as Proposition
4.5 requires, this R is not a going-down domain. This is also evident directly
since Spec(R) is not a tree.) O

Proposition 4.7 is the “universal” analogue of a stability result on the
class of going-down domains [5, Remarks 2.11 and 3.2(a), (b)].

Proposition 4.7. If R is a universally going-down domain and P €
Spec(R), then R/Pis also a universally going-down domain.

Proof. Let A= R/P. We must show that the inclusion mapA — T is
a universally going-down homomorphism for each overring T of A. Put S =
R+ PRy, and Q@ = PR;. By standard homomorphism theorems, S/Q = A
and T = B/Q for a suitable domain B satisfying S C B C Rp. Moreover,
Se = Rr and Q@ = QS,. As S inherits the property of being a universally
going-down domain from R [8, Proposition 2.2(a)]. we may abuse notation,
identifying R with S and P with Q. In particular, we have P = PR,.

Now, since B is an overring of R, the hypothesis on R yields that the
inclusion map R — B is a universally going-down homomorphism. Hence
A — A Q@ Bis also a universally going-down homomorphism. It will there-
fore suffice to prove that A @; B is canonically isomorphic to T. For this,
observe first that

PC PBC PR, = P,
whence PB = P. It follows that
AR B=R/PQRQ:xB=B/PB=B/P=T. 0O
Remark 4.8. (a) Let R be a universally going-down domain. Not every

domain containing R is a (universally) going-down domain : consider, for
instance, R[X, Y] (whose spectrum is not even a tree). However, by [8,
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Proposition 2.2(a)], each overring of R is a universally going-down domain.
Thus, by Proposition 4.7, if P € Spec(R) (and R is a universally going-down
domain), then each overring of R/P is a universally going-down domain.

(b) The following result is in the spirit of (a). Let R C T be an inte-
gral extension of domains such that R is a universally going-down domain and
T is the weak normalization of R in T. (This last condition just means that
7R = T.) Then T is also a universally going-down domain.

The proof follows easily by considering the tower

R(X,,....X,;] C T[X,,....X,s] C D[X,,....X,]

for each domain D containing T and each positive integer n. Indeed, if we call
this tower A C B C C, the key point to notice is that Spec(B) — Spec(A)
is an order-isomorphism (since weak normalization is a universal homeo-
morphism [2]). Hence, since A C C satisfies going-down, so does B C C.

(¢) The assertion in (b) fails without the “weak normalization” hypoth-
esis. Indeed, consider R = Z C Z[3+/2 ] = T. This is an integral exten-
sion and R (being Priifer) is a universally going-down domain. However, T
is not a universally going-down domain since T* = T* = T & T' =Z[+/2]
(cf. Corollary 4.3(a)).
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